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Abstract: Timely identification and treatment of medical conditions could
facilitate faster recovery and better health. Existing systems address this issue
using custom-built sensors, which are invasive and difficult to generalize. A
low-complexity scalable process is proposed to detect and identify medical
conditions from 2D skeletal movements on video feed data. Minimal set of
features relevant to distinguish medical conditions: AMF, PVF and GDF are
derived from skeletal data on sampled frames across the entire action. The
AMF (angular motion features) are derived to capture the angular motion of
limbs during a specific action. The relative position of joints is represented
by PVF (positional variation features). GDF (global displacement features)
identifies the direction of overall skeletal movement. The discriminative capa-
bility of these features is illustrated by their variance across time for different
actions. The classification of medical conditions is approached in two stages.
In the first stage, a low-complexity binary LSTM classifier is trained to
distinguish visual medical conditions from general human actions. As part of
stage 2, a multi-class LSTM classifier is trained to identify the exact medical
condition from a given set of visually interpretable medical conditions. The
proposed features are extracted from the 2D skeletal data of NTU RGB + D
and then used to train the binary and multi-class LSTM classifiers. The
binary and multi-class classifiers observed average F1 scores of 77% and 73%,
respectively, while the overall system produced an average F1 score of 69%
and a weighted average F1 score of 80%. The multi-class classifier is found to
utilize 10 to 100 times fewer parameters than existing 2D CNN-based models
while producing similar levels of accuracy.

Keywords: Action recognition; 2D skeletal data; medical condition; computer
vision; deep learning

1 Introduction

The onset of fatal diseases such as cardiac arrest or brain stroke could start with relatively milder
symptoms such as a headache or chest pain. There are high chances for these symptoms to go
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unnoticed either due to a shortage of medical professionals or due to the ignorance/carelessness of the
patients. These are further exacerbated when the patient is alone and does not have frequent human
contact. Early diagnosis of these symptoms could result in timely treatment and faster recovery in
patients. Given this context, automated detection of medical conditions without human intervention
could help notify medical professionals and can significantly help facilitate timely medical help.

Recent technological advances have helped identify medical conditions [1,2] and treat them. Rapid
advances have been made in detecting cardiovascular diseases [3], Parkinson’s disease from gait [4],
sensing and treating myocardial infarction [5] and more applications like identifying the fall of old
adults by a variety of methods [6,7].

Existing medical condition identification systems are developed considering the medical condition
to be diagnosed and the data source sensors. A category of these systems [8] is built with proximity
sensors such as accelerometers [9], audio [10], wifi [11], infrared [12,13], depth maps [8], etc., to identify
instances such as human fall, heart diseases and other such medical conditions. These systems are very
accurate in identifying medical conditions due to the presence of specialized hardware. Despite their
higher accuracy, they are tough to scale and often require a sensor or hardware specific to the data
source and medical condition. Along with hardware, the ability to pass these signals via the network
for further processing is also often a requirement. These limitations result in these approaches being
primarily restricted to diagnostic centers and preventing deployment in day-to-day use.

Besides sensor-based systems, medical condition identification based on video camera inputs and
depth maps have been employed in various cases, such as for elderly help, fall detection, depression
detection [14,15], etc. Though not as accurate as sensors attached to the body, these approaches are
much less invasive and could be scaled. In terms of equipment, they require video cameras and depth
sensors or devices such as Kinect. Some of these systems directly utilize RGB data at a frame level as
features. In contrast, others extract the Skeletal data from RGB data with pose estimation algorithms
[16] and then utilize it to identify medical conditions.

RGB sequences refer to data captured from a video camera where three 2D-Matrices R, G and B
are available for every frame in the video sequence. Models related to 3D-CNN [17,18] and 2D-CNN
with LSTM [19] are directly trained on RGB data to identify medical conditions. Directly training with
the RGB data could result in the model getting overfitted with the background and texture information
which doesn’t represent the nature of medical conditions. Skeletal data sequences refer to the location
of different joints in the human body captured across a sequence of frames. They can be processed
directly utilizing Graph convolutional networks (GCN) [20,21] or Spatiotemporal graphs [22]. These
approaches give good results when trained with extensive data, but their results are less interpretable
and have a chance of getting overfitted. They also require sophisticated hardware for training and
inference.

This paper focuses on developing a low-complexity, highly interpretable process to identify
medical conditions from the 2D skeletal data. In alignment with the objective, the below contributions
have been made:

• A sampling procedure to utilize skeletal data at specific time instances to compensate for
variation in action duration across different subjects and instances.

• Derived three categories of skeletal features representing the actions associated with medical
conditions, namely: angular motion features (AMF), positional variation features (PVF) and
global displacement features (GDF). These features are subsequently validated on the NTU
(RGB) skeletal datasets to show their discriminative capability.
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• Development of a 2-stage classifier. The first stage identifies if a given video sequence represents
a medical condition. The second stage classifies the medical condition. The results are validated
using the NTU (RGB) skeletal dataset.

The rest of the paper is organized as follows. Section 2 details the overall problem to be solved
in conjunction with the scope of this work. The different types of features extracted from a temporal
and spatial perspective are elaborated on in Section 3, along with their respective validation. Section 4
describes and validates the classifiers trained with the derived skeletal features for medical condition
detection and identification. Section 5 captures the experimental results and comparison with other
approaches. A summary of this work and its future developments are mentioned in Section 6.

2 Overall Context and Proposed Work

In this section, the medical condition detection and identification system, as defined in Fig. 1,
are explored along with the scope of our work. The overall system consists of a camera device to
extract footage at about 30 fps. The data at every frame is available in an RGB format. Pose estimation
algorithms such as Openpose are applied to the input video to extract the 2D skeleton data at a frame
level. It is observed that the recent pose estimation algorithms are close to 100% in accuracy and can
also extract the skeletons from video feeds in real-time with minimal latency. Considering the process of
video acquisition and extraction of 2D skeletons to be well-solved, we focus our efforts on identifying
medical conditions from the 2D skeletal data.

The 2D Skeletal data consists of 25 joints per person per frame represented by their (x, y)
coordinates which translates to 25 ∗ 2 = 50 features per frame. As could be noted, the feature size is
significantly less when compared to the feature space of the RGB data, which for a standard resolution
frame is 640 ∗ 480 ∗ 3 = 921600. This results in lower model complexity, fewer data samples for
model training and a better representation of action without involving background, texture and other
covariates.

Figure 1: Medical condition identification-overall approach
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This paper proposes three significant contributions to the medical condition identification system
defined in Fig. 1, which are outlined in Sections 2.1 to 2.3.

2.1 Medical Condition Feature Derivation
A medical condition such as falling, headache, etc., is usually accompanied by changes in the

sudden movement of elbows, knees and other regions in the 2D skeletal data. Representative features
are explicitly derived to detect and identify medical conditions. These features are observed to be
reasonably interpretable in nature and align closely with skeletal movement during medical conditions.

Three categories of derived features are computed, namely the: angular motion features (AMF)
to represent the angular variation in joints, positional variation features (PVF) to capture variation in
relative position and global displacement features (GDF) to capture the movement of the entire body.
These features are elaborated in Section 3 and rigorously validated on the NTU (RGB) [23] medical
condition dataset defined in Table 1.

Table 1a: NTU (RGB) dataset description

(a) Volume and type of data

Description Value

No. of medical condition related actions 9
No. of day-to-day actions 51
Total no. of unique actions 60
No. of samples per action 948
Total no. of samples 56880

Table 1b: NTU (RGB) dataset description

(b) Medical condition data

List of medical condition related actions

Cough/Sneeze Back pain
Staggering Neck pain
Falling Nausea
Headache Fan self
Chest pain

2.2 Medical Condition Detector
The objective of the medical condition detector is to process incoming video sequences and notify

when a potential medical condition has occurred. The features derived from 2D skeletal data are
utilized to identify these medical conditions’ occurrence. The derived features are computed at a frame
level and aggregated over an action, resulting in multi-dimensional time-series data. Different types of
time series classifiers, such as distance [24] and recurrent neural net (RNN) [25] classifiers, are explored
to select the suitable model for training. It is observed that distance-based classifiers such as the K-NN
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generally have dynamic time warping (DTW) [24] as a distance measure. This requires computation
and comparison of distance with all other samples resulting in delay during model inference. In RNN-
based networks, the vanilla RNN is prone to exploding gradients and the gated Recurrent networks
(GRU) [26] are not very efficient in capturing long-term and short-term dependencies.

Considering the above factors, the LSTM [27] is selected as the model for training the medical
condition detector due to its stability, faster inference and better learning capability. The detector is
trained as a binary classifier where the derived skeletal features of medical conditions are aggregated
together as one label. All the features corresponding to day-to-day actions are represented with the
alternate label. The ability of the classifier to distinguish medical conditions from regular actions is
validated with the NTU dataset [23]. The medical condition detector is elaborated more in Section 4.

2.3 Medical Condition Identifier
The medical condition identifier categorizes the exact nature of the condition after successful

detection. Derived 2D skeletal features are used to train the multi-class LSTM model to identify
the medical condition. Data samples of each medical condition are collated and their respective
2D skeletal features are computed. This data is then used to train a multi-class LSTM where each
class represents features derived from its corresponding medical condition. The details of the medical
condition identifier and its validation is detailed in Section 4.

3 Feature Extraction and Validation

This section focuses on choosing the minimal interpretable set of features from 2D skeletal data
to distinguish medical actions across space and time. From a time-based perspective, the video at
the appropriate frequency level is sampled based on the duration of action. In terms of space, we
utilize broadly three types of features, which are: angular motion features (AMF), positional variation
features (PVF) and global displacement features (GDF).

3.1 Frame Sampling and Selection
Based on observations, a single action takes about four to ten seconds, depending on the speed at

which a human being does medical condition-associated action. In a general case, videos are encoded
at 30 fps, representing each action by frames ranging anywhere between 120 to 300. It is to be noted
that immediate successive frames contain much less information than previous frames since the human
body does not change positions significantly at 1/30th of a second. Hence, it’s essential to filter only
the informative frames for further processing.

The duration for a specific medical condition-associated action could vary based on the test
subject and different instances across time for the same subject. When the duration is shorter, it
contains more information in consecutive frames and needs to sample at a higher frequency. On a
similar note, for actions taking longer duration, the information in successive frames is less and it is
generally acceptable to sample at lower frequencies. Given this, we propose an approach where the
number of frames encoded in action is fixed as a constant (K), based on which the frequency of video
sampling Ws is given by Eq. (2). Nf refers to the number of frames in an action sequence and Ts refers
to the time steps post which frames are sampled.

Ts = Nf

K
(1)

Ws = 1
Ts

(2)



3000 CSSE, 2023, vol.46, no.3

To compute the sampling frequency, the time steps of interest are calculated using Eq. (1). Post
which the sampling frequency is calculated using Eq. (2). This process ensures that the same action at
a shorter duration is sampled at a higher frequency and the ones at a longer duration are sampled at
a lower frequency.

3.2 Derivation of Skeletal Features
Medical conditions generally have specific characteristics that could be utilized to select the right

features. For instance, the nature of the action involved is particular to the person and does not involve
any additional object or interaction with other people. Additionally, the background and locality have
lesser relevance to the nature of the medical condition. Based on these characteristics domain specific
custom features are derived from skeletal data and presented below:

3.2.1 Angular Motion Features (AMF)

Any occurrence of a medical condition should invariably result in the movement of different limbs
of the human body. These variations are captured by the angle variation at a joint (Such as the elbow
or knee) produced by two adjacent limbs. The pattern of variations of these angles is quite sensitive
and representative of the medical condition. These angles are invariant to the video’s size and the
morphological dimensions of the human performing the action. For every joint of interest, we form
a triangle with the joint and the two adjacent points given in Table 2. This procedure is illustrated in
Fig. 2. The different sides of the triangle are computed by finding the Euclidean distance between the
corresponding coordinates. The angle made by the joint along its two adjacent sides is then calculated
using the cosine formula in Eq. (3). This procedure is followed across each frame for a given action
for all the joints. The dimension of the feature vector is given by (10, Nf ), where Nf is the no of frames
considered for the action. The algorithm for computing the angular motion features (AMF) based on
nine medical actions in NTU RGB+D skeletal dataset [23] is shown in Algorithm 1.

θ = cos−1
(
a2 + b2 − c2/2ab

)
(3)

Table 2: Set of angular motion features

S. No Central joint angle Adjacent points

1 � Left hip Left knee, Hip center
2 � Right hip Right knee, Hip center
3 � Left knee Left ankle, Left hip
4 � Right knee Right ankle, Right hip
5 � Left elbow Left shoulder, Left wrist
6 � Left shoulder Left elbow, Neck
7 � Right elbow Right shoulder, Right wrist
8 � Right shoulder Right elbow, Neck
9 � Shoulder center Head, Left shoulder
10 � Hip center Chest Mid, Left hip
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Figure 2: Computation of angular motion features

Algorithm 1: Derivation of Angular Motion Features (AMF)
for Every frame in a video sequence do

Select frames based on the sampling frequency
Read 2D (x, y) coordinates for each of the 25 joints in the skeleton
for each joint in Table 2 do

Compute the combination of distances between adjacent joints => (a, b, c)
Find Angle formed between adjacent joints using: cos−1((a2 +b2 −c2)/2∗a∗b)

Accumulate angle information for joints of interest within a frame
end for

end for
Accumulate angle features for all sampled frames

The AMF features constitute a 10-dimensional time series capturing the variation in the joint
angles across time. For every action, the average time series across different samples (also called a
barycenter) is computed for each of the ten joint angles. The variance of the barycenter [28] time
series signal across each dimension for the different actions is listed in Table 3. Intuitively, higher
variations are observed in regions where its corresponding action has more significant movement.
For instance, high variations are observed around the knee region in the falling medical condition.
There are variations in the elbow region for actions such as headache or chest pain. Additionally, the
AMF features are used to train a classifier to distinguish the nine different medical actions in NTU
RGB+D skeletal dataset and the F1 Score is shown in Table 4. Based on the results, these features help
determine medical conditions and are the most effective among the three proposed features discussed
in this paper.
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Table 3: Variance of angular motion features

Medical condition Left hip Right
hip

Left
knee

Right
knee

Left
elbow

Left
shoulder

Right
elbow

Right
shoulder

Head Chest
mid

Sneeze/Cough 0.17 1.12 2.47 2.21 1472.21 45.54 339.72 33.01 14.96 0.46
Staggering 1.13 1.66 41.74 33.379 5.5 1.16 2.87 0.66 4.81 0.22
Falling 59.91 41.07 599.67 572.29 27.03 23.46 32.5 30.75 36.89 4.96
Headache 0.12 0.4 1.49 1.61 1192.01 78.22 539.1 48.24 16.79 0.05
Chest pain 0.23 0.49 2.53 2.27 431.2 4.15 266.97 2.05 18.23 0.63
Back pain 0.5 0.51 2.34 1.93 150.61 3.4 130.7 2.56 7.16 0.07
Neck pain 0.53 0.33 4.04 4.29 868.23 93.42 367.51 24.97 0.63 0.08
Nausea 3.27 3.73 51.02 49.04 1164.07 159.96 766.42 135.95 53.43 0.83
Fan self 0.66 0.63 4.55 4.48 887.58 4.69 270.39 2.63 2.88 0.06

Table 4: Accuracy of individual features

Action
class

All features

All features AMF features PVF features GDF feature

Sneeze/Cough 0.65 0.56 0.4 0.28
Staggering 0.91 0.8 0.65 0.69
Falling 0.94 0.89 0.74 0.81
Headache 0.52 0.48 0.39 0.25
Chest pain 0.65 0.53 0.38 0.22
Body pain 0.76 0.64 0.44 0.17
Neck pain 0.62 0.48 0.4 0.2
Nausea 0.75 0.73 0.64 0.51
Fan self 0.64 0.62 0.33 0.29
Weighted average 0.72 0.64 0.48 0.38

3.2.2 Positional Variation Features (PVF)

Along with the motion of limbs in the human body, the positions of joints change relative to the
reference during a medical condition. The relative position features capture the orientation of the nine
different joints in the human body from the chest-mid region. The chest-mid region is closer to the
body’s center and is considered the reference or centroid. These features are computed across time
for the different sampled frames of interest. The angular direction of each joint of interest from the
reference for a given frame is captured as part of the positional variation features (PVF), as illustrated
in Fig. 3. The different points of interest considered for feature computation are shown in Table 5. The
algorithm for computing the positional variation features (PVF) based on the nine medical actions in
NTU RGB+D skeletal dataset is shown in Algorithm 2.
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Figure 3: Computation of positional variation features

Table 5: Set of positional variation features

S. No Positional variation feature

1 Centroid - Left hip
2 Centroid - Right_Hip
3 Centroid - Left_Knee
4 Centroid - Right_Knee
5 Centroid - Left_Elbow
6 Centroid - Left_Shoulder
7 Centroid - Right_Elbow
8 Centroid - Right_Shoulder
9 Centroid - Head

Algorithm 2: Derivation of Positional Variation features (PVF)
for Every frame in a video sequence do

Select frames of interest based on the sampling frequency
Read 2D (x, y) coordinates for each of the 25 joints in the skeleton
for each feature in Table 5 do

Compute Euclidean distance |Y| between the centroid and each feature
Compute the vertical distance S between the centroid and each feature

Compute positional variation feature using: θ = sin− 1
(

S
Y

)
taking the right

quadrant into account
Accumulate Positional variation feature (PVF) within a frame

End for
End for
Accumulate Positional variation feature (PVF) across all sampled frames
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Overall, for an action having Nf frames sampled, the size of the feature vector is given by (9,
Nf ). Each joint position represents a time series and constitutes a 9-dimensional time series capturing
the variation in relative position across time. For every action, the average time series across different
samples (also called a barycenter) is computed for each of the nine joint positions. The variance of the
barycenter time series signal across each dimension for the different medical actions from the NTU
RGB + D skeletal dataset is computed as shown in Table 6. Intuitively, higher variations are observed
in regions where its corresponding action has more significant movement.

Table 6: Variance of positional variation features

Medical
condition

Left
hip

Right
hip

Left
knee

Right
knee

Left
elbow

Left
shoulder

Right
elbow

Right
shoulder

Head

Sneeze/Cough 0.24 0.24 2.92 3.13 46.6 6.53 14.51 3.3 22.97
Staggering 2.02 1.85 47.05 44.47 74.64 104.41 78.71 107.53 112.57
Falling 0.97 0.95 38 35.99 48.55 103.62 45.87 124.81 218.42
Headache 0.28 0.29 1.18 1.33 426.19 2.88 203.63 1.97 3.73
Chest pain 0.16 0.18 3.44 3.16 36.6 8.17 31.07 12.45 44.14
Back pain 0.23 0.23 0.49 0.94 144.7 2.8 117.2 1.69 0.49
Neck pain 0.43 0.42 0.86 0.55 582.2 6.76 204.11 4.78 4.09
Nausea 0,45 0.47 0.94 12.4 30.86 124.67 26.25 120.71 320.38
Fan self 0.16 0.15 1.5 0.88 142.94 3.97 55.93 4.17 3.4

Additionally, the PVF features are used to train a classifier to distinguish the nine different medical
actions in NTU RGB + D skeletal dataset, and the associated F1 Score is shared in Table 4. Based
on the results, it could be inferred that these features help distinguish medical conditions. Though
not as crucial as the angular motion features (AMF), they still contribute to the overall accuracy
improvement, as captured in Table 4.

3.2.3 Global Displacement Features (GDF)

During a medical condition, apart from the motion of joints and limbs in a skeleton, the entire
human body could result in variations of position across time. To capture this variation, the global
displacement features are extracted to model the direction of the shift in the human skeleton over time
in the sampled frames of skeletal data. These features are helpful when the human moves over the
course of action. The direction of each centroid in subsequent frames relative to the centroid region
in the first frame is computed as the global displacement feature (GDF). This process is illustrated in
Fig. 4 and calculated with Eqs. (4) and (5). The chest-mid region in the skeletal data is considered a
centroid for computation purposes. Like the previous approach, the variation of barycenter computed
across the different medical conditions in the NTU RGB + D skeletal dataset is presented in Table 7.
The algorithm for computing the global displacement features (GDF) on nine medical actions in NTU
RGB + D skeletal dataset is shared in Algorithm 3.

Additionally, the GDF feature is used to train a classifier to distinguish the nine different medical
actions in NTU RGB + D skeletal dataset and the associated F1 Score is shown in Table 4. Based
on the results, it could be inferred that these features capture actions when a significant change in the
position of the whole body occurs, as denoted by the higher F1 score for a falling medical condition.
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This feature might not be directly beneficial, but it improves accuracy with the angular motion features
(AMF) and positional variation features (PVF).

Magnitude (t) = Euclidean_Distance (Centroid0, Centroidt) (4)

Direction (t) = sin−1
(Vertical_distance (Centroid0, Centroidt)/Magnitude (t)) (5)

Figure 4: Computation of global displacement features

Table 7: Variance of global displacement features

Medical
condition

Sneeze/
Cough

Staggering Falling Headache Chest pain Back pain Neck pain Nausea Fan self

Body
centroid
variation

33.36 2,878.51 3,851.28 13.51 50.84 21.18 11.29 424.99 9.82

Algorithm 3: Derivation of Global Displacement features (GDF)
Read 2D (x, y) coordinate of the skeleton representing the chest mid region/centroid from frame 1 (t°)
for every frame in a video sequence do

Select frames of interest based on the sampling frequency
Read 2D (x, y) coordinate of the skeleton representing the chest mid region/centroid as (t°)
Compute Euclidean distance |Y| between to and ti

Compute vertical distance S between to and ti

Compute the global displacement feature using: θ = sin−1 (Y) taking the right quadrant into
account Accumulate global displacement feature (GDF) across all sampled frames

end for

4 Medical Condition Identification Framework

As per the proposed framework, the incoming RGB video feeds from a commercial camera are
used to extract 2D skeletal data with pose estimation modules such as Openpose. Derived features
elaborated in Section 3 are computed from the 2D skeletal data to distinguish and identify medical
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conditions. As shown in Fig. 5, a two-stage process is proposed to identify the medical conditions
from the derived skeletal features.

The first stage involves the development of a binary classifier to distinguish a potential medical
condition from other day-to-day actions. By the end of this stage, timely notifications could be
provided to inform the concerned systems/people that a possible medical condition has occurred. After
detecting the occurrence of a medical condition in stage 1, a multi-class classifier in stage 2 is used to
identify the medical condition. The multi-class classifier is trained with derived skeletal features about
each medical condition such that each class corresponds to a specific medical condition.

Sections 4.1 & 4.2 elaborate on developing the classifiers for detecting and identifying medical
conditions. In Section 4.3, the effectiveness of the 2-stage classifier is analyzed and computed.

Figure 5: Overall framework

4.1 Medical Condition Detection
The medical condition detection system aims to classify a short action video as a potential medical

condition. Medical condition data in NTU (RGB) [23] is used to train a binary LSTM classifier to
detect a medical condition. Among the 60 actions represented in the NTU (RGB) dataset, nine actions
relevant to medical conditions are grouped into one class denoting medical conditions and the other
actions are grouped within day-to-day actions. The sampling frequency is varied based on the duration
of the action to ensure that 30 samples are available per action. This sampling process is based on the
procedure described in Section 3.1.

The derived features described in Sections 3.2 to 3.4 are computed on these data samples and then
used to train a binary LSTM classifier. Stochastic learning methods such as Adam Optimizer [29] are
used for training due to their faster convergence and lesser data requirement at each iteration than
batch-based training algorithms [30–32]. The hyperparameters used to train the classifier, such as the
batch size, no of LSTM units and no of epochs, are selected after observing the accuracy curves for
train and test data. These experimental results are detailed in Section 5.

The medical condition detector is found to provide a macro average F1 score accuracy of 0.77.
The confusion matrix and performance metrics of the classifier are shown in Fig. 6 and Table 8,
respectively.
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Figure 6: Confusion matrix–medical condition detetor

Table 8: Performance–medical condition detector

Precision Recall F1-score Support

Day-to-day actions 0.9 0.88 0.89 5497
Medical conditions 0.64 0.67 0.66 1704

Accuracy 0.83 7201
Macro average 0.77 0.78 0.77 7201
Weighted average 0.84 0.83 0.84 7201

4.2 Medical Condition Identification
As part of the 2-stage process to identify the occurrence of a medical condition, the second stage

involves the development of a multi-class classifier to determine the exact medical condition that has
occurred. This classifier is only utilized on video data already detected as a potential medical condition
by the stage 1 binary classifier. The nine different medical conditions present in the NTU (RGB)
dataset [23] are utilized for training the multi-class classifier, with every medical condition representing
a particular class. Thirty samples per action are selected based on the process outlined in Section 3.1.

An LSTM-based model is used to train the multi-class classifier utilizing Adam Optimizer for
similar reasons. Hyperparameters such as the batch size, no of LSTM units and no of epochs are
selected after observing the training and validation data accuracy curves. This process is detailed in
Section 5.

Among the nine medical actions available in the NTU RGB + D skeletal dataset, a macro average
F1 score of 0.73 was achieved. The performance metrics and the confusion matrix for the LSTM
trained with the best configuration are presented in Table 9 and Fig. 7, respectively.



3008 CSSE, 2023, vol.46, no.3

Table 9: Performance–medical condition

Label\Metrics Precision Recall F1-score Support

Sneeze\Cough 0.63 0.6 0.62 190
Staggering 0.91 0.89 0.9 188
Falling 0.93 0.97 0.95 188
Headache 0.64 0.58 0.61 190
Chest Pain 0.69 0.58 0.63 190
Body Pain 0.67 0.82 0.74 189
Neck Pain 0.64 0.61 0.63 190
Nausea 0.71 0.83 0.77 189
Fan Self 0.72 0.67 0.7 190

Accuracy 0.73 1704
Macro average 0.73 0.73 0.73 1704
Weighted
average

0.73 0.73 0.73 1704

Figure 7: Confusion matrix–Medical condition identifier

4.3 Evaluation of the Two-Stage Framework
The 2-stage classifier processes day-to-day actions more often than medical conditions, which

rarely occur. Most of these day-to-day actions are filtered by the stage 1 binary classifier, and only
the actions detected as medical conditions are passed to the stage 2 medical condition identifier. This
process results in the improvement of overall accuracy. The processing of test data with actual labels
and the number of samples across the 2-stage classifier is explained in Fig. 8.

The final classes that are identified are the day-to-day actions and the specific medical conditions.
The test data samples classified in different categories are listed in Table 10. The weighted F1 score of
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the overall system with test data is 80%. The relevant accuracy metrics of the overall system are listed
in Table 11.

Figure 8: Test data flow in framework

Table 10: Overall framework predictions

Actual/Predicted Day-to-day actions Medical conditions
correctly identified

Medical conditions
incorrectly identified

Day-to-day actions 4876 0 637
Medical condition 567 837 310

Table 11: Overall performance

Precision Recall F1-Score

Day-to-day actions 0.90 0.88 0.89
Medical condition 0.47 0.49 0.48

Macro average 0.69 0.69 0.69
Weighted average 0.80 0.79 0.80

5 Results and Discussion

The performance evaluation for the medical condition detection and identification classifiers are
detailed in Section 5.1. The results are compared to related work in Section 5.2.

5.1 Performance Evaluation
The binary and multi-class classifier’s hyperparameters are tuned by evaluating different config-

urations. The train and test data are segregated using an 80:20 stratified split for both classifiers. A
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dropout of 50% is introduced into the classifier to prevent overfitting. The batch size and the number
of LSTM units are determined by observing the train and test accuracy curves shown in Figs. 7 and 8
for the binary and multiclass classifiers, respectively.

Figure 9: Medical condition detection-test train accuracy curves

Figure 10: Medical condition identification-train test accuracy curves

We select batch size 16 and LSTM with 200 units as the ideal configuration for the binary classifier
after observing the saturation of accuracy post 200 LSTM units and the accuracy curves being more
stable in this configuration. The confusion matrix and performance metrics for the binary classifier
are shared in Fig. 9 and Table 10, respectively.
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Similarly, for the multiclass classifier used to identify medical conditions, batch size eight and
LSTM with 200 units are selected as the ideal configuration after observing the saturation of accuracy
post 200 LSTM units and the accuracy curves being more stable with a batch size of 8. The confusion
matrix and performance metrics for the multi-class classifier are captured in Fig. 10 and Table 11,
respectively.

The multi-class classifier works very well in identifying conditions such as falling and staggering
where the F1 score is above 0.9, as shown in Table 11. This is a result of the unique nature of these
actions compared to the other actions. Less unique actions such as headache, cough and neck pain
have relatively lower accuracy with an F1 score below 0.7. It is found from the confusion matrix that
some instances of cough have wrongly been classified as nausea and vice versa. Similarly, we note that
there are misclassifications of headache with neck pain due to the proximity between these impact
regions and the similarity in their actions.

Thus, the classifiers built for detecting and identifying medical conditions have shown the
capability to distinguish actions on test data, despite the minimal features used.

5.2 Performance Comparison
In this section, the accuracy and complexity of our system are compared with existing work. To

compare the complexity of this system, the number of parameters present in the binary and multiclass
classifiers is calculated. This number is then compared with the parameters required by other generic
CNN-based deep neural networks [33] that classify actions from 2D skeletal data. Table 12 captures the
complexity and accuracy of different 2D CNN-based approaches [33] on NTU RGB+D 2D skeletal
data and compares them with our classifier metrics. It is observed from Table 10 that 2D CNN-based
classifiers producing an accuracy like our approach require 10 to 100 times more parameters compared
to our multi-class classifier.

Table 12: Accuracy & complexity of CNN based classifier

Data used Model trained No of parameters F1-score

(NTU) Skeletal dataset SqueezeNet 747633 65.3
Inception V3 24481346 75.18
DenseNet169 12566065 77.63
ResNet34 21309809 77.77
ResNet152 58244209 72.54
VGG13 129151601 72.85
VGG19 139770993 72.33

(NTU) Skeletal medical
classes

Medical identifier
(LSTM)

509009 73.4

(NTU) Skeletal dataset Medical detector
(LSTM)

180002 77.4

Table 13 compares the classifiers discussed in this paper with sophisticated LSTM and GCN-
based classifiers that detect action from 3D skeletal data. It can be observed that the binary and
multiclass classifiers proposed for identifying medical conditions show comparable results to generic
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classifiers despite utilizing the 2D skeletal data and, on average five times fewer frames compared to
the other classifiers listed.

Table 13: 3D action classifiers performance

Classifier name Data
used

Cross subject accuracy
F1-score (%)

ST-LSTM [34] 3D
Skeleton

69.2
ST-GCN [35] 72.4
GCA-LSTM [36] 74.4

Medical detector (ours) 2D
Skeleton

79.9
Medical identifier (ours) 73

From Table 14, it could be inferred that despite our fall identification system utilizing 2D skeletal
information and being more generic with the capability also to identify other medical conditions, it
can provide comparable results to dedicated fall identification systems based on 3D skeletal data.

Table 14: Fall identification performance

Classifier name Data used F1-score
(%)

Shojaei-Hashemi’s classifier [37] 3D
Skeleton

93.4
Yin’s LSTM classifier [6] 98.6

Fall detection identifier (ours) 2D
Skeleton

95.2

6 Conclusion and Future Work

Thus, we present a working procedure to detect and identify visual medical conditions in a non-
invasive manner and have tested its accuracy on a standard NTU RGB + D 2D skeletal dataset. Our
approach is highly scalable due to using common RGB data, which could be made available from
traditional surveillance cameras. Our system tested on NTU RGB + D 2D skeletal data has produced
average F1 scores of 77% for medical condition detection and 73% for medical condition identification.
The developed system shows high accuracy in identifying differentiable medical conditions, moderate
accuracy with difficult-to-discern actions and high interpretability. The number of parameters in the
medical condition identification classifier is lesser by a factor of 10 to 100 compared to other deep
learning classifiers on 2D skeletal data with comparable accuracy. This proves that our system is very
computationally efficient and can be implemented on commodity hardware.

Due to its high scalability and non-invasive nature, the system could be utilized to monitor medical
conditions such as cough and headache, which could be representative of highly infectious diseases
during times of pandemic. For real-world usage, the system accuracy needs to be improved further,
especially for the difficult to discern medical conditions. Based on this goal, we plan to explore and
research more granular features related to medical conditions and possibly augment skeletal data with
representative features derived from RGB images and depth-based data for improved accuracy.
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