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Abstract: With the advent of the Internet of Things (IoT), several devices
like sensors nowadays can interact and easily share information. But
the IoT model is prone to security concerns as several attackers try to hit the
network and make it vulnerable. In such scenarios, security concern is the
most prominent. Different models were intended to address these security
problems; still, several emergent variants of botnet attacks like Bashlite, Mirai,
and Persirai use security breaches. The malware classification and detection
in the IoT model is still a problem, as the adversary reliably generates a new
variant of IoT malware and actively searches for compromise on the victim
devices. This article develops a Sine Cosine Algorithm with Deep Learning
based Ransomware Detection and Classification (SCADL-RWDC) method
in an IoT environment. In the presented SCADL-RWDC technique, the major
intention exists in recognizing and classifying ransomware attacks in the
IoT platform. The SCADL-RWDC technique uses the SCA feature selection
(SCA-FS) model to improve the detection rate. Besides, the SCADL-RWDC
technique exploits the hybrid grey wolf optimizer (HGWO) with a gated
recurrent unit (GRU) model for ransomware classification. A widespread
experimental analysis is performed to exhibit the enhanced ransomware
detection outcomes of the SCADL-RWDC technique. The comparison study
reported the enhancement of the SCADL-RWDC technique over other
models.
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1 Introduction

The Internet of Things (IoT) is a copious amount of physical devices interconnected with the
internet. Embedded with software and sensor nodes that can share and collect information online,
IoT gadget is invaluable for improving productivity and enhancing a large number of processes all
over the industry [1–3]. There is a considerable expansion in the severity and amount of cyber-based
attacks. Generally, distinct variants of malware are the major reason for cyberattacks. Malware is
software proposed to use network and computer systems’ vulnerabilities to gain financial benefits
and execute malicious activities [4]. Trojans, viruses, backdoors, worms, ransomware, and rootkits are
popular examples of malware. Ransomware attack causes a problem for the distributed IoT platform
and halts smooth work among heterogeneous data centre [5]. This mechanism contains the complex
structure of method and corpora. The data centre environment has a large amount of information and
pays money to avoid damage to the exploitation and reputation of information [6].

Even though various methodologies are developed for detecting malware [7], it is still a prominent
topic amongst research workers because of the increasing number of new malware and its difficulty
[8]. The conventional method for malware detection is signature-based. This method requires saving
each known and existing malware signature to identify malware samples. The general problem with
this method is that they needed help identifying unknown and new malware samples [9]. As well,
database updating with new signatures takes considerable time, and at that time, malware is capable
of performing malicious actions [1–3, 10].

Furthermore, storing each present malware’s signature could be more efficient and costly [5–7, 11].
The heuristic machine learning (ML) method is commonly applied to overcome this limitation. First,
this technique extracts feature from malware sample that describes the behaviour and content of
the malware. Then, this feature is used for training a model to identify malware samples [8]. But
this method requires the detection of significant features beforehand, which is sometimes impossible,
costly, and time-consuming due to limited available malware samples, which is a major constraint in
IIoT and IoT platforms [9,10].

This article develops a Sine Cosine Algorithm with Deep Learning based Ransomware Detection
and Classification (SCADL-RWDC) technique in an IoT environment. In the presented SCADL-
RWDC technique, the major intention exists in recognizing and classifying ransomware attacks in
the IoT platform. The SCADL-RWDC technique uses the SCA feature selection (SCA-FS) model
to improve the detection rate. Besides, the SCADL-RWDC technique exploits a hybrid grey wolf
optimizer (HGWO) with a gated recurrent unit (GRU) model for the ransomware classification
process. A widespread experimental analysis is performed to exhibit the enhanced ransomware
detection outcomes of the SCADL-RWDC technique.

2 Related Works

The authors in [12] employed DL approaches to extract the latent representation of higher
dimensional data to identify malicious performance accurately. Especially this method present was
dependent upon a hybrid feature engineering system of traditional and VAEs. This system was
utilized to reduce the data’s dimensionality and extract an optimum representation of gathered model
actions. Next, a novel feature vector has passed to a constructed classification dependent upon DNN
and batch-normalized methods. Naeem [13] examined a further accurate and fast method to detect
malware from IoT environments. The authors establish a Malware Threat Hunting System (MTHS) in
the presented method. In MTHS, primary converts malware binary to colour image and conducts the
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ML or DL studies for effectual malware detection. The authors lastly make a baseline for comparing
the efficiency of MTHS with classic recent malware detection techniques.

Naeem et al. [14] proposed a structure for detecting malware attacks on the Industrial Internet
of Things (MD-IIOT). This technique was presented for a comprehensive investigation of malware,
depending upon the colour image visualized and deep CNN. The outcomes of the presented system
are related to former techniques for malware detection. Moti et al. [15] presented MalGan, a structure
to detect and generate novel malware instances dependent upon the raw byte code at the edge
layer of IoT networks. CNN is employed to extract higher-level features, and a boundary-seeking
Generative Adversarial Network (GAN) system generates novel malware instances. Therefore, even
with some malware instances, an essential count of earlier unseen malware instances was detectable
with maximum accuracy. For capturing the short- and long-term dependency of features, the authors
utilized an attention-based method, an integration of CNN and LSTM. The attention system enhances
the model’s efficiency by increasing or decreasing attention for particular features. Kumar [16]
introduces a new malware classifier with fine-tuning CNNs (MCFTCNN) method. This method
utilizes deep transfer learning (DTL) to classify the malware image into its corresponding family. The
presented method improves the ResNet50 technique by changing the final layer with a fully connected
(FC) dense layer.

In [17], an automated ML-based ransomware classification model is derived. Using the malware
life cycle on the Windows platform, real-time examination of ransomware samples is performed to
identify various traits of harmful code patterns. The grid search hyperparameter optimizer is used
to determine the optimal fit approaches, and the results are examined over the test dataset. The
authors in [18] presented the major suggestion and schemes to mitigate ransomware. An automated
indexing approach is developed to offer searching functions, similarity verification, classification, and
clustering. The proposed model mainly aims at the original ransomware binary and the indexing
engine based on the hybridized data from the static analyzer system. The proposed model tracks and
classifies ransomware depending on the static features to determine the resemblance among various
ransomware samples.

3 The Proposed Model

In this article, we have introduced automated ransomware detection using the SCADL-RWDC
technique. The goal of the SCADL-RWDC technique lies in the recognition and classification of
ransomware attacks in the IoT environment. It follows three processing stages: SCA-FS-based feature
subset selection, GRU classification, and HGWO parameter tuning. Fig. 1 represents the block
diagram of the SCADL-RWDC system.

3.1 Data Pre-Processing
In the primary stage, the min-max normalizes system was executed to transform the input database

into a suitable format. Min-max normalized system is utilized for scaling the feature in zero and one
with the subsequent expression.

ν ′ = v − minA

maxA − minA

(1)

In Eq. (1), minA and maxA imply the lower and higher values of features A. The normalizing
and original values of attributes, A, are considered as ν and ν ′ correspondingly. It is noticeable
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in the equation mentioned above that the higher and lower feature values are mapped to 0 and 1
correspondingly.

Figure 1: Block diagram of SCADL-RWDC system

3.2 Algorithmic Design of SCA-FS Technique
The SCADL-RWDC technique applied the SCA-FS model to choose features optimally in this

work. SCA is a metaheuristic approach developed with shallow efficiency [19] and a population-based
method that begins with searching for random solutions. Thus, each random optimization highlights
the exploitation and exploration of the problem. In SCA, two distinct mathematical formulas are
utilized for updating the solution for the balance of exploitation and exploration:

X i+1
ij =

{
X t

ii + r1 × sin (r2) × ∣∣r3Pt
j − X t

ii

∣∣) r4 < 0.5
X t

ij + r1 × cos (r2) × ∣∣r3Pt
j − X t

ij

∣∣) r4 ≥ 0.5
(2)

X ιi
i denotes the j−th parameter of the i−th location at the t generation population, r1, r2, and r3

indicate each random number, and Pf
j represents the j−th parameter of the terminal point at the t

generation population.

Four variables should be presented. It reduced linearly from a to 0, which balances the exploitation
and exploration. Furthermore, the variable r2 ∈ [0, 2π ] is a random value for updating the following
solution in the accurate direction. Lastly, the r4 variable characterizes that the sine and cosine function
was chosen in Eq. (1) with corresponding probability.

The comprehensive equation for variable r1 is given by:

r1 = a ×
(

1 − FEs
MaxFEs

)
(3)

In Eq. (3), FEs specify the present computation, MaxFEs show the maximal amount of compu-
tations, and a is constant. Fig. 2 demonstrates the flowchart of SCA.
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Figure 2: Flowchart of SCA

It demonstrates the present trend of the solution towards the target solution. The equation of
SCA is presented to two arithmetical functions involving sine and cosine operations. The effects on
those functions depend on how to attain the following solution and determine the location amongst
the sensible and the existing solutions to the problem.

The effect of cosine and sine functions in a random integer on the following solution. Two trends
are analyzed: the inner direction of the present and outside space.

The common step of SCA starts with the optimization procedure of a set of primary random
solutions. With increasing assessments, the better solution is the target solution presently retained.

Consequently, the fitness function is utilized for evaluating individual solutions as follows:

Fitness = α ∗ ErrorRate + (1 − α) ∗ #SF
#All_F

(4)

Whereas ErrorRate denotes the classification error rate.

3.3 Ransomware Attack Detection Using GRU Model
The SCADL-RWDC technique exploited the HGWO with the GRU model for ransomware

classification. GRU network is a variant of the LSTM network in RNN that mostly replaces the
two gating units of LSTM (input and forgetting gates) with one gating unit (update gate) [20]. It is
well-designed and employed in the area of time series prediction.

Similarly, The GRU-NN works with the LSTM, where it has two gates, such as reset and update
gates. These gates receive the ht−1 hidden state at the preceding moment and the xt input dataset at the
current moment. The output gating signal is represented as rt and zt, correspondingly. Also, the gating
unit comprises sigmoid and dot product functions.
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Short-time series dependency is attained through the reset gate:

rt = σ (Wxrxt + Whrht−1 + br) . (5)

Estimate update gate in the following:

zt = σ (Wxzxt + Whzht−1 + bz) . (6)

The candidate vector can be attained afterwards by updating the following:

h̃t = tanh (Wx̃hxt + Wh̃h (rtht−1) + bc) . (7)

Update memory to obtain hidden layer output outcomes:

ht = (1 − zt) ht−1 + zt̃ht, (8)

In Eq. (7), σ denotes the sigmoid function, and tanh represents the tanh function. Wxz, Wxr, and
Wxc and Whz, Whr, and Whĩch indicates the weighted matrix from xt and ht−1 to update gate, reset gate,
and candidate hidden state, correspondingly; bz, br, and bc indicate the bias.

3.4 Hyperparameter Tuning
Finally, the HGWO algorithm is used for the hyperparameter tuning process. In the HGWO

algorithm, for the position update, the target encircling nature of the grey wolf can be arithmetically
modelled [21]. The distance between the target and grey wolf for different wolf groups is formulated
as follows.

D = ∣∣C × Xtarget (t) − XGW (t)
∣∣ (9)

The location updating of a grey wolf for the following iteration is shown as follows:

XGW (t + 1) = Xtarget (t) − A × D (10)

Whereas XGW , Xtarget signifies the location vector of grey wolf and target, t characterizes the
iteration. A and C vectors are determined to introduce flexibility for the grey wolf for the general
search of the target as follows:

A = 2 · A · (rand1 [0, 1]) −
(

a
{

f
(

r
rmax

)})
(11)

C = 2 · (rand2 [0, 1]) (12)

Whereas ‘a’ corresponds to the linear conversion from the exploration to the exploitation stage in
the following,

a
{

f
(

r
rmax

)}
= 2 −

(
2 · t
tmax

)
(13)

In Eq. (12), tmox denotes the overall iteration count. The attacking or hunting nature of the grey
wolf is defined linearly, differing from 2 to 0 since it accomplishes maximal. The hunting strategy of
grey wolf groups is achieved in the following.

Da

∣∣pho = {∗
∗
∣∣ pha∀r(lnd() ≥ 0.5∀r(lnd() < 0.5
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rand()∗sin(rand())

∗abs
(
C∗

2 Xbeta − XGW (t)
) ∀rand () < 0.5

rand()∗cos(rand())

∗abs
(
C∗

2 Xbeta − XGW (t)
) ∀rand () ≥ 0.5

(15)

Dbeta =
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rand()∗sin(rand())

∗abs
(
C∗

3 Xdelta − XGW (t)
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(16)

X ! (t) = Xalpha (t) − A1 × Dalpha (t) (17)

X !! (t) = Xbeta (t) − A2 × Dbeta (t) (18)

X !!! (t) = Xdelta (t) − A3 × Ddelta (t) (19)

Location updating for the next iteration is attained by:

XHGW0SCA (t + 1) = X !(t) + X !!(t) + X !!!(t)
3

(20)

Eqs. (11), (12) are utilized for evaluating distinct factors in (14)–(19). Now, Xalpha, Xbeta, and Xdelta

denote the better position at the t′ iteration, leading the remaining population to the optimum solution
with the best searching capability. However, sometimes, there is a risk of getting trapped in the local
optima, which results in poor population diversity. The DLH method considers that the optimum
fitness value might be positioned in the neighbourhood of the location update evaluated. Therefore,
the fitness values with location update in (20) are compared to the fitness values of the neighbourhood
position, and the better position is repositioned to the novel position when the neighborhood outcomes
in optimum fitness value. This technique might prevent getting trapped in local optima and augment
the performance; thus, it is called the HGWO model.

4 Results Analysis

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 1050Ti 4 GB,
16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are learning rate: 0.01, dropout:
0.5, batch size: 5, epoch count: 50, and activation: ReLU. The ransomware classification results of the
SCADL-RWDC model are assessed on a dataset with 840 samples, as depicted in Table 1. The dataset
holds 420 goodware samples and 420 ransomware samples.

The confusion matrix gained by the SCADL-RWDC technique is portrayed in Fig. 3. On 80%
of the TR database, the SCADL-RWDC model has categorized 318 samples into goodware and 336
samples into ransomware. Meanwhile, on 20% of the TS database, the SCADL-RWDC approach
has classified 83 samples into goodware and 82 samples into ransomware. Finally, on 70% of the TR
database, the SCADL-RWDC method has classified 293 samples into goodware and 292 samples into
ransomware.
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Table 1: Dataset details

Class No. of sample images

Goodware 420
Ransomware 420

Total Number of Sample Images 840

Figure 3: Confusion matrices of SCADL-RWDC system (a–b) TR and TS database of 80:20 and (c–d)
TR and TS database of 70:30

Table 2 offers detailed results of the SCADL-RWDC model on 80% of TR and 20% of TS
databases.

Fig. 4 reports an overall ransomware classification outcome of the SCADL-RWDC model on
80% of the TR database. In the goodware class, the SCADL-RWDC model has obtained accubal, sensy,
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specy, F−score, and AUC scores of 95.21%, 95.21%, 99.41%, 97.25%, and 97.31%, respectively. Eventually,
in the Ransomware class, the SCADL-RWDC system attained accubal, sensy, specy, F−score, and AUC scores

of 99.41%, 99.41%, 95.21%, 97.39% and 97.31%, correspondingly.

Table 2: Result analysis of SCADL-RWDC system under 80:20 of TR/TS databases

Class Accuracybal Sensitivity Specificity F-Score AUC Score

Training Phase (80%)

Goodware 95.21 95.21 99.41 97.25 97.31
Ransomware 99.41 99.41 95.21 97.39 97.31

Average 97.31 97.31 97.31 97.32 97.31

Testing Phase (20%)

Goodware 96.51 96.51 100.00 98.22 98.26
Ransomware 100.00 100.00 96.51 98.20 98.26

Average 98.26 98.26 98.26 98.21 98.26

Figure 4: Result analysis of the SCADL-RWDC system in 80% of the TR database

Fig. 5 reports the overall ransomware classification outcomes of the SCADL-RWDC model on
20% of the TS database. In goodware class, the SCADL-RWDC algorithm has gained accubal, sensy,
specy, F−score, and AUC score of 96.51%, 96.51%, 100.00%, 98.22% and 98.26%, correspondingly. At last,
in the Ransomware class, the SCADL-RWDC method has achieved accubal, sensy, specy, F−score, and
AUC scores of 100.00%, 100.00%, 96.51%, 98.20% and 98.26% correspondingly.

Table 3 provides a detailed outcome of the SCADL-RWDC approach on 70% of TR databases
and 30% of TS databases.

Fig. 6 demonstrates an overall ransomware classification result of the SCADL-RWDC algorithm
on 70% of TR data. In goodware class, the SCADL-RWDC approach has acquired accubal, sensy,
specy, F−score, and AUC score of 99.66%, 99.66%, 99.32%, 99.49% and 99.49%, correspondingly. Followed
by, on Ransomware class, the SCADL-RWDC methodology has attained accubal, sensy, specy, F−score,
and AUC scores of 99.32%, 99.32%, 99.66%, 99.49% and 99.49% correspondingly.
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Figure 5: Result analysis of SCADL-RWDC system in 20% of the TS database

Table 3: Result analysis of SCADL-RWDC system under 70:30 of TR/TS databases

Class Accuracybal Sensitivity Specificity F-score AUC score

Training Phase (70%)

Goodware 99.66 99.66 99.32 99.49 99.49
Ransomware 99.32 99.32 99.66 99.49 99.49

Average 99.49 99.49 99.49 99.49 99.49

Testing Phase (30%)

Goodware 100.00 100.00 98.41 99.21 99.21
Ransomware 98.41 98.41 100.00 99.20 99.21

Average 99.21 99.21 99.21 99.21 99.21

Figure 6: Result analysis of the SCADL-RWDC system in 70% of the TR database

Fig. 7 depicts an overall ransomware classification result of the SCADL-RWDC methodology
on 30% of TS data. In goodware class, the SCADL-RWDC system has achieved accubal, sensy, specy,
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F−score, and AUC scores of 100.00%, 100.00%, 98.41%, 99.21% and 99.21%, correspondingly. In addition,
in the Ransomware class, the SCADL-RWDC algorithm has reached accubal, sensy, specy, F−score, and
AUC scores of 98.41%, 98.41%, 100.00%, 99.20% and 99.21% correspondingly.

Figure 7: Result analysis of SCADL-RWDC system in 30% of the TS database

The training accuracy (TRacc) and validation accuracy (VLacc) obtained by the SCADL-RWDC
system in the test database is displayed in Fig. 8. The simulation result shows that the SCADL-RWDC
approach has realized superior values of TRacc and VLacc. Especially the VLacc looked better than TRacc.

Figure 8: TRacc and VLacc analysis of SCADL-RWDC system

The training loss (loss) and validation loss (VLloss) gained by the SCADL-RWDC approach in the
test database are portrayed in Fig. 9. The simulation result referred that the SCADL-RWDC system
has attained lower values of TRloss and VLloss. In certain, the VLloss is lesser than the loss.
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Figure 9: TRloss and VLloss analysis of SCADL-RWDC system

A comparative examination of the SCADL-RWDC with other ML approaches occurs in Table 4
[22].

Table 4: Comparative analysis of SCADL-RWDC algorithm with other current systems

Methods Accuracy Sensitivity Specificity F-score

SCADL-RWDC 99.49 99.49 99.49 99.49
DWOML-RWD 99.38 99.35 99.36 99.37
AdaBoost-M1
Algorithm

95.80 94.11 94.69 94.54

Bagging Algorithm 98.90 93.57 96.17 96.27
Rotation Forest
Algorithm

96.17 96.41 97.50 97.30

RF Algorithm 98.63 98.96 98.57 98.12
DT Algorithm 97.51 98.24 98.23 98.06

Fig. 10 illustrates a comparison study of the SCADL-RWDC model with current ML approaches
in terms of accuy. The results indicated that the Adaboost-M1 and ROF models had reached a
minimum accuracy of 95.80% and 96.17%, respectively. Then, the DT model resulted in moderate accuracy

of 97.51%. In contrast, the DWOML-RWD, bagging, and RF approaches have obtained reasonable
closer accuy values of 99.38%, 98.90%, and 98.63%, respectively. But the SCADL-RWDC model has
shown higher accuracy of 99.49%.

Fig. 11 illustrates a comparison study of the SCADL-RWDC with current ML approaches in
sensy. The result indicates that the bagging and Adaboost-M1 approaches have reached a minimum
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sensy. of 93.57% and 94.11%, respectively. Next, the ROF methodology has resulted in a moderate sensy

of 96.41%. In contrast, the DWOML-RWD, DT, and RF models have attained closer sensy values of
99.35%, 98.24% and 98.96%, correspondingly. But the SCADL-RWDC approach has shown a high
sensy of 99.49%.

Figure 10: Accuracy analysis of SCADL-RWDC algorithm with other current systems

Figure 11: Sensy analysis of SCADL-RWDC technique with other present systems

Fig. 12 shows a comparison study of the SCADL-RWDC with current ML methods in specy.
The result indicates that the Adaboost-M1 and bagging approaches have reached a minimum specy of
94.69% and 96.17%, respectively. Next, the ROF model has resulted in a moderate specy of 97.50%.
In contrast, the DWOML-RWD, DT, and RF approaches have correspondingly attained closer specy

values of 99.36%, 98.23%, and 98.57%. But the SCADL-RWDC technique has demonstrated a high
specy of 99.49%.

Fig. 13 depicts a comparison study of the SCADL-RWDC with current ML techniques in terms
of F−score. The result indicates that the Adaboost-M1 and bagging techniques have reached a minimum
F−score. of 94.54% and 96.27%, respectively. Next, the ROF technique has resulted in a moderate Fscore
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of 97.30%. In contrast, the DWOML-RWD, DT, and RF methods have attained reasonably closer
F−score values of 99.37%, 98.06% and 98.12%, correspondingly. But the SCADL-RWDC approach has
demonstrated a high Fscore of 99.49%. These results show the enhanced performance of the SCADL-
RWDC model.

Figure 12: Specy analysis of SCADL-RWDC algorithm with other existing systems

Figure 13: F−score analysis of SCADL-RWDC algorithm with other existing systems

5 Conclusion

In this article, we have introduced automated ransomware detection using the SCADL-RWDC
technique. The goal of the SCADL-RWDC technique lies in the recognition and classification of
ransomware attacks in the IoT environment. The SCADL-RWDC technique was applied to the SCA-
FS model to improve the detection rate. Besides, the SCADL-RWDC technique exploited the HGWO
with the GRU model for the ransomware classification process. A widespread experimental analysis is
performed to exhibit the enhanced ransomware detection outcomes of the SCADL-RWDC technique.
The comparison study reported the enhancement of the SCADL-RWDC technique over other models
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with maximum accuracy of 99.49%. Thus, the presented SCADL-RWDC technique can be employed
for the automated recognition of security attacks in the IoT platform. In the future, the performance
of the SCADL-RWDC technique can be improvised using hybrid deep learning (DL) models.
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