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Abstract: Aquaculture has long been a critical economic sector in Taiwan.
Since a key factor in aquaculture production efficiency is water quality,
an effective means of monitoring the dissolved oxygen content (DOC) of
aquaculture water is essential. This study developed an internet of things
system for monitoring DOC by collecting essential data related to water
quality. Artificial intelligence technology was used to construct a water quality
prediction model for use in a complete system for managing water quality.
Since aquaculture water quality depends on a continuous interaction among
multiple factors, and the current state is correlated with the previous state, a
model with time series is required. Therefore, this study used recurrent neural
networks (RNNs) with sequential characteristics. Commonly used RNNs
such as long short-term memory model and gated recurrent unit (GRU)
model have a memory function that appropriately retains previous results for
use in processing current results. To construct a suitable RNN model, this
study used Taguchi method to optimize hyperparameters (including hidden
layer neuron count, iteration count, batch size, learning rate, and dropout
ratio). Additionally, optimization performance was also compared between
S-layer and 7-layer network architectures. The experimental results revealed
that the 7-layer GRU was more suitable for the application considered in
this study. The values obtained in tests of prediction performance were mean
absolute percentage error of 3.7134%, root mean square error of 0.0638, and
R-value 0f 0.9984. Therefore, the water quality management system developed
in this study can quickly provide practitioners with highly accurate data,
which is essential for a timely response to water quality issues. This study was
performed in collaboration with the Taiwan Industrial Technology Research
Institute and a local fishery company. Practical application of the system
by the fishery company confirmed that the monitoring system is effective
in improving the survival rate of farmed fish by providing data needed to
maintain DOC higher than the standard value.
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1 Introduction

The primary industries in the human food supply chain are the agriculture, animal husbandry,
and fishery industries [1,2]. Many Countries have attempted to develop their fishery industries be
establishing various fishery types, including capture fisheries and aquaculture fisheries. Aquaculture
fisheries are relatively more stable since their production output is easier to plan according to human
needs. According to a 2020 report by the Agriculture and Food Agency of the United Nations [3], of
the US$401 billion total output value of the global fishery industry in 2018, an output value of US$250
billion had been generated by aquaculture fisheries.

Since Taiwan is surrounded by the sea, fisheries are a major economic industry. According to
Fisheries Agency, Council of Agriculture, and Executive Yuan of Taiwan [4], aquaculture fisheries
accounted for 44.7% of the total production value (approximately US$1.06 billion), which shows the
importance of aquaculture to the overall fishery. The water quality is essential for fish growth and
survival [5]. Traditionally, most fishers have judged water quality through visual inspection. Now, some
fishers have measured with a dissolved oxygen meter in person at different positions in the pond [6,7].
However, these are inefficient, inaccurate, and dangerous ways. Additionally, the decreasing size of the
labor force and increasing labor costs in Taiwan have increased the difficulty of recruiting qualified
water quality inspectors who must have experience. As in other technologically advanced countries,
therefore, the Taiwan government has promoted the use of artificial intelligence (AI) and internet of
things (IoT) technologies in various industries to address these labor issues [8,9]. In the IoT system,
a terminal equipped with sensors and other data collection components can collect data and send
it to the cloud. Such a terminal can also collect and transmit data to the database of a back-end
system through a network or other wireless communication system. Therefore, potential applications
of IoT have been discussed in many different domains [10], including transportation logistics [11-13],
industrial manufacturing [14—19], and health care [20-25]. In aquaculture, IoT is also used for water
quality inspection [26-30]. The above studies demonstrate that integration of Al is a growing trend in
industrial applications of [oT.

In smart farming, the IoT can also be used to monitor the growth status of agricultural products.
Without further processing and analysis, however, information collected by the IoT has limited
practical applications [31]. Therefore, an important emerging technology is the integration of Al in
IoT (AloT) [32], which enables not only monitoring, but also prediction, assessment, and decision-
making. That is, AloT increases efficiency in the management and use of resources and data, which
then contributes to cost reduction and trend understanding. Currently, the most common methods of
Al are neural networks, deep learning, and machine learning [33]. In farming, [oT is used to detect
and collect data from fields [34—38]. In addition, after data collection by IoT, Quiroz et al. [39] applied
a convolutional neural network (CNN) to classify the crop. Rezk et al. [40], Rodriguez et al. [41], and
Kuo et al. [42] predicted or analyzed the crop yield by using wrapper partial decision tree algorithm
(WPART), extreme gradient boosting (XGBoost), and support vector machine (SVM) as well as CNN
models, respectively. Hsu et al. [37] not only built a model for predicting yields but also developed a
subsystem for detecting unauthorized entry to crop fields.

This study was performed in cooperation with the Industrial Technology Research Institute
(ITRI) in Taiwan and a local aquaculture company. The objective was to develop an effective
technology that aquaculture practitioners can use to monitor and manage fish farms. The IoT
hardware was set up with the assistance of ITRI. In the proposed smart water quality monitoring
system, data for crucial factors in the water quality of fishponds were collected by sensors then entered
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in an intelligent model developed by Al for use in building a smart water quality monitoring system
for fishponds.

In the current study, Taguchi method [43] was used to explore and optimize hyperparameter
combinations for the prediction models. Orthogonal arrays were used to plan each experiment, to per-
form each experiment using different hyperparameter combinations, and to record the experimental
results. Finally, a response table was used to infer the optimal combination by comparing experimental
results among different parameter combinations in the orthogonal array. Then the experiment was
performed using the optimal combination. If the experimental result of the optimal combination from
the response table was better than all the experimental results in the orthogonal array, it was selected as
the hyperparameter architecture. Otherwise, the combination with the optimal result in the orthogonal
array was selected. In addition to discussing the model hyperparameters, this research also compared
the five-layer and seven-layer LSTM and GRU to find the most suitable model for solving the problem
considered in this study. The comparison results indicated that the most applicable model was a seven-
layer GRU, which achieved a MAPE of 3.7134%, an RMSE of 0.0638, and an R-value of 0.9984.
This model performs better than the model built from the orthogonal array in this study. The GRU
enables the water quality monitoring and decision-making system to determine when the oxygenation
equipment and the paddlewheel aerator should be started to maintain the quality of the fishpond
water, including its dissolved oxygen content (DOC).

According to feedback from the local aquaculture company that participated in this study, the
developed system can be used to maintain DOC levels higher than the standard value suitable for
farmed fish by activating the oxygenation equipment and the paddlewheel acrator whenever the DOC
of the water is insufficient. In addition, compared with the traditional inspection method and the
paddlewheel aerator activation all day, the developed method can provide an automatic, safe, and
energy-saving way to monitor their fishpond. Thus, the experiment confirmed the effectiveness and
practicality of the system developed by this research institute.

This paper is organized as follows. The study related works is briefly discussed in Section 2.
Section 3 presents the proposed method. Section 4 presents and discusses the case study results. Finally,
Section 5 concludes the study.

2 Related works

The water quality monitoring and decision-making system used a backpropagation neural
network (BPNN) described previously [44—47]. The current state of water quality will be affected by
the previous state of water quality because the water quality cannot plummet or rise at a glance. That
is, the factors which influence the water quality are timing sequence [48]. For an ANN, the output of a
single hidden layer is only predicted based on the current data. The prediction results between different
hidden layers will not affect each other. ANN must have memory capability to analyze the correlation
and sequential data for factors by ANN. However, the BPNN did not have memory capability, so
as could not consider timing sequence data. Therefore, this study used recurrent neural networks
(RNNS5) [49-51] to model because RNNs consider the timing sequence. And then, for systematic
hyperparameter optimization, the Taguchi method [43] was used to find the best hyperparameter
combination for model prediction accuracy. In addition to simple RNN, the main structure of the
model included long short-term memory (LSTM) [51-53] and gated recurrent units (GRU) [51,54].
Since inferred results are fed back to each neuron in the middle layer, the RNN considers the possible
influence of the previous results. However, as the time sequence increases, the problem of gradient
vanishing appears. That means the gradient tends to zero even equals zero. When input data can no
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longer be linked to the results, bias in the re-entered input data gradually increases. The LSTM model
and GRU model were developed to solve the vanishing gradient problem. The descriptions of LSTM
and GRU in detail are in [52] and [54], respectively.

Hong et al. [55] used an LSTM model to build a time-sequence model for predicting symptoms of
Alzheimer disease. Chen [56] used an LSTM model to build a model for predicting nonlinear voltage.
In Kumar et al. [57], an LSTM model was used to build a deep learning model for predicting and
classifying traffic patterns in smart cities. Zhang et al. [58] proposed an integrated EMD-LSTM model,
which used EMD to preprocess data and used LSTM for predicting the water quality of the urban
drainage network. Zhang et al. [59] proposed a new data-driven model of water quality prediction
based on the LSTM model, which used Complete Ensemble Empirical Modal Decomposition with
Adaptive Noise (CEEMDAN) to decompose the water quality data to solve the problem of low
prediction accuracy caused by the randomness and large volatility of the measured data. Wu et al. [60]
used a multi-layer perceptron neural network to process the missing values and used discrete wavelet
transform (DWT) to decompose the water quality data, then used LSTM to predict the water quality
of the Jinjiang River in China. Hong et al. [61] developed a method of using the LSTM model to
build an accurate weather forecasting model. Song et al. [62] used an LSTM model to build a time-
sequence model for predicting sea surface height anomaly (SSHA). However, a limitation of the LSTM
model is its numerous internal calculations, which tend to decrease prediction and classification speed.
Therefore, recent studies have begun to investigate the use of GRU. For example, Yuan et al. [63]
used GRU to diagnose and predict industrial manufacturing errors. Another industrial application
proposed by Li et al. [64] is the use of GRU for exploring petroleum conglomerate reservoirs. In
Leng et al. [65], the GRU model was used to estimate offshore seabed depth by analyzing satellite
images. Zhang et al. [066] used the GRU model for traffic system analysis, i.e., to predict automobile
collisions with pedestrians under varying traffic conditions. Xu et al. [67] collected infrared thermal
images of polymethyl methacrylate (PMMA), used principal component analysis (PCA) to reduce the
dimension of the images, and then used GRU to build a model for detecting defects. Jiang et al. [68]
proposed a data-driven Fat, oil, and grease (FOG) content prediction model based on deep learning
model GRU for diagnosing sewer blockage and overflow. Ali et al. [69] proposed a set of prediction
models based on machine learning, deep learning, and statistics for predicting sea surface temperature
(SST) and significant wave height (SWH), where in terms of deep learning, the authors used GRU-
DNN model architecture. Chi et al. [48] used a wavelet transform (WT) to denoise and used maximal
information coefficient (MIC) to select features, then used GRU to predict the water quality of the
dish-shaped lakes in Poyang Lake of Jiangxi Province, China.

The above examples demonstrate the many potential applications of LSTM and GRU, but do not
explore which is more suitable. Sutskever et al. [70] noted that hyperparameter selection is a critical step
when building a deep learning model. A deep learning model cannot be designed systematically and
efficiently if the hyperparameters are randomly selected. Therefore, Chou et al. [71] used experimental
design method to find the best hyperparameter combination fora CNN. Ho et al. [72] and Ho et al. [73]
also used experimental design method to explore hyperparameter combinations for deep residual
network (ResNet) and CNN models. In summary, this paper explored the applicability of LSTM
and GRU deep learning models for predicting DOC and used a Taguchi method to optimize
hyperparameters.
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3 Purposed Methodology

3.1 Environment Configuration

The site of this study was a locally owned and operated fish farm in Linbian, Pingtung, Taiwan.
Fig. 1 is a schematic diagram of the fish farm, which was cooperated in this study. Above the fishponds
are two to four paddlewheel aerators equipped with dissolved oxygenation equipment to accelerate
dissolution of oxygen. Various sensors are installed in the fishponds to monitor water quality and other
essential factors. The upper left of the diagram depicts the ecological ponds and the water treatment
system, which includes the dissolved oxygenation equipment for treating and purifying the water to
increase its DOC and overall quality. Based on the actual location, nursery plants and a computer
room are located in the south area of the fish farm. The IoT data are sent to this computer room and
to the cloud for use in monitoring water quality.
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Figure 1: Schematic diagram of field configuration for the fish farms

According to Yu et al. [74], Liu et al. [75], Gustilo et al. [76], and the experience of practitioners,
DOC (unit: ppm) is a useful metric for water quality because it is affected by conductivity (unit:
US/CM), pH, salinity (unit: mg/L), and temperature (unit: °C). Additionally, the previous state DOC
has influenced the current state DOC. In this study, based on practitioners’ experience, all five factors
(conductivity, pH, salinity, temperature, and previous state DOC) were considered critical factors in
the current DOC. However, the weather can indirectly affect these five factors. Therefore, the weather
influence also was implied in these five factors. Table | shows some data samples, and each data
includes conductivity, pH, salinity, temperature, and previous state DOC with the current state DOC.
If outliers or nulls exist in the dataset, we used mean imputation to tackle values. Before the modeling,
the dataset is normalized and partitioned into 80% train and 20% test data. When model training is
complete, the model was verified by the model performance metrics methodology in Section 3.4.

Table 1: Part of the sample data from the IoT

Sample Temperature pH Conductivity Salinity Previous state DOC Current state DOC
1 27.93 9.86 0.72 0.72 3.67 3.34
2 27.93 9.85 0.72 0.72 3.34 3.15

(Continued)
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Table 1: Continued
Sample Temperature pH Conductivity Salinity Previous state DOC Current state DOC
3 27.92 9.86 0.72 0.72 3.15 3.6
4 27.91 9.85 0.72 0.72 3.6 3.75
5 27.91 9.85 0.72 0.72 3.75 3.77
6 27.91 9.85 0.72 0.72 3.77 3.37
7 27.9 9.85 0.72 0.72 3.37 3.21
3943 28.64 7.35 0.87 0.58 3.16 3.13
3944 28.65 7.34 0.87 0.58 3.13 3.13
3945 28.67 7.34 0.87 0.58 3.13 3.07
3946 28.68 7.34 0.87 0.58 3.07 3.07
3947 28.69 7.35 0.87 0.58 3.07 3.3425
3948 28.7 7.34 0.87 0.58 3.3425 3.34
3949 28.6 7.34 0.87 0.58 3.27 3.26

3.2 Configuration of IoT in the Experimental Environment

This study constructed a complete intelligent system for monitoring water quality in fish farms.
Fig. 2 shows the system architecture. Data for five critical factors were collected by sensors and
transmitted to the computer and data center via a wireless network. The sensor was provided by
ITRI, Taiwan, and the sampling time was twenty minutes. Based on these data, the LSTM and GRU
models estimated DOC within 20 min. This study also compared performance between the LSTM and
GRU. If the system determines that DOC is insufficient after 20 min, it will be automatically triggered
to activate the oxygenation equipment and the paddlewheel aerator. In peacetime, the oxygenation
equipment always keeps the water with high oxygen and stores it in a water tank. When triggered, the
oxygenation equipment will deliver the water with high oxygen into the fishpond. The paddlewheel
aerator pumps the oxygen in the air into the water simultaneously. This process will continue until the
new predicted DOC value returns to the standard value. According to the experience of practitioners,
the standard value of the DOC in the water is three ppm, so if the DOC is lower than three ppm, the
oxygenation equipment, and paddlewheel acrator pumps must be activated.
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Figure 2: Schematic diagram of [oT configuration



CSSE, 2023, vol.46, no.3 2867

3.3 Modeling Method and its Hyperparameter Optimization

Since current values for critical factors in water quality are dependent on their time series values,
BPNN was considered unsuitable for estimating water quality. This study addressed the time series
issue by using an RNN model. Under the RNN architecture, the next one input data was influenced
by the current feedback value [49,50]. In addition to conventional RNN, common variations of RNN
include LSTM [52,53] and GRU [54]. The Taguchi method is a robust experiment method, which can
reduce the effect of the cause of variation. Parameter design methods were used for hyperparameter
optimization of the LSTM and GRU. To systematically arrange the experiments for training RNN,
the Taguchi method [43] was used to search for the optimal hyperparameter combinations for the
LSTM and GRU. The Taguchi method was first used to define the number of levels and then
to select the appropriate orthogonal table according to the numbers of levels and factors. After
selecting appropriate hyperparameters, the L,s(5°) orthogonal table, shown in Table 2, is used as the
experimental design method. To understand the effect of the number of middle layers of LSTM
and GRU on performance, the L,s(5°) orthogonal table has been chosen. Furthermore, according to
Srivastava et al. [77], the appropriate addition of dropout layers to the neural networks can reduce
the over-fitting problem, so the RNN has at least five layers. If there are more than seven layers,
the L,,; orthogonal table needs to be selected to double the cost and time of RNN training. Fig. 3
shows that the architecture of the five-layer included an input layer, a middle layer, a dropout layer, a
fully connected layer, and an output layer. The key hyperparameters were middle-layer neuron count,
maximum iterations, batch size, learning rate, and dropout ratio.

Fig. 4 shows that the seven-layer included an input layer, a middle layer, a first dropout layer, a
second middle layer, a second dropout layer, a fully connected layer, and an output layer. The number
of neurons was determined separately for each middle layer, but the dropout ratio of each middle layer
was set the same. The number of columns was set according to the number of layers (i.e., five or seven).

Table 2: An orthogonal table for L,s(5°)

No. 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 3 3 3 3
4 1 4 4 4 4 4
5 1 5 5 5 5 5
6 2 1 2 3 4 5
7 2 2 3 4 5 1
8 2 3 4 5 1 2
9 2 4 5 1 2 3
10 2 5 1 2 3 4
11 3 1 3 5 2 4
12 3 2 4 1 3 5
13 3 3 5 2 4 1
14 3 4 1 3 5 2
15 3 5 2 4 1 3
16 4 1 4 2 5 3

(Continued)
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Table 2: Continued

No. 1 2 3 4 5 6
17 4 2 5 3 1 4
18 4 3 1 4 2 5
19 4 4 2 5 3 1
20 4 5 3 1 4 2
21 5 1 5 4 3 2
22 5 2 1 5 4 3
23 5 3 2 1 5 4
24 5 4 3 2 1 5
25 5 5 4 3 2 1

™ Input layer

2nd Middle layer (LSTM or GRU)

3rd Dropout layer

4t Full-connected layer

5t Output layer

Figure 3: The 5-layer architecture of training model

I Input layer

2ond The 1% middle layer (LSTM or GRU)
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4t The 2™ middle layer (LSTM or GRU)

5h Dropout layer
6h Full-connected layer
7% Output layer

Figure 4: The 7-layer architecture of training model

3.3.1 Five-Layer Architecture for Model

Fig. 3 shows that the five-layer architecture included an input layer, a middle layer, a dropout layer,
a fully connected layer, and an output layer. Hyperparameters that needed to be defined were number
of middle layer neurons, maximum iterations, batch size, learning rate, and dropout ratio. According to
the requirements and level definitions of hyperparameters, the number of levels of each hyperparameter
was divided as shown in Table 3. To meet the requirements of the five-layer architecture, the first five
columns in Table 4 were used in the experimental configuration. In Table 4, the first column is the
middle-layer neuron count, the second column is the maximum iteration count, the third column is
batch size, the fourth column is learning rate, and the fifth column is dropout ratio.
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Table 3: Levels of hyperparameters for GRU and LSTM with one-middle-layer

Levels Hyperparameters
No. of neurons in Maximum of epochs Batch size Learning rate Dropout rate
the middle layer

1 5 100 4 0.001 0

2 15 200 8 0.00325 0.1

3 25 300 16 0.0055 0.2

4 35 400 32 0.00775 0.3

5 45 500 64 0.01 0.4

2869

Table 4: The orthogonal experimental design for LSTM and GRU with one-middle-layer for the

prediction sub-system of the dissolved oxygen content model

No. No. of neurons in Maximum of epochs Batch size Learning rate Dropout rate
the middle layer

1 5 100 4 0.001 0

2 5 200 8 0.00325 0.1
3 5 300 16 0.0055 0.2
4 5 400 32 0.00775 0.3
5 5 500 64 0.01 0.4
6 15 200 16 0.00775 0.3
7 15 300 32 0.01 0.4
8 15 400 64 0.001 0

9 15 500 4 0.00325 0.1
10 15 100 8 0.0055 0.2
11 25 300 64 0.00325 0.1
12 25 400 4 0.0055 0.2
13 25 500 8 0.00775 0.3
14 25 100 16 0.01 0.4
15 25 200 32 0.001 0
16 35 400 8 0.01 0.4
17 35 500 16 0.001 0
18 35 100 32 0.00325 0.1
19 35 200 64 0.0055 0.2
20 35 300 4 0.00775 0.3
21 45 500 32 0.0055 0.2
22 45 100 64 0.00775 0.3
23 45 200 4 0.01 0.4
24 45 300 8 0.001 0
25 45 400 16 0.00325 0.1
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3.3.2 Seven-Layer Architecture for Model

Fig. 4 shows the seven-layer architecture of the model. Compared to the five-layer architecture,
the seven-layer model differs in its two middle layers and two dropout layers. In order to discuss this
architecture, this study designed hyperparameters for the number of neurons in the two middle layers,
the maximum number of iterations, the batch size, the learning rate, and the dropout ratio. Table 5
shows the levels according to the hyperparameter requirements and level definition of the seven-layer
architecture. To meet the requirements of the seven-layer architecture, each column in Table 6 was
used in a different experimental configuration. In Table 6, the first column is the first middle layer
neuron count, the second column is the second middle layer neuron count, the third column is the
maximum iteration count, and the fourth column is the batch size. The fifth and the sixth columns are
the learning rate and dropout ratio, respectively.

Table 5: Levels of hyperparameters for GRU and LSTM with one-middle-layer

Levels Hyperparameters
No. of neurons  No. of neurons  Maximum of Batchsize  Learning rate Dropout
in the 1* middle in the 2" middle epochs rate
layer layer

1 10 5 100 4 0.001 0

2 30 15 200 8 0.00325 0.1

3 50 25 300 16 0.0055 0.2

4 70 35 400 32 0.00775 0.3

5 90 45 500 64 0.01 0.4

Table 6: The orthogonal experimental design for LSTM and GRU with two-middle-layer for the
prediction sub-system of the dissolved oxygen content model

No. No. of neurons No. of neurons Maximum of Batchsize  Learning rate Dropout

in the 1¥ middle in the 2" middle epochs rate
layer layer
1 10 5 100 4 0.001 0
2 10 15 200 8 0.00325 0.1
3 10 25 300 16 0.0055 0.2
4 10 35 400 32 0.00775 0.3
5 10 45 500 64 0.01 0.4
6 30 5 200 16 0.00775 0.4
7 30 15 300 32 0.01 0
8 30 25 400 64 0.001 0.1
9 30 35 500 4 0.00325 0.2
10 30 45 100 8 0.0055 0.3
11 50 5 300 64 0.00325 0.3
12 50 15 400 4 0.0055 0.4
13 50 25 500 8 0.00775 0

(Continued)



CSSE, 2023, vol.46, no.3 2871

Table 6: Continued
No. No. of neurons No. of neurons  Maximum of Batchsize  Learning rate Dropout

in the 1* middle in the 2" middle epochs rate

layer layer
14 50 35 100 16 0.01 0.1
15 50 45 200 32 0.001 0.2
16 70 5 400 8 0.01 0.2
17 70 15 500 16 0.001 0.3
18 70 25 100 32 0.00325 0.4
19 70 35 200 64 0.0055 0
20 70 45 300 4 0.00775 0.1
21 90 5 500 32 0.0055 0.1
22 90 15 100 64 0.00775 0.2
23 90 25 200 4 0.01 0.3
24 90 35 300 8 0.001 0.4
25 90 45 400 16 0.00325 0

3.4 Model Performance Metric

The applicability of the model proposed in this study was evaluated by calculating root mean
square error (RMSE), mean absolute percentage error (MAPE), and correlation coefficient (R-value)
[78,79]. In addition, R-squared can calculate by squaring the R-value. When these calculations were
performed, every effort was made to ensure the accuracy of test data so that the estimated values would
be close to the actual values. The MAPE was the primary value used for model evaluation. The model
performance metrics used in this study are described in further detail below:

3.4.1 RMSE
A commonly used model performance metric is RMSE:
1 n
RMSE= |=>"(F — 4) .
J . Z( ) (1)

In Eq. (1), F; is the predicted value, and 4, is the actual value. The difference between F,; and 4,
is calculated and then the difference is squared. Each value is divided by the number of data items
(n), and the square root is used to obtain the RMSE. Generally, RMSE reliably indicates the accuracy
of a regression model. However, deviations can deteriorate the accuracy of RMSE during an actual
problem-solving task. Therefore, RMSE is a relative index. The accuracy of a prediction model is
determined by comparing its RMSE with those of other models.

3.4.2 Correlation Coefficient

Eq. (2) obtains the statistical significance of the correlation coefficient (R-value), which is used to
infer the relationship (correlation) between two variables:

R— Z?=1 (Xi_Y)(Yi_ﬂ )
\/Z?:l (Xl - 7)2\/2:1:1 (Y, B 7)2
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where X, in the numerator is the actual value, X is the average value of X,; ¥, and are the predicted value
and the average value of Y, respectively. After calculating the individual differences, multiply them,
and add up all the multiplied values. The denominator part calculates the square difference separately
and then takes the root sign and multiples it. The result will fall between —1 and 1. The closer to
—1, the greater the degree of negative correlation. On the contrary, the closer to 1, the greater the
degree of positive correlation. The coefficient of determination can be calculated from the correlation
coefficient, and the closer the coefficient of determination is to 1, the greater the model’s explanatory.

3.4.3 MAPE

Eq. (3) is the calculation for MAPE, which indicates the difference between the predicted value
and the corresponding actual value:
F,— 4,

MAPE = li

n
i=1

x 100% (3)

In Eq. (3), F, is the predicted value, and 4, is the corresponding actual value. The error is divided
by the actual value, and the absolute value is obtained. All values are added to the total value, and
the average is multiplied by 100%. The MAPE is generally presented as a percentage and has no
maximum value. However, a MAPE close to 0% indicates an excellent predictive model, i.e., a model
that accurately reflects actual conditions.

4 Results and Discussions

To select the most suitable RNN model, this study explored five-layer architectures and seven-
layer architectures in the LSTM and in the GRU as described in the previous section. Taguchi method
was used to find the most suitable hyperparameter combination.

4.1 GRU and LSTM Models Based on Five-Layer Architecture

As mentioned in Section 3.3.1, the L,s(5°) was used to search for the optimal hyperparameter
combination. To meet the requirements of the five-layer architecture, the first five columns were
selected for the experimental configuration. Each set of experimental configurations was executed
ten times, and the results were presented as the average values for MAPE, RMSR, and R-value.
Table 7 presents the modeling test results obtained when the experimental configurations in Table 4
were applied to GRU and LSTM. Since the system must use actual data to determine whether the
oxygenation equipment and the paddlewheel aerator for DOC must be started, model performance
was mainly compared in terms of MAPE. In Table 7, the 16™ hyperparameter combination obtained
the best results for GRU and LSTM (MAPE values of 6.6859% and 7.6031% for GRU and LSTM,
respectively). Table 7 also shows GRU outperformed LSTM. Therefore, GRU was selected for use
in calculating the optimal hyperparameter combination. Table & shows the optimal hyperparameter
combination inferred from the response table when Taguchi method was used for hyperparameter
optimization. The optimal combination of hyperparameter values was 25, 200, 64, 0.00325, and 0.4 for
middle-layer neuron count, maximum epochs, batch size, learning rate, and dropout rate, respectively.
Thirty experiments were performed to verify the accuracy of the model. From the average, MAPE is
6.4421% (RMSE is 0.08475, R-value is 0.9973), which is better than all results in Table 7. In addition,
the S.D. values of MAPE, RMSE, and R-value were 0.4676%, 0.0052, and 0.00003, respectively. In
these 30 models used to verify, the MAPE, the RMSE, and the R-value of the best one were 5.2802%,
0.0699, and 0.9974, respectively.
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Table 7: Results of the orthogonal experimental design from the layout of Table 4

Model GRU LSTM

No. MAPE (%) RMSE R-value MAPE (%) RMSE R-value
1 77.9953 0.7847 0.4241 88.8756 0.9023 0.2189
2 10.1438 0.1093 0.9951 24.0287 0.2572 0.9631
3 9.1910 0.1121 0.9965 10.6046 0.1380 0.9956
4 13.2216 0.1556 0.9933 13.4433 0.1659 0.9954
5 15.6522 0.1816 0.9925 16.0138 0.1926 0.9947
6 10.2928 0.1129 0.9953 9.6308 0.1223 0.9965
7 8.6796 0.1084 0.9969 10.0067 0.1231 0.9976
8 31.1304 0.3218 0.9489 39.2974 0.3762 0.9322
9 8.0452 0.0991 0.9960 15.2864 0.1516 0.9909
10 10.2879 0.1169 0.9934 13.7456 0.1427 0.9918
11 8.6909 0.1047 0.9955 12.8725 0.1256 0.9921
12 7.2173 0.0897 0.9976 10.7968 0.1227 0.9958
13 8.4837 0.1061 0.9953 10.3590 0.1151 0.9957
14 15.1925 0.2007 0.9783 11.8225 0.1440 0.9910
15 32.9169 0.3506 0.9471 32.2838 0.3201 0.9547
16 6.6859 0.0830 0.9978 7.6031 0.0942 0.9979
17 14.6619 0.1656 0.9884 24.1257 0.2307 0.9712
18 22.3893 0.3033 0.9493 20.2880 0.2193 0.9707
19 25.7981 0.3227 0.9463 20.4490 0.2257 0.9718
20 8.2967 0.0985 0.9962 10.1151 0.1070 0.9956
21 8.1195 0.1040 0.9963 8.5770 0.1024 0.9966
22 13.8484 0.1943 0.9822 11.7750 0.1593 0.9865
23 7.8995 0.0917 0.9964 8.8066 0.0929 0.9970
24 26.0325 0.2936 0.9584 32.4746 0.3410 0.9453
25 25.9538 0.2934 0.9533 26.1820 0.2588 0.9638

Table 8: The respond table from Table 7 for GRU based on MAPE

Levels Hyperparameters
No. of neurons in Maximum of epochs Batch size Learning rate Dropout rate
the middle layer

1 —28.0305 —25.9013 —30.0532 —25.7451 —33.2881

2 —25.3948 —23.8191 —27.2776  —24.3518 —25.9416

3 —25.3034 —26.2129 —24.1816 —26.7678 —24.0829

4 —26.1093 —27.6954 —26.1813  —26.7392 —24.4017

5 —26.7265 —27.9358 —23.8708 —27.9606 —23.8502

(Continued)
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Table 8: Continued

Levels Hyperparameters
No. of neurons in Maximum of epochs Batch size Learning rate Dropout rate
the middle layer
Max —25.3034 —23.8191 —23.8708 —24.3518 —23.8502
Best 25 200 64 0.00325 0.4
level

4.2 GRU and LSTM Models Based on Seven-Layer Architecture

The experimental configuration of the seven-layer architecture is detailed in Section 3.3.2, and
L,5(5%) was used to search for the optimal hyperparameter combination. As in the implementation
of the five-layer architecture, each set of experimental configurations was executed ten times, and
the average values for MAPE, RMSE, and R-value were again calculated. Table 9 is the modeling
test results obtained by executing the L,s(5°) orthogonal table for the seven-layer architecture. Table 9
shows that GRU performed well when the 24" combination of hyperparameters was used (MAPE
5.6794%) while LSTM performed well when the 22" group of hyperparameter combinations was
used (MAPE 13.2690%). Since the above results confirmed that GRU outperformed LSTM, only the
optimal parameter combination for GRU was inferred. Table 10 is the response table inferred from
Table 9. Table 10 shows that the optimal values for first middle-layer neuron count, second middle-
layer neuron count, maximum epochs, batch size, learning rate, and dropout ratio were 70, 35, 100, 16,
0.001, and 0.3, respectively. When the experiment was repeated 30 times based on this set of optimal
values, the average values were MAPE 5.0410%, RMSE 0.0726, and R-value 0.9983; the S.D. values
of MAPE, RMSE, and R-value were 0.4676%, 0.0052, and 0.00003, respectively. The average values
for MAPE, RMSE, and R-value were superior to the best values in Table 9. In these 30 established
models, the MAPE, the RMSE, and the R-value of the best one were 3.7134%, 0.0638, and 0.9984,
respectively.

Table 9: Results of the orthogonal experimental design from the layout of Table 6

Model GRU LSTM

No. MAPE (%) RMSE R-value MAPE (%) RMSE R-value
1 40.4097 0.3627 0.9499 59.2993 0.5496 0.8887
2 11.5564 0.1225 0.9956 36.5708 0.3301 0.9555
3 13.0482 0.1368 0.9937 43.6371 0.3742 0.9431
4 15.3993 0.1696 0.9922 58.3370 0.4999 0.9047
5 19.8631 0.2026 0.9859 53.4754 0.4568 0.9145
6 13.9232 0.1603 0.9953 31.8298 0.3263 0.9576
7 30.5200 0.3311 0.9490 37.4018 0.3490 0.9399
8 8.3168 0.0901 0.9975 51.5577 0.4684 0.9233
9 10.7768 0.1070 0.9956 44.1587 0.3672 0.9328
10 8.3070 0.0955 0.9979 15.8512 0.1611 0.9895
11 12.7783 0.1440 0.9961 34.8399 0.3158 0.9543

(Continued)
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Table 9: Continued

Model GRU LSTM

No. MAPE (%) RMSE R-value MAPE (%) RMSE R-value
12 12.4253 0.1325 0.9957 28.7482 0.2880 0.9671
13 36.6258 0.4209 0.9206 38.5418 0.3924 0.9247
14 8.5666 0.1006 0.9969 14.7636 0.1544 0.9895
15 6.7113 0.0790 0.9983 30.6182 0.2863 0.9738
16 17.4579 0.2175 0.9853 28.8500 0.3494 0.9540
17 7.3904 0.0791 0.9984 40.2293 0.3399 0.9500
18 7.1708 0.0873 0.9986 21.4456 0.1921 0.9863
19 17.7630 0.2175 0.9796 21.9700 0.2114 0.9795
20 12.3145 0.1768 0.9830 19.8559 0.2351 0.9783
21 19.8751 0.2450 0.9737 28.9041 0.3215 0.9555
22 8.8439 0.0967 0.9979 13.2690 0.1440 0.9916
23 11.6033 0.1603 0.9876 17.2104 0.2329 0.9820
24 5.6794 0.0694 0.9988 31.7441 0.2762 0.9662
25 30.1905 0.3344 0.9540 29.9217 0.2958 0.9621

Table 10: The respond table from Table 9 for GRU based on MAPE

Levels Hyperparameters

No. of neurons  No. of neurons  Maximum of Batchsize  Learning rate Dropout

in the 1* middle in the 2" middle epochs rate

layer layer
1 —25.5374 —25.6756 —21.4971 —23.7622  —20.1379 —29.7278
2 —22.2425 —22.0488 —21.5906 —22.5008 —22.4303 —21.5416
3 —22.1761 —22.5449 —22.5248 —22.3995 —23.0053 —20.8728
4 —21.6223 —20.8494 —23.8964 —22.7731 —23.9853 —20.8484
5 —22.3683 —22.8278 —24.4377 —22.5110  —24.3878 —20.9559
Max —21.6223 —20.8494 —21.4971 —22.3995 —20.1379 —20.8484
Best 70 35 100 16 0.001 0.3
level

4.3 Comparison and Discussion

Since the seven-layer architecture outperformed the five-layer architecture in terms of MAPE,
RMSE, and R-value, the optimal hyperparameter combination calculated by the seven-layer architec-
ture was used to determine the best model. In the best model, which was selected from 30 established
GRU models based on seven-layer architecture, the MAPE, the RMSE, and the R-value were 3.7134%;
0.0638; and 0.9984, respectively. Because this paper focuses on the predicted value of DOC, the MAPE
is the primary evaluation indicator. If the MAPE is less than 10%, that means the model is excellent
[80]. The results show that the proposed method’s best model achieves this requirement. In addition,
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the seven-layer architecture requires only 25 experiments for optimizing the hyperparameters using
Taguchi’s method. The number of experiments required is the same as that of the five-layer architecture.

Furthermore, the models obtained in this study have the best values in terms of RMSE and R-
value compared with others. In RMSE, the smaller, the better. The R-value is the opposite of RMSE.
In terms of the R-value, the larger, the better. Therefore, this model is an excellent model for DOC
prediction.

5 Conclusions

This study was to construct a complete set of intelligent systems for monitoring and predicting
fishpond water quality. This system integrated an IoT system and Al method to obtain an AloT
system for DOC predictions and activate the oxygenation equipment and the paddlewheel aerator
when DOC in fish pond water is insufficient. The experimental results indicated that the prediction
performance of the seven-layer GRU was superior to others. In the model construction process, the
Taguchi method was used to rapidly and systematically obtain a brilliant model. The model is excellent
from this evaluation result in terms of MAPE, RMSE, and R-value. This system cooperated with the
Taiwan ITRI and a local Taiwan aquaculture company to develop. The participating aquaculture
company confirmed the effectiveness of the developed system for controlling the DOC of fishpond
water. As a practical matter, since the system can rapidly (within 20 min) determine DOC, it provides
operators with sufficient time to re-establish the appropriate DOC of fishpond water by activating the
oxygenation equipment and the paddlewheel aerator.

Since the current work only considers the DOC of the previous state and up to seven layers of
the model. If the hardware and training time of the model allows, we can consider more DOCs of the
previous states and higher levels of the neural network.

Acknowledgement: This work was supported in part by the Ministry of Science and Technology,
Taiwan, under Grant Numbers MOST 110-2221-E-153-010 and in part by the National Pingtung
University under Artificial Intelligence Research Project.

Funding Statement: Publication costs are funded by the Ministry of Science and Technology, Taiwan,
under Grant Numbers MOST 110-2221-E-153-010.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1] S. N. Chand, Dictionary of Economics. New Delhi, India: Atlantic Publishers & Dist, 2006.

[2] P H. Collin, Dictionary of Economics: Over 3000 Terms Clearly Defined. London, UK: Bloomsbury
Publishing, 2015.

[3] FAO, The State of World Fisheries and Aquaculture 2020. Rome, Italy: FAO, 2020.

[4] Fisheries Agency, Council of Agriculture and Executive Yuan of Taiwan, Fisheries Statistical Yearbook

Taiwan, Kinmen and Matau Area 2020. Taipei, Taiwan: Fisheries Agency, Council of Agriculture, Executive
Yuan, 2021.

[5] P G. Arepalli, M. Akula, R. S. Kalli, A. Kolli, V. P. Popuri et al., “Water quality prediction for salmon fish
using gated recurrent unit (GRU) model,” in 2022 Second Int. Conf. on Computer Science, Engineering and
Applications (ICCSEA ), Gunupur, Odisha, India, pp. 1-5, 2022.



CSSE, 2023, vol.46, no.3 2877

(6]

(7]

(8]

]
(10]

(1]

[12]
[13]
[14]
[15]
[16]
(17]

(18]
[19]

(20]
[21]
(22]
[23]

[24]

[25]

[26]

D. Han, Z. Hu, D. Li and R. Tang, “Nitrogen removal of water and sediment in grass carp aquaculture
ponds by mixed nitrifying and denitrifying bacteria and its effects on bacterial community,” Water, vol. 14,
no. 12, Art no. 1855, 2022.

B. Li, R. Jia, Y. Hou, C. Zhang, J. Zhu et al., “The sustainable treatment effect of constructed wetland
for the aquaculture effluents from blunt snout bream (megalobrama amblycephala) farm,” Water, vol. 13,
no. 23, Art no. 3418, 2021.

Board of Science and Technology, “Taiwan productivity 4.0 initiative,” Taiwan Economic Forum, vol. 13,
no. 3, pp. 47-62, 2015.

T. Ferry, “The 542 industrial innovation plan,” Taiwan Business Topics, vol. 47, no. 5, pp. 15-26, 2017.
D. Gopal, X. -Z. Gao and J. A. Alzubi, “IoT and big data impact on various engineering applications,”
Recent Patents on Engineering, vol. 15, no. 2, pp. 119-120, 2021.

Z. Gao, D. Wang and H. Zhou, “Intelligent circulation system modeling using bilateral matching theory
under internet of things technology,” The Journal of Supercomputing, vol. 77, no. 11, pp. 13514-13531,
2021.

S. Paiva, M. A. Ahad, G. Tripathi, N. Feroz and G. Casalino, “Enabling technologies for urban smart
mobility: Recent trends, opportunities and challenges,” Sensors, vol. 21, no. 6, Art no. 2143, 2021.

Q. Yuan, Z. Hua and B. Shen, “An automated system of emissions permit trading for transportation firms,”
Transportation Research Part E: Logistics and Transportation Review, vol. 152, Art no. 102385, 2021.

A. Kusiak, “Smart manufacturing,” International Journal of Production Research, vol. 56, no. 1-2, pp. 508—
517, 2018.

F. Tao, Q. Qi, A. Liu and A. Kusiak, “Data-driven smart manufacturing,” Journal of Manufacturing
Systems, vol. 48, no. 25, pp. 157-169, 2018.

H. S. Sim, “A study on the development and effect of smart manufacturing system in PCB line,” Journal of
Information Processing Systems, vol. 15, no. 1, pp. 181-188, 2019.

G. Jadoon, I. Ud Din, A. Almogren and H. Almajed, “Smart and agile manufacturing framework, a case
study for automotive industry,” Energies, vol. 13, no. 21, Art no. 5766, 2020.

M. Cali, “Smart manufacturing technology,” Applied Sciences, vol. 11, no. 17, Art no. 8202, 2021.

S. Lee, S. H. Rho, S. Lee, J. Lee, S. W. Lee et al., “Implementation of an automated manufacturing process
for smart clothing: The case study of a smart sports bra,” Processes, vol. 9, no. 2, Art no. 289, 2021.

L. Wang, Z. Lou, K. Jiang and G. Shen, “Bio-multifunctional smart wearable sensors for medical devices,”
Advanced Intelligent Systems, vol. 1, no. 5, Art no. 1900040, 2019.

M. Ye, H. Zhang and L. Li, “Research on data mining application of orthopedic rehabilitation information
for smart medical,” IEEE Access, vol. 7, pp. 177137-177147, 2019.

Q. Zhang, C. Bai, Z. Liu, L. T. Yang, H. Yu et al, “A gpu-based residual network for medical image
classification in smart medicine,” Information Sciences, vol. 536, no. 5, pp. 91-100, 2020.

F. Alshehri and G. Muhammad, “A comprehensive survey of the internet of things (IoT) and Al-based
smart healthcare,” IEEE Access, vol. 9, pp. 3660-3678, 2021.

S. C. Sethuraman, P. Kompally, S. P. Mohanty and U. Choppali, “Mywear: A novel smart garment for
automatic continuous vital monitoring,” IEEE Transactions on Consumer Electronics, vol. 67, no. 3, pp.
214-222,2021.

C. Zhou, J. Hu and N. Chen, “Remote care assistance in emergency department based on smart medical,”
Journal of Healthcare Engineering, vol. 2021, Art no. 9971960, 2021.

M. Manoj, V. Dhilip Kumar, M. Arif, E. -R. Bulai, P. Bulai e al., “State of the art techniques for water

quality monitoring systems for fish ponds using [oT and underwater sensors: A review,” Sensors, vol. 22,
no. 6, pp. 2088, 2022.



2878 CSSE, 2023, vol.46, no.3

[27] F. Darmalim, A. A. Hidayat, T. W. Cenggoro, K. Purwandari, S. Darmalim et al, “An integrated
system of mobile application and IoT solution for pond monitoring,” IOP Conference Series: Earth and
Environmental Science, vol. 794, no. 1, Art no. 012106, 2021.

[28] R. Ismail, K. Shafinah and K. Latif, “A proposed model of fishpond water quality measurement and
monitoring system based on internet of things (IoT),” IOP Conference Series: Earth and Environmental
Science, vol. 494, no. 1, pp. 012016, 2020.

[29] Y. Li, Z. Xie, C. Mo, Y. Chen and J. Wang, “A low-power water quality monitoring system and prediction
model,” in 2022 IEEE 24th Int. Workshop on Multimedia Signal Processing (MMSP ), Shanghai, China,
pp. 1-11, 2022.

[30] K.-L. Tsai, L. -W. Chen, L. -J. Yang, H. -J. Shiu and H. -W. Chen, “IoT based smart aquaculture system
with automatic aerating and water quality monitoring,” Journal of Internet Technology, vol. 23, no. 1, pp.
177-184, 2022.

[31] S. K. Punia, M. Kumar, T. Stephan, G. G. Deverajan and R. Patan, “Performance analysis of machine
learning algorithms for big data classification: Ml and ai-based algorithms for big data analysis,” Interna-
tional Journal of E-Health and Medical Communications (IJEHMC), vol. 12, no. 4, pp. 60-75, 2021.

[32] A. Ghosh, D. Chakraborty and A. Law, “Artificial intelligence in internet of things,” CAAI Transactions
on Intelligence Technology, vol. 3, no. 4, pp. 208-218, 2018.

[33] S.Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Fourth ed., Upper Saddle River, New
Jersey, US: Pearson FT Press, 2020.

[34] G. Codeluppi, A. Cilfone, L. Davoli and G. Ferrari, “Lorafarm: A lorawan-based smart farming modular
10T architecture,” Sensors, vol. 20, no. 7, Art no. 2028, 2020.

[35] J. Sanghavi, R. Damdoo and K. Kalyani, “Agribot: IoT based farmbot for smart farming,” Bioscience
Biotechnology Research Communications, vol. 13, no. 14, pp. 86-89, 2020.

[36] G. Adamides, N. Kalatzis, A. Stylianou, N. Marianos, F. Chatzipapadopoulos et al, “Smart farming
techniques for climate change adaptation in cyprus,” Atmosphere, vol. 11, no. 6, Art no. 557, 2020.

[37] W.-L. Hsu, W. -K. Wang, W. -H. Fan, Y. -C. Shiau, M. -L. Yang et al., “Application of internet of things
in smart farm watering system,” Sensors and Materials, vol. 33, no. 1, pp. 269-283, 2021.

[38] T. Kassem, I. Shahrour, J. El Khattabi and A. Raslan, “Smart and sustainable aquaculture farms,”
Sustainability, vol. 13, no. 19, Art no. 10685, 2021.

[39] L. A. Quiroz and G. H. Alférez, “Image recognition of legacy blueberries in a chilean smart farm through
deep learning,” Computers and Electronics in Agriculture, vol. 168, Art no. 105044, 2020.

[40] N. G. Rezk, E. E. -D. Hemdan, A. -F. Attia, A. El-Sayed and M. A. El-Rashidy, “An efficient IoT based
smart farming system using machine learning algorithms,” Multimedia Tools and Applications, vol. 80, no.
1, pp. 773-797, 2021.

[41] J. P. Rodriguez, A. I. Montoya-Munoz, C. Rodriguez-Pabon, J. Hoyos and J. C. Corrales, “loT-agro: A
smart farming system to colombian coffee farms,” Computers and Electronics in Agriculture, vol. 190, Art
no. 106442, 2021.

[42] P. -H. Kuo, R. -J. Liou, P. Nilaphruek, K. Kanchanasatian, T. -H. Chen et al, “Multi-sensor-based
environmental forecasting system for smart durian farms in tropical regions,” Sensors and Materials, vol.
33, no. 10, pp. 3547-3561, 2021.

[43] G. I. Taguchi, S. Chowdhury and S. Taguchi, Robust Engineering: Learn How to Boost Quality While
Reducing Costs & Time to Market. New York, US: McGraw Hill, 2000.

[44] R. C. Gustilo, E. P. Dadios, E. Calilung and L. A. G. Lim, “Neuro-fuzzy control techniques for optimal
water quality index in a small scale tiger prawn aquaculture setup,” Journal of Advanced Computational
Intelligence and Intelligent Informatics, vol. 18, no. 5, pp. 805-811, 2014.



CSSE, 2023, vol.46, no.3 2879

[43]

[46]

[47]

(48]
[49]
[50]
[51]
[52]

(53]

[54]
[53]
[56]
[57]

[58]

[59]

[60]
[61]

(62]

(63]

[64]

P. Y. Yang, J. T. Tsai and J. H. Chou, “Prediction analysis of oxygen content in the water for the fish farm
in southern taiwan,” in 2017 Int. Conf. on System Science and Engineering (ICSSE), Ho Chi Minh City,
Vietnam, pp. 629-631, 2017.

P Y. Yang, J. T. Tsai, J. H. Chou, W. H. Ho and Y. Y. Lai, “Prediction of water quality evaluation for fish
ponds of aquaculture,” in 2017 56th Annual Conf. of the Society of Instrument and Control Engineers of
Japan (SICE), Kanazawa, Japan, Kanazawa University, pp. 545-546, 2017.

P. Y. Yang, J. H. Chou, J. T. Tsai, Y. Ma and W. H. Ho, “Prediction for dissolved oxygen in water of fish
farm by using general regression neural network,” in 2018 IEEE Int. Conf. on Information and Automation
(ICIA), Wuyi Mountain, Fujian, China, pp. 1132-1135, 2018.

D. Chi, Q. Huang and L. Liu, “Dissolved oxygen concentration prediction model based on WT-MIC-
GRU—A case study in dish-shaped lakes of poyang lake,” Entropy, vol. 24, no. 4, Art no. 457, 2022.

A. Robinson and F. Fallside, The Utility Driven Dynamic Error Propagation Network. Cambridge, UK:
University of Cambridge Department of Engineering Cambridge, 1987.

Y. Bengio, P. Simard and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult,”
IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, 1994,

K. P. Wai, M. Y. Chia, C. H. Koo, Y. F. Huang and W. C. Chong, “Applications of deep learning in water
quality management: A state-of-the-art review,” Journal of Hydrology, vol. 613, Art no. 128332, 2022.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735—
1780, 1997.

J. Martens and I. Sutskever, “Learning recurrent neural networks with hessian-free optimization,” in Proc.
of the 28th Int. Conf. on Machine Learning (ICML), L. Getoor, T. Scheffer (Eds.), Bellevue Washington,
USA, 1033-1040, 2011.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares et al., “Learning phrase representa-
tions using RNN encoder-decoder for statistical machine translation,” arXiv preprint, 2014.

X. Hong, R. Lin, C. Yang, N. Zeng, C. Cai et al, “Predicting alzheimer’s disease using LSTM,” IEEE
Access, vol. 7, pp. 80893-80901, 2019.

Y. Chen, “Voltages prediction algorithm based on LSTM recurrent neural network,” Optik, vol. 220, Art
no. 164869, 2020.

S. Kumar, A. Damaraju, A. Kumar, S. Kumari and C. -M. Chen, “LSTM network for transportation mode
detection,” Journal of Internet Technology, vol. 22, no. 4, pp. 891-902, 2021.

Y. Zhang, C. Li, Y. Jiang, L. Sun, R. Zhao et al., “Accurate prediction of water quality in urban drainage
network with integrated EMD-LSTM model,” Journal of Cleaner Production, vol. 354, Art no. 131724,
2022.

L. Zhang, Z. Jiang, S. He, J. Duan, P. Wang et al., “Study on water quality prediction of urban reservoir by
coupled ceemdan decomposition and LSTM neural network model,” Water Resources Management, vol.
36, no. 10, pp. 3715-3735, 2022.

J. Wu and Z. Wang, “A hybrid model for water quality prediction based on an artificial neural network,
wavelet transform, and long short-term memory,” Water, vol. 14, no. 4, Art no. 610, 2022.

S. Hong, J. H. Kim, D. S. Choi and K. Baek, “Development of surface weather forecast model by using
LSTM machine learning method,” Atmosphere, vol. 31, no. 1, pp. 73-83, 2021.

T. Song, J. Jiang, W. Liand D. Xu, “A deep learning method with merged LSTM neural networks for SSHA
prediction,” IEEFE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp.
2853-2860, 2020.

J. Yuan and Y. Tian, “An intelligent fault diagnosis method using GRU neural network towards sequential
data in dynamic processes,” Processes, vol. 7, no. 3, pp. 152, 2019.

X. Li, X. Ma, F. Xiao, F. Wang and S. Zhang, “Application of gated recurrent unit (GRU) neural network
for smart batch production prediction,” Energies, vol. 13, no. 22, Art no. 6121, 2020.



[74]

[75]

[76]

[77)

CSSE, 2023, vol.46, no.3

Z. Leng, J. Zhang, Y. Ma and J. Zhang, “Underwater topography inversion in liaodong shoal based on
GRU deep learning model,” Remote Sensing, vol. 12, no. 24, Art no. 4068, 2020.

S. Zhang, M. Abdel-Aty, Y. Wu and O. Zheng, “Modeling pedestrians’ near-accident events at signalized
intersections using gated recurrent unit (GRU),” Accident Analysis & Prevention, vol. 148, Art no. 105844,
2020.

L. Xu and J. Hu, “A method of defect depth recognition in active infrared thermography based on GRU
networks,” Applied Sciences, vol. 11, no. 14, Art no. 6387, 2021.

Y. Jiang, C. L1, Y. Zhang, R. Zhao, K. Yan et al., “Data-driven method based on deep learning algorithm
for detecting fat, oil, and grease (FOG) of sewer networks in urban commercial areas,” Water Research,
vol. 207, Art no. 117797, 2021.

A. Ali, A. Fathalla, A. Salah, M. Bekhit and E. Eldesouky, “Marine data prediction: An evaluation
of machine learning, deep learning, and statistical predictive models,” Computational Intelligence and
Neuroscience, vol. 2021, Art no. 8551167, 2021.

I. Sutskever, J. Martens, G. Dahl and G. Hinton, “On the importance of initialization and momentum in
deep learning,” in Proc. of the 30th Int. Conf. on Machine Learning, Atlanta, Georgia, USA, Proceedings
of Machine Learning Research, vol. 28, no. 3, pp. 1139-1147, 2013.

F. 1. Chou, Y. K. Tsai, Y. M. Chen, J. T. Tsai and C. C. Kuo, “Optimizing parameters of multi-layer
convolutional neural network by modeling and optimization method,” IEEE Access, vol. 7, pp. 68316—
68330, 2019.

W. -H. Ho, T. -H. Huang, P. -Y. Yang, J. -H. Chou, H. -S. Huang et al., “Artificial intelligence classification
model for macular degeneration images: A robust optimization framework for residual neural networks,”
BMC Bioinformatics, vol. 22, no. 148, pp. 21, 2021.

W.-H. Ho, T. -H. Huang, P. -Y. Yang, J. -H. Chou, J. -Y. Qu et al., “Robust optimization of convolutional
neural networks with a uniform experiment design method: A case of phonocardiogram testing in patients
with heart diseases,” BM C Bioinformatics, vol. 22, no. 5, pp. 345, 2021.

H. Yu, L. Yang, D. Li and Y. Chen, “A hybrid intelligent soft computing method for ammonia nitrogen
prediction in aquaculture,” Information Processing in Agriculture, vol. 8, no. 1, pp. 64-74, 2021.

S. Liu, L. Xu, Y. Jiang, D. Li, Y. Chen et al., “A hybrid wa-cpso-Issvr model for dissolved oxygen content
prediction in crab culture,” Engineering Applications of Artificial Intelligence, vol. 29, no. 4, pp. 114-124,
2014.

R. C. Gustilo and E. Dadios, “Optimal control of prawn aquaculture water quality index using artificial
neural networks,” in 2011 IEEFE 5th Int. Conf. on Cybernetics and Intelligent Systems (CIS), Qingdao,
China, pp. 266-271, 2011.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-
1958, 2014.

R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,” International Journal
of Forecasting, vol. 22, no. 4, pp. 679-688, 2006.

P. Bobko, Correlation and Regression: Applications for Industrial Organizational Psychology and Manage-
ment, Second ed., Thousand Oaks, CA, US: Sage Publications, 2001.

R. J. Chen, P. Bloomfield and J. S. Fu, “An evaluation of alternative forecasting methods to recreation
visitation,” Journal of Leisure Research, vol. 35, no. 4, pp. 441-454, 2003.



	Artificial Intelligence in Internet of Things System for Predicting Water Quality in Aquaculture Fishponds
	1 Introduction
	2 Related works
	3 Purposed Methodology
	4 Results and Discussions
	5 Conclusions
	References


