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Abstract: Software Defined Networks (SDN) introduced better network man-
agement by decoupling control and data plane. However, communication
reliability is the desired property in computer networks. The frequency of
communication link failure degrades network performance, and service dis-
ruptions are likely to occur. Emerging network applications, such as delay-
sensitive applications, suffer packet loss with higher Round Trip Time (RTT).
Several failure recovery schemes have been proposed to address link failure
recovery issues in SDN. However, these schemes have various weaknesses,
which may not always guarantee service availability. Communication paths
differ in their roles; some paths are critical because of the higher frequency
usage. Other paths frequently share links between primary and backup.
Rerouting the affected flows after failure occurrences without investigating
the path roles can lead to post-recovery congestion with packet loss and system
throughput. Therefore, there is a lack of studies to incorporate path criticality
and residual path capacity to reroute the affected flows in case of link failure.
This paper proposed Reliable Failure Restoration with Congestion Aware for
SDN to select the reliable backup path that decreases packet loss and RTT,
increasing network throughput while minimizing post-recovery congestion.
The affected flows are redirected through a path with minimal risk of failure,
while Bayesian probability is used to predict post-recovery congestion. Both
the former and latter path with a minimal score is chosen. The simulation
results improved throughput by (45%), reduced packet losses (87%), and
lowered RTT (89%) compared to benchmarking works.
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1 Introduction

Software Defined Networks (SDN) is an emerging network paradigm that fosters network
innovation by separating the controller from the data plane using the OpenFlow standard [1].
This separation improved the network management, increased the chance of deploying innovations,
and made the network more programmable [2,3]. However, networking equipment is failure-prone;
therefore, some aspects such as reliability and fault management are necessary properties in the
computer network. The frequency of communication link failure on the data plane has been one
of the challenging issues. On average, every 30 min, some links are likely to fail [4]. Another study
reported the probability of having one link failure within a 5-min cycle by more than 20%, which is
not negligible [5]. Therefore, upon occurrences of failure, the location of the failure is detected, and
the failure event is communicated to the SDN controller. In return, it computes available alternative
paths with a set of forwarding rules and instructs the affected switches to install the rules on their
Flowtable to enable the forwarding of affected traffic flows. Facilitating reliable failure recovery
depends on how fast the network is reconfigured through a path with minimal chances of future
occurrences. Failure recovery can be achieved using a restoration or protection approach. In the
former, the backup path is computed after failure detection. Unfortunately, frequent flow arrival can
easily affect the performance of the controller. There can be up to 200,000 flows arrival/sec for a
data centre with a 4 k server [6]. Calculating the end-end new backup path for this dense number
of flows can easily overwhelm the SDN controller. In addition, when the number of flows exceeds
the residual capacity of the transmission links, link quality will be affected by a lower transmission
rate. The latter provisioned backup paths forwarding rules in advance in either of the three methods
to overcome these challenges. (i) one backup path can be deployed to protect exactly one primary
path. The work in [7] is an example of such a scheme. (ii) Another possibility is to configure one
backup path to protect N number of primary paths [8]. (iii) It is also possible for specified Primary
(P) paths to be protected by N paths, such that N ≤ P, like the works in [9,10]. In either case, many
forwarding rules are deployed in the switch Flowtable. It is a logical data structure in SDN switches
that guide how flows are handled. Switch Flowtable is implemented using high-speed memory, i.e.,
Ternary Content Addressable Memory (TCAM). However, the speed is at the cost of limited space
[11]. Although, the presence of backup path forwarding rules in advance can help to locally reroute
the affected flows without consulting the controller. Unfortunately, deploying many forwarding rules
to protect these dense number of flows can easily overflow the precious memory resource. Conversely,
removing the affected flow rules in the set of switches and updating the new routing rules for the path
may considerably lead to significant packet delay and losses. In line with the Carrier Grade Networks
(CGN), the recovery process must be completed within 50 ms to comply with the Service Level
Agreement (SLA) of Internet Service Providers (ISPs). Similarly, average packet loss should be within
0.3% with 99% port service availability [12]. Therefore, time and memory space are the major challenge
for both restoration and protection failure recovery approaches. Although, the protection approach
can quickly enable alternative paths. However, it may be more effective offline where the network
setting is fixed. Unfortunately, traffic flows change more frequently, especially with the emergence
of Internet of Things (IoT) applications. As such, it may not cope with real-time applications. This
way, the restoration approach received attention lately. Backup path forwarding rules allocation is
considered a challenging task using restoration [13]. Inappropriate backup path selection may fail
earlier than the primary path. Moreover, the density of network topology differs and when the backup
path fails, it may affect multiple paths which this paper referred to as path criticality, and consequently
decrease service availability. Similarly, the links along the backup path may get overloaded leading to
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congestion and eventually packet loss with higher recovery time. Therefore, various recovery schemes
have been proposed to reduce the recovery time [4,14,15].

Other solutions focus on selecting backup paths while optimizing the number of flow rule
operations [14,16,17]. Another solution established an alternate route to handle high-priority packets
with minimal delay [18]. Path partition was among the recent solutions to reduce end-end path
computation [13]. However, a prior study [19] reported that 30% of link failures occur due to multiple
shared links referred to as critical links on the path. Consequently, decrease in service availability.
Based on the above discussions, there is a lack of study to properly incorporate links path criticality
and post-recovery congestion to improve the service availability and decrease the number of packet
losses, thereby reducing packet loss, RTT, and increasing throughput. This paper proposed Reliable
Failure Restoration with Congestion (RFRC) to select the reliable backup path that decreases service
disruption, increasing network service availability while minimizing post recovery congestion. This is
achieved by rerouting the affected flows to the backup path that is least likely to share the link between
primary and backup path. This choice has minimized the probability of failure between more than one
paths. The contributions of this paper can be summarized as follows.

• This paper discussed the weakness of the existing failure recovery approaches in SDN
• The paper devised a model to estimate path criticality model based on the frequency usage of

the set of links on the path. The failure restoration approach is embedded with this model to
redirect the affected flows after the occurrence of link failure.

• The study introduced the Bayesian probability post-recovery congestion model to examine links
state. The model predicts a path with minimal post-recovery congestion if there is a share link
between the primary and the selected backup path.

• An experiment was conducted to evaluate the performance gain of the proposed scheme
compared to the existing methods, which shows the proposed RFRC has superior performance.

The rest of the paper is organized as follows: Section 2 presents the various failure recovery-related
works. The design of the proposed solution is described in Section 3, and experimental setup and
performance evaluation are presented in Section 4. Finally, Section 5 concludes the work and suggests
future work.

2 Related Works

This section discusses and investigates the existing failure recovery schemes for SDN. Presently
several recovery schemes have been proposed from the past literature. These works are categorized into
restoration and protection to detour the affected flows upon link failure. The following subsections
details each scheme.

2.1 Restoration Approach
Some works rely on restoration approaches to detect a link failure and establish an alternative

path. References in [20–22] are an example of such an approach. They calculate the optimal backup
path after failure detection and reroute the affected flows using the restoration approach. However,
the recovery time is approximately 100 ms, which is far from the CGN requirement. The works in
[23,24] argued that periodic link monitoring to detect the failure before establishing a backup path
might considerably introduce controller overhead, leading to higher recovery time. To overcome these
challenges, [24] offload the link monitoring capability of Operation Administration and Maintenance
(OAM) from the controller to the OpenFlow switch. OAM leverages on general message generator
and processing function in the switches, and extension in OpenFlow 1.1 protocol to support the
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monitoring function. However, delegating some of the control functions to switches violates SDN’s
promise [3]. Alternatively, the work in [25] presents a fault management scheme without modifying
the SDN architecture. In this regard, a topology discovery module was devised to collect the link-
state event periodically. Afterwards, the route planning module used the gathered information to
calculate multiple route paths based on the topology information. Upon failure, the A Virtual Local
Area Network (VLAN) switch configuration module configures multiple switch ports with relevant
VLAN Identifier (IDs) to enforce each routing path. However, forwarding rules update operations
were overlooked. Consequently, it affects the recovery time. Multi-Failure Restoration with Minimal
Flow Operations has been proposed in [17,26]. The authors devised an optimization scheme to find
a restoration path with a Dijkstra-like path cost and minimum operation cost. The challenge is to
find a reroute path achieving a trade-off between operation cost and end-end path cost [16]. An
end-to-end fast link failure recovery approach based on the shortest was introduced in [18]. The
scheme categorized packets, and high-priority packets are redirected to an alternative path upon failure
occurrences. However, the solution is tested in a small network setting, which may not be feasible in a
large-scale network, because the algorithm’s complexity augments as the network’s size increases [13].

Similarly, the work in [27] devised a scheme for the SDN controller application to classify flows
according to their protocols. This way, the scheme obtains the Flow Table utilization ratio and
computes the backup path with sufficient bandwidth. Upon the occurrence of failure, the scheme
examines the residual capacity of switch resources and computes alternative paths accordingly. The
work in [28] proposed a mechanism to avoid frequent contacting the controller and take local corrective
measures. In this regard, two methods were devised to store bypass paths on all pairs of nodes and
others on some selected nodes. Therefore, when a failure occurs, a switch can act locally. However,
installing two sets of flow rules bypass in the switch Flowtable beside the primary path rules will lead
to load in balance and caused congestions.

Other solutions attempt to reduce the end-to-end computation and Flowtable time. For example,
the works in [29,30] introduced the principle of a community detection scheme. If a failure occurs,
the affected community is detected, and the backup path is established within the affected community
without tampering with packet forwarding in other communities. This way, recovery is faster, thereby
improving the network fault tolerance capability. However, removing the old flow entries in the
affected path and re-installing the new entries for the alternative can be costly, especially when the path
length is long. Toward this goal, their follow-up works [7,13,30] further reduced the update operation
mainly cost as a result of old flow entries. When failure occurs, the scheme only searches the new
path from the point of failure down to the destination switch and removes the old flow entries of the
affected switches only; the remaining flow entries on the path are preserved. This way, the scheme has
significantly reduced the update operation and end-to-end computation time. However, the scheme
neither guarantees the shortest path nor considers congestion.

In contrast, an effective method to minimize the total switching time of all paths in the network
was presented in [31,32]. The authors considered path route selection based on path switching latency
in heterogeneous networks, where switches had different specifications. This way, several paths are
explored, and the path with the set of switches having the shortest processing time is considered.
However, the solution may not give optimal performance in a large-scale network.

2.2 Protection Approaches
In the protection mechanism, rules must be preinstalled in advance for path and local recovery

approaches. Due to the proliferation of network flows per second, the number of rules in the switch
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flow table may quickly escalate, leading to large switch memory TCAM consumption. To minimize the
TCAM consumption, the references [4,33] proposed a set of algorithms: Forward Local Re-routing
(FLR) and Backward Local Rerouting (BLR) to compute backup paths for a primary route for faster
failure recovery. Local re-routing of the failed traffic from the point of failure enables speedy recovery.
FLR and BLR backup paths improved sharing of forwarding rules at the switches thereby choosing
backup path with least number of additional switches. However, the solution neither considers post-
recovery congestion nor the potential future failure of the selected link. The works [34–36] leverage
VLAN tagging to present a new protection method to aggregate the disrupted flows. This way, several
flow rules are reduced, thereby improving the recovery time of carrier-grade recovery requirements.
However, the aggregation technique may reduce flow visibility which in turn may be challenging
for the controller to maintain the global view of the network. Their fellow up work implements
two algorithms; Local Immediate (LIm) recovery strategy, in which the controller will utilize the
fast failover to locally switch to an alternative path using VLAN tagging feature to tag the arriving
packets with the outgoing link ID. While Immediate Controller Dependent (ICoD) recovery required
controller intervention to establish alternative path. This way, recovery time may be faster because of
the fast failover, which allowed a quick and local reaction to failures without the need to resort on
central controller.

Various attempts were made to achieve faster recovery using fast failover to avoid controller
involvement in detouring the affected flow. The reference in [37] proposed Fast Failover (FF) link
failure with a congestion-aware mechanism. FF is preconfigured with multiple paths to redirect the
disrupted flows to a failure state. Based on the FF configuration, the controller periodically monitors
the status of the switch port to perceive the failure on time. The protection scheme resulted in an
average recovery time of around 40 ms. However, constant controller monitoring can introduce extra
processing load on the controller. A scalable multi-failure FF was presented by [38]. Their work
dynamically compressed the alternate path’s flow entries of the incoming flows with the existing flow
entries on the backup path. In this way, the total number of rules would be significantly reduced.
However, such a dynamic procedure may lead to an extra processing load on the controller to configure
the primary and backup path for every new arrival flow.

Moreover, the number of backup path rules augments as the flow arrival increases [39]. An
efficient fault-tolerant memory management aware approach was proposed [34]. The scheme computes
path protection per link instead of rules per flow by configuring VLAN tagging for each link failure.
This way, A VLAN tagging is provided for each link identification while defining backup path
rules. Therefore, reducing the number of forwarding rules would be proportional to the network
setting. However, in a large-scale network, the overhead would be non-trivial [15]. Another solution
[40] considered the switch Flowtable storage constraints to devise a recovery scheme. A Fault-
Tolerant Forwarding Table Design (FFTD) was introduced to group the flows using group entries
and aggregates the flows using a tagging mechanism for rapid recovery from the dual failures. This
way, FFTD satisfies the GCN’s 50 ms recovery requirement, reducing the backup path flow storage
requirement. However, neither [34] nor [40] considered post-recovery congestion after the localized
recovery. A shared ring was proposed to reduce the consumption of a backup resource [9]. The authors
devised a ring-based single failure recovery approach to reduce the number of entries.

A ring circle in the network topology is selected to act as a share backup path, based on the all-
backup path to improve the Flowtable utilization. Although the approach could improve the recovery
time and backup resource consumption, network post-recovery congestion may occur. Efficient
congestion and memory-aware failure recovery (SafeGuad) were presented [5]. SafeGuard iterates
through a backup path of the impacted flows to ensure that the rerouting switches have enough
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space to accommodate the backup path rules. Residual link capacity is checked to avoid post-recovery
congestion. This way impacted flows are deployed efficiently. However, Safeguard may be expensive
because it requires two paths to be installed for each flow, which could overwhelm critical network
resources such as switch TCAM [13].

Based on the previous discussion, different studies have been proposed to address the commu-
nication link failure on the SDN data plane. Some techniques manage flow rules to improve failure
recovery, while others deal with restoration latency issues. Protection may have better performance at
the cost of significant memory space. In addition, it may not always cope with the real-time nature of
traffic variabilities. Restoration can cope with real-time traffic flows arrival but at the cost of controller
overhead. This study focused on the restoration approach. Some works investigate the restoration
approach in a small network setting. However, in large-scale networks, path importance differs; some
paths are critical because of the number of shortest paths that pass through them. Other links on paths
are frequently shared between primary and backup paths. Failures on either path may lead to failure on
multiple paths. Based on the above discussion, there is a lack of studies to incorporate path criticality
and post-recovery congestion to reduce packet losses and improve throughput. While research is better
with time, SDN fault management still needs more research and investigation.

3 Design of the RFRC Scheme

The working procedure of the Reliable Failure Restoration with Congestion (RFRC) scheme is
illustrated in Fig. 1. The topology manager triggers a periodic monitoring mechanism to discover
the network entities at time t. This includes the hosts, switches, and the corresponding links between
the switches. Afterwards, the network is built, and K paths are computed based on dynamic link-
state information. RFRC periodically check the network condition; flows are transmitted through
the primary path under normal network condition. However, when a link failure occurs, the failure
detection manager detects the location and shares the failure event with critical and congestion
detection modules to examine the available path from the failure location. As explained in Section 3.3,
the critical path detection phase adds critical value (Pc_value) and appends the value to each path in K.
Similarly, the congestion detection phase examines the set of paths as explained in Section 3.5. This
information is forwarded to the reliable backup path routing at the failure restoration engine to choose
the right backup path when a failure occurs. This way, the backup path selection manager rerouted
affected flows based on the real-time network situation. The following section explains each phase in
detail.

3.1 Network Model
Let graph G (N, L) represent the network topology, where N denotes a set of switches and Li,j

is a set of bidirectional links. Let x = |N| be the number of switches and y = |L| be the number of
links in the network. Each link (i, j) ∈ L is associated with a weight (wi,j,) based on the Dynamic link-
State Information (DLI). A failure on link Li,j also affects Lj,i. A path is a sequence of switches with
members of L. Since traditionally paths are computed with static Link State Information (LSI) (i.e.
shortest P), the paper begins with a set of possible paths from src to dst P = {Ps,t,} using shortest P
= min

∑t

s wi,j. However, computing P based on LSI may not yield optimal performance, an additional
constraint is necessary to meet the demand of real-time applications. As such, RFRC incorporates DLI
in the computing set of P. This way, the set of possible P are computed with different link state value.
Unfortunately, computing all possible P may grow quickly with an increase in network size. Which
in turn may add more computational load on the controller. This issue is addressed by restricting the
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choice of P to k shortest path candidates, where k = 5. Afterwards, the criticality value of each pi ∈ P
is estimated and sorted by their criticality values. During normal network operation, flows are routed
through Ps,t = {R

i,j} as shown in Eq. (1).

Ri,j =
{

1 P traverse through li,j

0 otherwise
(1)

It is assumed {R
i,j} is a path with no cycle, and the link {li,j} operational state over the route is defined

by OP
i,j as presented in Eq. (2). The link operational state is derived from Eq. (2) which expresses that

for a link to declare un operational, it must be part of the selected path to route flow from source to
destination. Afterwards, it must not be idle as presented in Eq. (3).

OPi,j =
{

1 operational
0 otherwise

(2)

Fi,j = {
li,j|li,j ∈ L ∧ (

Ri,j (P) = 1
) ∧ (OPi,j

(
li,j

) = 0)
}

(3)

Figure 1: Architectural design of RFRC

3.2 Link Failure Operation
The RFRC is initiated with the route discovery phase, where the SDN controller discovers

the network forwarding elements and builds the network, as explained in the previous section (A).
Afterwards, during normal network operation, traffic flows are transmitted through an optimal
primary path. This way, RFRC periodically examines the network link state, once failure occurs,
the location is detected, and path examination begins. The proposed solution considered two link
operational events to ensure reliable backup path selection with less congestion.
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Referring to the first event in Fig. 2, source nodes S1 and S2 are sending packets to destination
node D. It can be observed there are different paths, P1 and P2 have slightly different numbers of hops
while P3 have minimum hops, and there is a share link among the three paths indicated as a solid line.
Since the primary path usually has the minimum number of hops, it is assumed P3 served as the primary
path. Therefore, failure on the share link (S2–S4) will significantly affect the three paths, consequently,
lead congestion and sometimes even service disruption. In this regard, an effective failure recovery
design shall take care of such a situation. Assuming the dotted line in Fig. 4 indicates the primary
(S2–S4–D). If a failure occurs on link LS4–D, there would be at least three alternative paths from
the detect node (S4), namely P4: (S4–S7–S10–D), P5: (S4–S5–S9–S10–D), and P6: (S4–S8–D). Also
assumed, three flows are generated with different sizes (number of packets). These flows are affected
and require rerouting through a backup path. All the affected flows would compete for the shortest
path (P6) regardless of size. In this case, P6 is referred to as a critical path. Since backup paths may fail
earlier than primary, failure on the critical path may lead to service disruptions. Moreover, it is crucial
to understand each failure scenario might have different consequences and the severity of adverse
effects of each failure scenario varies according to the flow types. For example, if F1 passing through
P1 contained delay-sensitive applications such as VoIP and F2 passing through P2 containing best-
effort flows. The consequences of F1 might be different from F2 during the failure state. Therefore,
both share link and critical path issues are addressed in this research. Firstly, a set of available paths
from the detect node are examined, if there exists a shared link between the primary and backup path,
Bayesian probability predicts the residual path capacity and chooses the path with enough capacity to
reroute the affected flows. Otherwise, critical paths are detected before rerouting the affected flows.
For example, P4 and P5 are examined based on topological knowledge using edge betweenness after
failure detection. Fig. 3 illustrates the design, while the following sub-section explains the procedures.

Figure 2: Share link scenario

3.3 Path Criticality
Primary and backup paths required a reliable path with the least multiple paths correlation, in

other words, the least correlated potential future failure p
fo. To this end, the double links failure at a

slight time is derived according to the approximation of the multiple link failures probabilities Eq. (4).

Pr
(
Pst

m, Pst
n

) =
∑

(i,j)∈Pst
m

∑
(x,y)∈Pst

n

Pr
(
li,j, lx,y

)
(4)

The approximation in Eq. (4) serves as a guide to calculating the multiple path failure probabilities
with insufficient information. Conversely, path criticality estimates multiple potential links failures
probabilities based on the knowledge of the global network topology using Edge Betweenness
Centrality (CB). CB (li,j) is used to reflect the importance of a link with others in a network’s topology
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graph since switches forward traffic along the shortest cost paths. Therefore, it measures the number
of potential correlated failures on a particular link. This way, the number of paths between s-t that
pass γ (s, t) and the number of shortest paths between source to destination passing through link Li,j γ

(s, t/li,j). The shortest path edge betweenness centrality CB(li,j) of an edge e is derived from Eq. (5).

CB(li,j) =
∑
(s,t)∈N

γ (s, t| li,j)

γ (s, t)
(5)

Figure 3: Failure restoration procedure

Hence, at time t1 after the discovery process, RFRC iterates through all the network links to obtain
the CB(li,j) for each link on the path, as presented in Eq. (6).

Ld {(i, j) , (x, y) ∈ L, (i, j) �= (x, y)} = CB(li,j) (6)

This is done by the Path Computation Element (PCE), which computes the k-shortest paths (k-
SP) between N(S)–N(T). Thereafter, the RFRC iterates through all li,j on pi ∈ P to obtain the summation
of the path criticality value, which in turn is used in evaluating the criticality of each pi refer to Eq. (7).

Pc_value =
∑
(i,j)∈L

(∀i, j|Ld1 + Ld2 . . . n.n ≤ len(p)) (7)
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where i, j represents the link on the candidate path, and Ld indicates the criticality value for that link
until the last link on the path as n, for every n should be less than equal to the total path length. This
way, the module will return the summation of the associated critical value (Pc_value) to P. It is possible
for more than one P with the same Pc_value. In this regard, the RFRC will select the path with minimum
distance. It is expected that when P has Pc_value < Threshold value, in such case, correlated failure is least
likely to happen, given by Eq. (8). The reliability of such a path will be increased, and the performance
of data transmission will not be reduced too much when the current path is broken. Because of the
least number of path correlations which translates to the least number of potential failures pfo, this is
the particular interest of RFRC.

Pr = (
li,j|li,j(CB) < T ∧ x, y (CB) = T

)
if (i, j) �= (x, y) (8)

Figure 4: Critical path scenario

3.4 Removal of Affected Flows
When the failure event occurs {F

i,j} the upstream node detects the failure, tags the packet and sends
operational link status (OP

i,j (li,j) = 0) to the controller. In return, action is required to restore the link
operational state to (OP

i,j (li,j) = 1). The controller flushes out the old flow rules on the affected primary
path presented x

fr Eq. (9). However, deleting all the flow forwarding rules in the affected routes can
significantly result in higher update operations which contradicts the aim of this study. Assuming the
path length is long, many rules will be removed in this situation, and new forwarding rules will have
to be installed.

Flush_xfr = (
Ri,j (P) = 1

) ∧ (
OPi,j

(
li,j

) = 0
)

(9)

In contrast, the RFRC gets the affected switches, identifies the port number associated with the
affected link {li,j} and removes that particular forwarding rule. In this way, two forwarding rules are
removed, derived in Eq. (10). The procedure is demonstrated in algorithm 1 line (1–12).

Rold_remove = {
dpid ∈ N ∧ pi,j|pi,j ∈ portno ∧ Fi,j

}
(10)

Thereafter, Link Layer Discovery Packets (LLDPpkt ) are broadcasted in the network topology to
update the updated topology information. Once the topology information is obtained, the route for
the final selected backup {y

br} will be computed considering path criticality while chosen path with the
slightest chance of post-recovery congestion.
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Algorithm 1: Removing old, affected rules
Input: G (N, L)

1 If F
i,j = (OP

i,j (li,j)= 0) Do
2 If {si, sj}∈ F

i,j ∧{si, sj}∈ mid(P)
3 If si,j port state == 1
4 FList = {si, sj}
5 // check which location do affected si,j lies on
6 If FList [0] ∧FList [1] in ci: ci⊆ G
7 Get the affected (ci)
8 // clean up the route x

fr in si,j with target port_no
9 Get si,j and port_no in ci: i,j ∈ N
10 For (si,j) in FList

11 Rebuild G.
12 Rold,remove old rules si,j

13 end
14 end
15 end
16 end
17 end

3.5 Bayesian Post-Recovery Congestion Avoidance
Blindly redirecting traffic flows on the failed link to a new reroute path would cause potential

congestion in the post-recovery network. Therefore, it is crucial to avoid post-recovery congestion to
improve overall clique performance. Since the importance of the paths is not the same, other paths may
always carry a high amount of traffic flow because it is being frequently used; such paths tend to have
a high load all the time. This can be interpreted as some sets of links in the path are likely to experience
congestion. The least loaded routing in this scenario refers to selecting pi with a minimal sum of links
load, which may likely not be congested during post-recovery. In SDN, the controller periodically pulls
the statistical information about the total bytes passed through each switch link port and stores this
information to calculate links load. This way, RFRC leverage such info to measure the link load on
each path and thereafter predict the probability of a congested path. In this regard, Baye’s decision
rule will effectively test this scenario. Knowing the likelihood and the prior is crucial to arrive at the
determined probability class. To this end, the probability of path congestion is proportional to the
sum of li,j load li,j ∈ Pi, Pli,j(δ). Thus, the prior probability is derived from the average link load event
with the total capacity of the link on the path which is derived from the total cost of each path pi ∈
P defined by Eq. (11). In this case, an event is an attempt to redirect the affected flows {x

fr} to a path,
where the residual capacity of set of links on the path may or may not have the sufficient capacity to
accommodate the number of x

fr. The likelihood of the high load on a set of links (li,j) ∈ pi, given the
information about the probability of congestion, δ, is defined as Eq. (12).

xfci =
(∑N

(i,j)∈L
(wi,j) + yvci =

∑N

(i,j)∈L

li,j

l(i,j),c

)
(11)

Pr = Pli,j(x = congestion|δ) = xfci (12)

where xfci defined the total predetermine cost for each link derived from the link fixed weight wi,j

cost such that li,j ∈ pi, and the link load li,j bps is obtained from the statistical information. The yvci

represents the variable cost of link li,j, which is derived from the recent changes in byte count for all flow
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entries in a switch (Si), while l(I,j),c shows the total capacity of the link. Therefore, upon occurrences
of failure, if RFRC wants to redirect the affected flows of {x

fr} through a set of links li,j on pi ∈ P,

the RFRC can update the uncertainty that the set of links load are congested or otherwise, using
Bayes rule, Pli,j(δ|Pr), which give the greater posterior probability of the path congestion occurrences.
This way, without knowing the frequency of the congestion initially, by redirecting the affected flows
{x

fr}, the posterior probability can be updated about the congestion on the link, given this sequence of
observed features using Bayes law, as derived from Eq. (13).

PI ,J(δ/τ) = P
(

τ

δ

)
P (δ)

P (τ )
(13)

Algorithm 2: End-to-end backup path selection
Input G (N, L)

1 // compute end-to-end set of pi ∈ P with least critical links
2 Set of P={p1,p2, . . . pn ∈ P}
3 For pi in P
4 Assign each pi its Pc_value

5 end
6 //Finding pi with the least set of critical links
7 min(ps,t) = 0
8 For pi in set_P
9 P_criticality = get(Set of P)
10 If min(Ps,t) = 0
11 min(Ps,t) = P_criticality
12 Continue
13 end
14 If P_criticality < min(Ps,t)
15 min(Ps,t) = P_criticality
16 min(Ps,t) = pi

Return Pi

17 end
18 end

Therefore, according to Bayes’ theorem, the returned outcomes tell the posterior probability of
which pi among the set of pi ε Ps,t may likely be congested. The pi with the total sum of residual link
capacity greater than equal to Threshold (T) would be the best candidate to reroute the affected flows
{x

fr} toward its destination, where T is usually set as the capacity of the affected flows. This way, the
chance of having a high delay or packet loss is reduced, consequently leading to increased throughput.

3.6 Reliable Backup Path Routing
Initially, dynamic traffic matric was generated at different times t defined in Eq. (14). Where Tflow

represents traffic flows types which include TCP, UDP, and Tfd indicating the traffic duration, while Tfv

corresponds to the traffic volume and Tps signify the traffic volume variation per second from source to
destination demand pairs. A set of k shortest paths P = { pi: pi ∈ K} was obtained, and the critical Pvalue

for each pi was also estimated through a set of links on pi. Afterwards, the summation of pvalue from
source s to destination switches

∑t

s pvalue, Which in turn make up the path pi critical value as shown
in Algorithm 2 lines (1–5). Therefore, efficient routing is triggered based on two situations: During
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normal network operation and upon arrival of new flows. Secondly, when a failure event occurs. For
the latter, several random failures at different time intervals were generated at various locations on
the selected path. Afterwards, the SDN controller received a failure event notification; two operations
are carried out in this regard. Firstly, the location of the failure is detected. Afterwards, the scheme
removed the affected forwarding rules {x

fr} for the old flows in the switch Flowtable of the affected
switches to clear space for new rules using Rold. The procedure is demonstrated in Algorithm 1 line
(1–12). Secondly, a backup path will be computed for the affected flows.

In this regard, RFRC examines if there is no share link between BP (x, y) and R
i,j. Potential

correlated failures are checked through link criticality. The path with the least critical links is chosen
as demonstrated in Algorithm 2 lines (6–18). However, if shared links exist, RFRC leverages Bayesian
probability to predict a less congested path to avoid the occurrences of post-recovery congestion, as
indicated in Algorithm 3, lines 12–15. For all the links on the Path, RFRC obtains the link state
information to make an informed decision Algorithm 3 lines 16–19. If the residual link capacity is
greater than the capacity of the total number of affected flows, that path is chosen to redirect the
failed flows, Algorithm 3 lines 20–23. Otherwise, a random path with the least critical links is chosen in
Algorithm 3, lines 23–26. Finally, the correspondent forwarding rules of the returned path are installed
on the set of switches as described in Algorithm 3, line 23.

TMst (t) = ((
Tflow

) + (
Tfd

) + (
Tfy

) + (
Tps

))
(14)

Algorithm 3: Reliable backup path routing
1 Procedure (G, N, L, K)
2 G represents the graph topology of the network
3 N represents switches/nodes in the network
4 K represent set of paths = {Pi . . . Pk}
5 // check the network’s operational state
6 If OP

i,j ==1 do
7 Forward f to primary P /∗ Eq. (1) ∗/
8 Else
9 F

i,j = (OP
i,j (li,j)= 0) do

10 Get the location of the failure
11 Recall algorithm 1 to remove the corresponding rules in Flowtable
12 //examine the path correlation between primary and backup
13 If there exists a share link b/w primary and backup
14 Get DLS information
15 Predict congestion
16 For ∀ link li,j in Pi: Pi ∈ K
17 Pi {li,j} = cost of set of link capacity /∗ Eq. (11) ∗/
18 Pi {li,j} = congestion probability /∗ Eq. (12) ∗/
19 Pi {li,j} = update posterior probability /∗ Eq. (13) ∗/
20 If Pi residual capacity > the capacity of x

fr

21 Rinstall Pi

22 Redirect x
fr on pi ∈ K

23 Else
24 Select random Pi= min {Ps,t = Pc_value} /∗ Eq. (7) ∗/

(Continued)
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Algorithm 3: Continued
25 Rinstall Pi

26 End
27 Else
28 Recall algorithm 2
29 Get Pi

30 Route the affected flows x
fr

31 End
32 End

3.7 Computational Analyses
This paper presents RFRC with three modules (critical path detection, post-recovery congestion

avoidance, and backup reliable path routing). The computational complexity of RFRC depends on
the complexity of the three modules. Critical path: Initially, it obtains the number of switches (S), link
numbers (E), and number of flows (M), computes k paths among the switches (K), and appends their
critical value (Pvalue), and its complexity is O(SEMK).

Post-recovery congestion regularly monitors the network, obtains the link load, and sums it up
to get the path capacity (P); the complexity is O(EK). The module subtracts the number of affected
flows from the current P capacity to obtain the residual capacity, and its complexity is O (P-|M|); thus,
the module complexity is O (EK + (P-|M|)).

Backup Reliable Path routing: it’s an enabler of the best path among k paths to route the affected
flows, it examines n number of Paths (P) to choose the P which meets the design objective. Its
complexity depends on the number of k paths in n paths and the length of P in K. The complexity
for selecting k out of n paths for one destination is O(nk).

4 Experimental and Performance Evaluation

The simulation is run on a machine with 3.60 GHz and 16 GB Random Access Memory (RAM)
equipped with a Ryu SDN controller and Mininet version 2.2.2 [41]. Although several SDN controllers
exist, Ryu is deployed as it supports all the versions of OpenFlow [42]. The simulation was conducted
with Spain’s backbone network topology [43]. The topology is created by writing a script in the
Mininet emulator. Each switch is deployed using a software switch (OpenVswitch) in Mininet running
on virtual machines. Typically, the OpenFlow switch is constrained with a limited capacity [44], and
OpenVswitch can support many entries. The study modifies OpenVswitch to support the limited as in
the actual OpenFlow switch. The link bandwidth connecting switches is set to 50 mbps because it gives
better delay, as used and verified in [45]. The study also assumed traffic distributions follow Poison
models. D-ITG is used to generate the traffic based on the Poison model with different packet sizes
and duration. Random traffic flows demand pairs corresponding to a source and destination in the
network were generated in Mininet. Iperf and Wireshark utility was used to analyze the throughput
and packet losses.

4.1 Result and Discussion
In this section, the simulation results are reported, and the performance of the proposed scheme

is evaluated against its counterpart benchmarking work under different scenarios. The results of the
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proposed solution are compared on the following metrics: packet loss, throughput, and round-trip
time. It is effectiveness and improvement were also discussed and analyzed in the following subsections.

4.1.1 Path Load

Path load refers to the summation of the transmission rate (Tx) and receiving rate (Rx) in the
switch port based on the selected path, derived from Pload = TxSp + RxSp [46]. Traffic flows were
generated with different packet size variations and rates ranging from different durations based on
Eq. (14). considering the residual capacity of the selected path. Fig. 5 shows the behaviour of RFRC
before and after the occurrences of link failure. This is to verify the effectiveness of the proposed
solution before comparing it with other benchmarking solutions. Before the failure state, flows were
generated using a static link state. As such, all flows tend to compete for the shortest path. Traffic flows
were transmitted accordingly. In this situation, failures were introduced on the links of the selected path
at different time intervals. Therefore, RFRC reroutes the affected flows once the failure occurs based
on the dynamic link state. As such, flows are redirected to a path with sufficient residual capacity.
Fig. 6 compared the path load with benchmarking RPF to further verify the congestion probability’s
effectiveness.

Figure 5: Path load

As shown in Fig. 6, RFRC can effectively predict the path with enough residual capacity to
accommodate the number of affected flows while the baseline lacks such features, and therefore path
load increases. The baseline work redirected the affected flows through any available path. Since flows
vary, many flows containing large packets constantly follow the same path. As a result, the path load
increases. It is effective to conclude that RFRC efficiently balanced the load on the path; therefore,
congestion will be minimal with packet loss.

4.1.2 Packet Loss

Average packet loss is the number of lost data packets between the failure state and the recovery
time between the source and destination. Fig. 7 shows the performance comparison of RFRC, Rapid
Restoration Technique (RRT), and Fast Reliable Technique (FRT). The x-axis and y-axis represent
the average packet loss for different time intervals. After the failure, it was observed that the failure
detection time of RRT and FRT was slightly longer than RFRC.

Due to the detection mechanism applied. The two benchmarking works used an event-based
while RFRC used periodically. The periodic approach can cope with frequent topological changes;
therefore, a path with sufficient residual capacity is obtained. Incorporating the Bayesian approach is
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another plus for RFRC because it regularly obtains and reroutes the affected flows through a path with
sufficient capacity. This way, the number of losses was reduced to 87% as compared to RRT and FRT,
respectively. This indicates that the affected flows are redirected to better link quality with minimal
congestion under different traffic patterns. In comparison, the counterparts overlooked such features.
Moreover, RFRC ensures that the selected alternative paths have minimal correlation or sharing links
between primary and backup paths. In addition, RFRC removes only the affected rules on the failed
link, this further speeds up the processing time to restore the new path, which contributes to reducing
the number of packet losses.

Figure 6: Comparison of RFRC and RPF path load

Figure 7: Average packet loss

4.1.3 Round Trip Time (RTT)

RTT is the time it takes for packets to get from source to destination [47]. RTT increases during
link failure situation, which in turn affect the system throughput. Fig. 8 presents the RTT comparison
between the three solutions. The average RTT of RFRC is lower than RRT and FRT with respect to the
different data rates. This is because RFRC provides more timely detection of share links and affected
flows are not forward through a critical path. Moreover, the set of switches on the selected has faster
forwarding rules updating time. Besides, the removal of forwarding rules on the link connecting the
affected path has significantly lowered the processing, decreasing the RTT for RFRC. Thus, RFRC
outperforms the benchmarking works on average, it lower RTT by 89%.
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Figure 8: Average round trip time

4.1.4 Throughput

Throughput is the average amount of data successfully transferred between a source and a
destination host over a communication link. Network throughput is affected by higher loss and RTT,
especially during failure, before establishing an alternative path to reroute the affected flows.

Therefore, Figs. 9 and 4 translate the throughput likelihood for each scheme. Because throughput
is significantly affected when the number of packet losses is higher, similarly high RTT contributes
to a decline in throughput. Moreover, the degree of network congestion further augments, bringing
the system throughput down. Not surprisingly, it can be observed from Fig. 5 show the throughput of
the three schemes. The acquired throughput using various data rates shows that the proposed RFRC
scheme performs better than benchmarking works RRT and FRT. The RFRC scheme achieved 45.96%
and 45.24% improved throughput performance as compared to RRT and FRT, respectively. The
variation in the curve comes as a result of network load variation. RFRC frequently examine the path
load before rerouting the affected flows. In comparison, the benchmarking papers overlooked residual
path load before enabling the backup path. The behaviour of the proposed scheme still maintained high
throughput even when the traffic ejection increased with different data rates. Critical path avoidance
also contributes because frequently used paths are avoided to reduce further congestion, identified as
one factor that declined throughput. These factors are overlooked in the counterpart work and result
in lower throughput.

Figure 9: Average throughput
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5 Conclusion

This research work presents RFRC aimed to address an established reliable backup path with post-
recovery congestion awareness after occurrences of failure. The RFRC consists of two main phases:
critical path detection and post-recovery congestion prediction. In critical path detection, important
links are detected and assigned a score. Afterwards, the upper and lower bounds of links important
to making the path are estimated. Each path is appended with its important score, a path with higher
importance indicates a higher potential for future failure. Such paths are avoided to route the affected
flows upon occurrences of failure. Conversely, shared links between primary and backup are examined,
and the potential post-recovery congestion is predicted using Bayesian probability. The path with
higher congestion probability is avoided, and the affected flows are redirected through a path with
minimal post-recovery congestion. The simulated result verified the performance of RFR improved
throughput by (45%), reduced packet losses (87%), and lower round-trip time (89%) compared to
benchmarking works.
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