
Battle Royale Optimization-Based Resource Scheduling Scheme for Cloud
Computing Environment

Lenin Babu Russeliah1,*, R. Adaline Suji2 and D. Bright Anand3

1Data Scientist, Conversight.ai, Indiana, USA
2Department of Computer Science and Engineering, KIT-KalaignarKarunanidhi Institute of Technology, Coimbatore, 641 402, India

3Department of Computer Science and Engineering, Narayana Engineering College, Gudur, 524101, Andhra Pradesh, India
*Corresponding Author: Lenin Babu Russeliah. Email: mdlenin@gmail.com

Received: 25 July 2022; Accepted: 13 November 2022

Abstract: Cloud computing (CC) is developing as a powerful and flexible com-
putational structure for providing ubiquitous service to users. It receives interre-
lated software and hardware resources in an integrated manner distinct from the
classical computational environment. The variation of software and hardware
resources were combined and composed as a resource pool. The software no more
resided in the single hardware environment, it can be executed on the schedule of
resource pools to optimize resource consumption. Optimizing energy consump-
tion in CC environments is the question that allows utilizing several energy con-
servation approaches for effective resource allocation. This study introduces a
Battle Royale Optimization-based Resource Scheduling Scheme for Cloud Com-
puting Environment (BRORSS-CCE) technique. The presented BRORSS-CCE
technique majorly schedules the available resources for maximum utilization
and effectual makespan. In the BRORSS-CCE technique, the BRO is a popula-
tion-based algorithm where all the individuals are denoted by a soldier/player
who likes to go towards the optimal place and ultimate survival. The
BRORSS-CCE technique can be employed to balance the load, distribute
resources based on demand and assure services to all requests. The experimental
validation of the BRORSS-CCE technique is tested under distinct aspects. The
experimental outcomes indicated the enhancements of the BRORSS-CCE techni-
que over other models.

Keywords: Cloud computing; resource scheduling; battle royale optimization;
makespan; resource utilization

1 Introduction

Cloud Computing (CC) is a creative technology that put forward a revolutionary change in how computing
services are delivered. With the thriving progress of the Web and the Internet, CC has transformed how
communication and information technology users access resources [1]. It has allowed driving the focus
from local or personal computation to datacenter-centric computation by offering resources dynamically in a
virtual manner through the Internet. CC converts computing as the 5th utility that can be charged on a pay-

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

DOI: 10.32604/csse.2023.034727
Article

echT PressScience

mailto:mdlenin@gmail.com
https://www.techscience.com/journal/csse
http://dx.doi.org/10.32604/csse.2023.034727
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/csse.2023.034727

per-use provision similar to a conventional utility, namely, telephony, electricity, and gas [2]. Simply CC is a
blooming technical trend that offers computing that is network, processing, applications, storage, and services
in a managed, abstracted, and virtualized demand-driven manner utilizing the Internet. The sources which
present the services were placed anywhere on the Internet instead of the local system [3]. Fig. 1 depicts the
process of resource scheduling (RS) for the CC environment.

CC indicates a well-known shared computing technology that conveys measurable on-demand services on the
global network in a dynamic way. Fundamentally, CC provides end-users with diverse and limitless virtual sources
acquired on-demand and with distinct billing standards (static-oriented and subscription) [4]. Task scheduling (TS)
also draws an independent task mapping process on a set of acquired sources in a cloud context (for workflow
application) for executing users’ specified quality of service (QoS) restrictions (cost and makespan). Workflow
(common application linked with empirical study, including biology, astronomy, and earthquake) is shifted or
migrated to the cloud for execution [5]. Even though optimal source detection for each workflow task to satisfy
user-defined QoS has been broadly studied all these years, substantial intricacy needs more research. Firstly, the
TS on a CC platform becomes an optimization issue; secondly, multiple TS optimization objectives were
evident: high resource usage for the entire task queue and completion time reduction [6]; lastly, Cloud source
dynamics, heterogeneity and measurability lead to high complexities. In CC, TS, resource selection, or jobs
scheduling can be one such most considerable complexity which was garnered cloud service customers’ and
providers’ attention. Moreover, particular studies on TS intricacy reflected promising results [7].

Studies on scheduling workflows and specifications focused on causality and temporal limits that
identify order dependencies and existence among tasks [8]. Task Execution incurs a cost, which might

Figure 1: Resource scheduling for CC environment

3926 CSSE, 2023, vol.46, no.3

change depending on the sources allotted. Resource allocation limitations describe restrictions on how the
resources can be allotted, and scheduling in resource allocation limitations offers suitable resource
allotment to tasks [9]. In CC, machines were positioned in various regions and contained disparate
processing capabilities, costs, and features (amount of main memory, CPU cores count, etc.). The
makespan cost linked with the TS and the sources allotted must be considered [10]. Thus, resource
allocation and TS are prudently optimized and coordinated jointly to achieve a time-effective and overall
cost schedule. Simply, for finding optimum task schedules through reducing makespan and cost.

This study introduces a Battle Royale Optimization-based Resource Scheduling Scheme for Cloud
Computing Environment (BRORSS-CCE) technique. The BRORSS-CCE technique majorly schedules
the available resources for maximum utilization and effectual makespan. In the BRORSS-CCE technique,
the BRO is a population-based algorithm where all the individuals are denoted by a soldier/player who
likes to go towards the optimal place and ultimate survival. The BRORSS-CCE technique can be
employed to balance the load, distribute resources based on demand and assure services to all requests.
The experimental validation of the BRORSS-CCE technique is tested under distinct aspects.

2 Related Works

In [11], the author devises an innovative hybrid gradient descent cuckoo search (HGDCS) technique
related to cuckoo search (CS) methods and gradient descent (GD) techniques to resolve and optimize the
issues based on resource scheduling (RS) in Infrastructure as a Service (IaaS) CC. This study will
compare the load balancing (LB), makespan, performance improvement rate, and throughput of
prevailing metaheuristic techniques with the presented HGDCS technique relevant to CC. Potu et al. [12]
designed an extended PSO (EPSO) technique with a different gradient approach for optimizing the TS
issue in cloud-fog atmospheres. The ultimate goal was to enhance resource efficiency and diminish the
time consumed for task completion. The author conducted wide experimentations on the iFogSim
simulators concerning total cost and makespan.

Devi et al. [13] utilize a GA related to encoded chromosomes (GEC-DRP) for managing dynamic RS.
But the prevailing scheduling technique predicts the amount of physical machines (PM) required for the user
in the future. This advanced scheduling technique will schedule the tasks on the cloud through computation
of the amount of virtual machines (VMs) necessitated in the near future with its forecasted CPU and memory
needs that can be considered as the main contribution of this study. The k-means approach would cluster the
tasks related to memory usage and CPU as parameters. Belgacem et al. [14] offer a dynamic RS methodology
that addresses users’ demand for resources with faster and improved responsiveness. It even modelled a
multiobjective search method named Spacing Multi-Objective Antlion algorithm (S-MOAL) for reducing
the cost and the makespan of utilizing virtual machines. Further, its impact on energy consumption and
fault tolerance has been studied. Jena et al. [15] present a genetic algorithm (GA)-related Customer-
Conscious RS and TS in multi-CC. This technique was split into 2 stages: the shortest task first
scheduling and GA-related RS. The aim is to map the tasks to VMs of the multi-cloud federation to have
maximal customer satisfaction and minimal makespan duration.

Madni et al. [16] introduce a new Multiobjective Cuckoo Search Optimization (MOCSO) approach to
deal with the RS issue in CC. The ultimate goal of the RS issue was to diminish the cloud user’s cost and
improve the performance through the reduction of makespan duration, which helps rise the profit or
revenue for cloud providers to have maximal resource consumption. Thus, the MOCSO method is a
technique to solve multiobjective RS issues in IaaS CC environment. Strumberger et al. [17] offer a
hybrid whale optimization technique under swarm intelligence meta-heuristics, adapted to manage the RS
complexity in cloud environments. To evaluate performance more precisely of the presented technique,
original whale optimization has been adapted for RS.

CSSE, 2023, vol.46, no.3 3927

3 Problem Formulation

To simplify the deliberation, the concept is that a group of cloud user tasks exists, and every task has
several sub-tasks with superiority constraints. Every subtask is allowable to be managed on accessible
resources [18]. A cloud resource has a capacity level (memory, CPU, storage, network). In this study, the
discussion of CC emphasized that cloud task scheduling and resource allocation scenarios are real NP-
Complete problems. Task scheduling of CC is shown below.

Input: It is assumed a tJ ¼ J1; J2; . . . ; Ji; . . . ; Jnð Þ, where i 2 1; n½ � and n refer to the quantity of
independent tasks. A task Ji is generated using a series Ji1; Ji2; Jij JiqO 2 1; q½ �, and q shows the amount
of subtasks) to be implemented sequentially. A set of resources available is R ¼ ðR1; R2; Rk ; RmÞ, where
k 2 1; m½ � and m denote the available resources. Every subtask Jij is implemented on a subset
RksubseteqR of resources available.

Output: An effectual Gantt chart of scheduling, comprising the task assignment on makespan and available
resources. For three-task four-resource problems, its schedule is f J11;R2ð Þ; J31;R4ð Þ; J21;R2ð Þ; J12;R4ð Þ;
J22;R1ð Þ; J32;R2ð Þ; J23;R4ð Þ; J33;R3ð Þ; ðJ13; R1Þg; its Gantt chart and makespan.

Constraints: The runtime of every subtask is resource-reliant. Preemption is prohibited, viz., every
subtask should be accomplished uninterrupted after being initiated. The resource could not consecutively
implement multiple subtasks.

Objective: The challenge is to allocate every subtask to proper resources (routing problems) and
sequence the subtask on the resource (sequencing problems) to minimalize the overall makespan and
cost. The makespan is the overall length of the schedule (once each task has completed processing). The
problem is that resource allocation and task scheduling must be coordinated carefully and jointly
optimized for achieving a time-effective schedule and total cost.

4 The Proposed Model

This study introduces a new BRORSS-CCE technique for effectual resource allocation in the CC
environment. The BRORSS-CCE technique majorly schedules the available resources for maximum
utilization and effectual makespan.

4.1 Overview of BRO Algorithm

Battle Royale games simulated BRO technique. In this kind of fighting game, players (soldiers) fight
against themselves in a competitive environment. In contrast, all the players try to endure initially and
secondarily kill several other players as feasible [19]. When the player continuously obtains damage to a
fixed (threshold) time, it is re-spawned from an arbitrarily selected area of game fields.

During the BRO technique, under the Battle Royale games, the primary candidate solution is arbitrarily
distributed from the problem spaces. Afterwards, then relating all the solutions with their nearest neighbour,
the optimum solutions concerning fitness values are termed winners and losers. The damage (lose) level of all
the solutions is saved as a parameter from all the candidate solutions that are incremented than all the
damages. When the solution sequentially obtains damage to threshold time-ranging in [3–6], depends
upon the problem that is resolved-it is reallocated dependent upon Eq. (1). When their damage level
doesn’t obtain the threshold, reallocation is obtained by Eq. (2). During all the reallocations, the
candidate solution was reinitializing, for obtaining nearby to an optimum found already. During these
formulas, r signifies the arbitrarily created number dependent upon uniform distribution from the range
between zero and one, and xdam;d and xbest;d are the place of damaged and optimum solution (found so
far) from dimensional d: lbd and ubd denote the corresponding lower and upper bounds of dimensional d
from the problem space.

3928 CSSE, 2023, vol.46, no.3

xiþ1
dam;d ¼ r ubd � lbdð Þ þ lbd (1)

xiþ1
dam;d ¼ xidam;d þ r xbest;d � xidam;d

� �
(2)

An important element of the technique is in every 4 iteration of the searching procedure, the safe zone

from the problem shrinks down nearby an optimum solution by 4 ¼ 4þ round
4
2

� �
if i � 4.

Specificall0079, the zone shrinks down if i obtain the value of 4. For instance, assume that MaxCircle
¼ 500; before the primary value of 4 � 166, and the zone shrinks down after 166 iterations. The next
iteration value for shrinking down the field are �250 and 375. 4 is initialization by

4 ¼ Max Circle

round log10 Max Circleð Þð Þ, and MaxCircle signifies the maximal amount of generations. Fig. 2

depicts the flowchart of the BRO technique.

Figure 2: Flowchart of BRO technique

Noticeably the optimum solutions from all the iterations are saved for supporting elitism. Diminishing
the problem space was able by Eq. (3), whereas SD xdð Þ implies the standard deviation of the entire
population from dimensional d.

lbd ¼ Xbest;d � SD xdð Þ; (3)

ubd ¼ Xbest;d þ SD Xð Þ

CSSE, 2023, vol.46, no.3 3929

Algorithm 1: Pseudocode of BRO

Begin

Arbitrarily initialization a population ~xð Þ
Initialization of every parameter;

shrink ¼ cei1ðlog10ðMaxXicleÞÞ
D ¼ round (MaxXicle/Shrink)

Iter ¼ 0;

while the end condition could not be met, do

iter ¼ iter þ 1

for i ¼ 1: population�size

dam ¼ j

vic ¼ i

if f xið Þ, f xj
� �

dam ¼ i

vic ¼ j

end if

if vdam. damage , Threshold

for d ¼ 1: Dimension

alter the place of damaged solder dependent upon:

xdam;d ¼ r max xdam;d0xbest;d
� �� min xdam;d0xbest;d

� �� �þ max xdam;d0xbest;d
� �

end for d

vdam. damage ¼ xi: damage þ1

vmic. damage ¼ 0

else

for d ¼ 1: Dimension

xdam;d ¼ r ubd � lbdð Þ þ lbdend for d

update f xdamð Þ
vdam. damage ¼ 0

end for i

if iter. ¼ D

update ub� lbð Þ
D ¼ Dþ round (D=2Þ;
end if

if the lbd or ubd goes beyond the original lower or upper bounds after it is fixed to original lbd or ubd:

end while

Choose an optimum soldier as the solution.

3930 CSSE, 2023, vol.46, no.3

4.2 Proposed Resource Scheduling Process

The BRORSS-CCE technique allocates initial and ends times to several implemented functions. As with
other scheduling problems, RS from CC is a process that executes the distribution of appreciated cloud
resources. Usually, processors, networks, stores, and VMs for fulfilling the demands of cloud users by
cloud providers. It can be executed to balance the load, ensure equivalent distribution of resources based
on the demand and offer any prioritization based on set rules [20]. It also ensures that CC can serve every
cloud user request with specific service qualities. The RS problems are illuminated with utilize of Eq. (4).

RS ¼
Xm;n

x¼1
ðRx þ Sx . . .NxÞ � Tx ! UZ

X (4)

where as it allocatesm needed counts of cloudlets or task T ¼ T1; T2; T3; . . . ; Tmð Þ onto n accessible physical
to virtual resources from the cloud data centers R ¼ R1; R2; R3; . . . ; Rnð Þ, S ¼ S1; S2; S3; . . . ; Snð Þ up
toN ¼ N1; N2; N3; . . . ; Nnð Þ. The fitness of certain objective F ¼ F1; F2; F3; . . . ; Fzð Þ is improved to
cloud user ¼ U1; U2; U3; . . . ; Unð Þ. If Z ¼ 1, the fitness function F1 has been allocated to cloud users. If
Z ¼ 2, the fitness function F2 was allocated to cloud users, etc., based on its demands.

CC comprises several data centers, and every data centre is connected with VMs through distinct
specifications. Assume that a group of cloudlets or tasks Ti ¼ T1; T2; T3; . . . ; Tnð Þ initiated in the
cloud users as its needed demand. The cloud broker was responsible for allocating the cloudlets or tasks
for requisite virtual resource Vj ¼ V1; V2; V3; . . . ; Vmð Þ as virtual resources with minimal completion
time. The expected time to completion (ETC) was defined by the time of each cloudlet or task executed
on a certain virtual resource attained through the ETC matrix. The overall amount of cloudlet or tasks
multiplied by the overall amount of resources offers the ETC matrix dimension, and their components are
described by ETC Ti; Vj

� �
.

ETC Ti; Vj

� � ¼

T1V1 T1V2 T1V3 T1Vm

T2V1 T2V2 T2V3 T2Vm

T3V1 T3V2 T3V3 T3Vm

..

. ..
. ..

.
.

.

..

. ..
. ..

.
.

.

TnV1 TnV2 TnVi3 TnVm

2
66666664

3
77777775

(5)

Hence, the primary aim is to hybridize the Gradient descent method to local search of enhanced CS
approach to map the tasks or cloudlets on virtual resource with minimal ETC to minimal throughput and
makespan using a balanced amount of imbalance via improving the rate of convergence.

5 Results and Discussion

This section inspects the scheduling efficiency of the BRORSS-CCE model under varying numbers of
requests.

Table 1 and Fig. 3 report a comparative waiting time (WAITT) inspection of the BRORSS-CCE model
with other recent models. The results indicated that the KHLBRS model has showcased poor performance
with maximum WAITT values. Next, the IDSARS model has certainly attained reduced WAITT values.
Followed by the HPSOMGARS and HMEERARS models have accomplished reasonable WAITT values.
The experimental values inferred that the BRORSS-CCE model had reported enhanced results with
minimal WAITT values under all requests. For instance, on 500 requests, the BRORSS-CCE model has
offered a lower WAITT of 971 ms, whereas the KHLBRS, IDSARS, HPSOMGARS, and HMEERARS
models have accomplished higher WAITT of 1491, 1368, 1172, and 1068 ms respectively.

CSSE, 2023, vol.46, no.3 3931

Table 2 and Fig. 4 depict a comparative response time (RESPO) analysis of the BRORSS-CCE approach
with other recent methods. The outcomes referred that the KHLBRS system has showcased poor
performance with maximum RESPO values. Also, the IDSARS algorithm has certainly attained reduced
RESPO values. Afterwards, the HPSOMGARS and HMEERARS techniques obtained reasonable RESPO
values. The experimental values inferred that the BRORSS-CCE method had reported enhanced results
with reduced RESPO values under all requests. For sample, on 500 requests, the BRORSS-CCE
algorithm has offered minimal RESPO of 995 ms, whereas the KHLBRS, IDSARS, HPSOMGARS, and
HMEERARS models have accomplished superior RESPO of 1574, 1326, 1114, and 1122 ms
correspondingly.

Table 3 and Fig. 5 determine a comparative load balancing (LOADB) examination of the BRORSS-CCE
methodology with other recent algorithms. The outcome indicated that the KHLBRS approach had
showcased poor performance with minimal LOADB values. Along with that, the IDSARS technique has
certainly attained higher LOADB values. Likewise, the HPSOMGARS and HMEERARS models have
accomplished reasonable LOADB values. The experimental values inferred that the BRORSS-CCE
system had reported enhanced results with higher LOADB values under all requests. For instance, on

Table 1: WAITT analysis of BRORSS-CCE approach with existing algorithms under count of requests

Waiting time (milliseconds)

Number of requests KHLBRS IDSARS HPSOMGARS HMEERARS BRORSS-CCE

100 531 435 268 223 74

200 692 568 454 293 148

300 916 832 688 543 388

400 1163 953 841 737 590

500 1491 1368 1172 1068 971

Figure 3: WAITT analysis of BRORSS-CCE approach under count of requests

3932 CSSE, 2023, vol.46, no.3

500 requests, the BRORSS-CCE algorithm has offered a higher LOADB of 0.0901 ms, whereas the
KHLBRS, IDSARS, HPSOMGARS, and HMEERARS systems have accomplished minimal LOADB of
0.0290, 0.0358, 0.0394, and 0.0618 ms correspondingly.

Table 4 and Fig. 6 illustrate a comparative Throughout (THROU) investigation of the BRORSS-CCE
model with other recent models. The outcome referred that the KHLBRS model has showcased poor
performance with minimal THROU values. Besides, the IDSARS approach has certainly attained
increased THROU values. Similarly, the HPSOMGARS and HMEERARS techniques have accomplished
reasonable THROU values. The experimental values inferred that the BRORSS-CCE methodology has
reported enhanced results with increased THROU values under all requests. For instance, on
500 requests, the BRORSS-CCE system has offered higher THROU of 442 ms, whereas the KHLBRS,
IDSARS, HPSOMGARS, and HMEERARS algorithms have accomplished lower THROU of 93, 133,
168, and 203 ms correspondingly.

Table 2: RESPO analysis of BRORSS-CCE approach with existing algorithms under count of requests

Response time (milliseconds)

Number of requests KHLBRS IDSARS HPSOMGARS HMEERARS BRORSS-CCE

100 535 408 251 263 131

200 722 576 428 355 238

300 869 784 669 673 559

400 1144 963 871 827 699

500 1574 1326 1114 1122 995

Figure 4: RESPO analysis of BRORSS-CCE approach under count of requests

CSSE, 2023, vol.46, no.3 3933

Table 3: LOADB analysis of BRORSS-CCE approach with existing algorithms under count of requests

Load balancing (milliseconds)

Number of requests KHLBRS IDSARS HPSOMGARS HMEERARS BRORSS-CCE

100 0.0011 0.0026 0.0030 0.0100 0.0358

200 0.0020 0.0035 0.0083 0.0237 0.0582

300 0.0104 0.0123 0.0157 0.0384 0.0704

400 0.0155 0.0206 0.0269 0.0497 0.0811

500 0.0290 0.0358 0.0394 0.0618 0.0901

Figure 5: LOADB analysis of BRORSS-CCE approach under count of requests

Table 4: THROU analysis of BRORSS-CCE approach with existing algorithms under count of requests

Throughput (milliseconds)

Number of requests KHLBRS IDSARS HPSOMGARS HMEERARS BRORSS-CCE

100 797 887 1004 1010 1257

200 552 627 757 799 1233

300 389 459 571 683 940

400 171 251 344 412 799

500 93 133 168 203 442

3934 CSSE, 2023, vol.46, no.3

Table 5 and Fig. 7 showcases a comparative relative error (RELA) analysis of the BRORSS-CCE model
with other recent algorithms. The results indicated that the KHLBRS methodology had showcased poor
performance with maximum RELA values. Next, the IDSARS model has certainly attained reduced
RELA values. At the same time, the HPSOMGARS and HMEERARS techniques have accomplished
reasonable RELA values. The experimental values inferred that the BRORSS-CCE approach had reported
enhanced results with minimal RELA values under all requests. For instance, on 500 requests, the
BRORSS-CCE model has obtainable lower RELA of 0.035, whereas the KHLBRS, IDSARS,
HPSOMGARS, and HMEERARS algorithms have accomplished higher RELA of 0.118, 0.097, 0.062,
and 0.053, respectively.

Table 6 depict comparative reliability (RELAB) inspection of the BRORSS-CCE technique with other
recent approaches. The outcomes signified that the KHLBRS approach had showcased poor performance
with minimal RELAB values. In line with this, the IDSARS algorithm has certainly attained increased
RELAB values. Moreover, the HPSOMGARS, HMEERARS, and hybrid ABC-BAT systems have
accomplished reasonable RELAB values. The experimental values inferred that the BRORSS-CCE
technique had reported superior outcomes with enhanced RELAB values under all requests. For instance,

Figure 6: THROU analysis of BRORSS-CCE approach under count of requests

Table 5: RELA analysis of BRORSS-CCE approach with existing algorithms under count of requests

Relative error

Number of requests KHLBRS IDSARS HPSOMGARS HMEERARS BRORSS-CCE

100 0.205 0.123 0.099 0.095 0.059

200 0.158 0.087 0.062 0.063 0.042

300 0.148 0.087 0.031 0.044 0.019

400 0.132 0.081 0.057 0.051 0.031

500 0.118 0.097 0.062 0.053 0.035

CSSE, 2023, vol.46, no.3 3935

on 500 requests, the BRORSS-CCE approach has offered a maximal RELAB of 0.914. In contrast, the
KHLBRS, IDSARS, HPSOMGARS, hybrid ABC-BAT, and HMEERARS techniques have accomplished
reduced LOADB of 0.728, 0.824, 0.831, 0.901, and 0.757, correspondingly.

6 Conclusion

This study introduces a new BRORSS-CCE technique for effectual resource allocation in the CC
environment. The presented BRORSS-CCE technique majorly schedules the available resources for
maximum utilization and effectual makespan. In the presented BRORSS-CCE technique, the BRO is a
population-based algorithm where all the individuals are denoted by a soldier/player who likes to go
towards the optimal place and ultimate survival. The BRORSS-CCE technique can be employed to
balance the load, distribute resources based on demand and assure services to all requests. The
experimental validation of the BRORSS-CCE technique is tested under distinct aspects. The experimental
outcomes indicated the enhancements of the BRORSS-CCE technique over other models. Blockchain
technology can be included to assure security in CC platform.

Figure 7: RELA analysis of BRORSS-CCE approach under count of requests

Table 6: RELAB analysis of BRORSS-CCE approach with existing algorithms under count of requests

Reliability

Number of
requests

KHLBRS IDSARS HPSOMGARS HMEERARS HYBRID
ABC-BAT

BRORSS-CCE

100 0.699 0.751 0.793 0.783 0.814 0.882

200 0.766 0.824 0.877 0.857 0.905 0.954

300 0.761 0.821 0.930 0.808 0.914 0.962

400 0.715 0.811 0.836 0.804 0.928 0.946

500 0.728 0.824 0.831 0.757 0.901 0.914

3936 CSSE, 2023, vol.46, no.3

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] P. Bal, S. Mohapatra, T. Das, K. Srinivasan and Y. Hu, “A joint resource allocation, security with efficient task

scheduling in cloud computing using hybrid machine learning techniques,” Sensors, vol. 22, no. 3, pp. 1242,
2022.

[2] R. Vijayalakshmi, V. Vasudevan, S. Kadry and R. L. Kumar, “Optimization of makespan and resource utilization
in the fog computing environment through task scheduling algorithm,” International Journal of Wavelets,
Multiresolution and Information Processing, vol. 18, no. 1, pp. 1941025, 2020.

[3] M. B. Gawali and S. K. Shinde, “Task scheduling and resource allocation in cloud computing using a heuristic
approach,” Journal of Cloud Computing, vol. 7, no. 1, pp. 4, 2018.

[4] A. Belgacem and K. B. Bey, “Multiobjective workflow scheduling in cloud computing: Trade-off between
makespan and cost,” Cluster Computing, vol. 25, no. 1, pp. 579–595, 2022.

[5] Z. Peng, J. Lin, D. Cui, Q. Li and J. He, “A multiobjective trade-off framework for cloud resource scheduling
based on the deep Q-network algorithm,” Cluster Computing, vol. 23, no. 4, pp. 2753–2767, 2020.

[6] B. Dewangan, A. Agarwal and A. Pasricha, “Resource scheduling in cloud a comparative study,” International
Journal of Computer Sciences and Engineering, vol. 6, no. 8, pp. 168–173, 2018.

[7] R. G. Shooli and M. M. Javidi, “Using gravitational search algorithm enhanced by fuzzy for resource allocation in
cloud computing environments,” SN Applied Sciences, vol. 2, no. 2, pp. 195, 2020.

[8] J. Zheng and Y. Wang, “A hybrid multiobjective bat algorithm for solving cloud computing resource scheduling
problems,” Sustainability, vol. 13, no. 14, pp. 7933, 2021.

[9] V. Sathiyamoorthi, P. Keerthika, P. Suresh, Z. Zhang, A. Rao et al., “Adaptive fault tolerant resource allocation
scheme for cloud computing environments,” Journal of Organizational and End User Computing, vol. 33, no. 5,
pp. 135–152, 2021.

[10] S. Varshney and S. Singh, “A survey on resource scheduling algorithms in cloud computing,” International
Journal of Applied Engineering Research, vol. 13, no. 9, pp. 6839–6845, 2018.

[11] S. H. H. Madni, M. S. Abd Latiff, S. M. Abdulhamid and J. Ali, “Hybrid gradient descent cuckoo search
(HGDCS) algorithm for resource scheduling in IaaS cloud computing environment,” Cluster Computing,
vol. 22, no. 1, pp. 301–334, 2019.

[12] N. Potu, C. Jatoth and P. Parvataneni, “Optimizing resource scheduling based on extended particle swarm
optimization in fog computing environments,” Concurrency and Computation: Practice and Experience,
vol. 33, no. 23, pp. 1–13, 2021.

[13] K. L. Devi and S. Valli, “Multiobjective heuristics algorithm for dynamic resource scheduling in the cloud
computing environment,” The Journal of Supercomputing, vol. 77, no. 8, pp. 8252–8280, 2021.

[14] A. Belgacem, K. Beghdad-Bey, H. Nacer and S. Bouznad, “Efficient dynamic resource allocation method for
cloud computing environment,” Cluster Computing, vol. 23, no. 4, pp. 2871–2889, 2020.

[15] T. Jena and J. R. Mohanty, “GA-Based customer-conscious resource allocation and task scheduling in multi-cloud
computing,” Arabian Journal for Science and Engineering, vol. 43, no. 8, pp. 4115–4130, 2018.

[16] S. H. H. Madni, M. S. A. Latiff, J. Ali and S. M. Abdulhamid, “Multi-objective-oriented cuckoo search
optimization-based resource scheduling algorithm for clouds,” Arabian Journal for Science and Engineering,
vol. 44, no. 4, pp. 3585–3602, 2019.

[17] I. Strumberger, N. Bacanin, M. Tuba and E. Tuba, “Resource scheduling in cloud computing based on a
hybridized whale optimization algorithm,” Applied Sciences, vol. 9, no. 22, pp. 4893, 2019.

[18] J. -T. Tsai, J. -C. Fang and J. -H. Chou, “Optimized task scheduling and resource allocation on cloud computing
environment using improved differential evolution algorithm,” Computers & Operations Research, vol. 40,
no. 12, pp. 3045–3055, 2013.

CSSE, 2023, vol.46, no.3 3937

[19] S. Agahian and T. Akan, “Battle royale optimizer for training multi-layer perceptron,” Evolving Systems, vol. 13,
no. 4, pp. 563–575, 2021.

[20] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly and S. M. Abdulhamid, “Recent advancements in resource allocation
techniques for cloud computing environment: A systematic review,” Cluster Computing, vol. 20, no. 3, pp. 2489–
2533, 2017.

3938 CSSE, 2023, vol.46, no.3

	Battle Royale Optimization-Based Resource Scheduling Scheme for Cloud Computing Environment
	Introduction
	Related Works
	Problem Formulation
	The Proposed Model
	Results and Discussion
	Conclusion
	References

