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Abstract: In the Internet of Things (IoT) based system, the multi-level client’s
requirements can be fulfilled by incorporating communication technologies
with distributed homogeneous networks called ubiquitous computing systems
(UCS). The UCS necessitates heterogeneity, management level, and data
transmission for distributed users. Simultaneously, security remains a major
issue in the IoT-driven UCS. Besides, energy-limited IoT devices need an
effective clustering strategy for optimal energy utilization. The recent develop-
ments of explainable artificial intelligence (XAI) concepts can be employed to
effectively design intrusion detection systems (IDS) for accomplishing security
in UCS. In this view, this study designs a novel Blockchain with Explainable
Artificial Intelligence Driven Intrusion Detection for IoT Driven Ubiqui-
tous Computing System (BXAI-IDCUCS) model. The major intention of
the BXAI-IDCUCS model is to accomplish energy efficacy and security in
the IoT environment. The BXAI-IDCUCS model initially clusters the IoT
nodes using an energy-aware duck swarm optimization (EADSO) algorithm
to accomplish this. Besides, deep neural network (DNN) is employed for
detecting and classifying intrusions in the IoT network. Lastly, blockchain
technology is exploited for secure inter-cluster data transmission processes.
To ensure the productive performance of the BXAI-IDCUCS model, a com-
prehensive experimentation study is applied, and the outcomes are assessed
under different aspects. The comparison study emphasized the superiority of
the BXAI-IDCUCS model over the current state-of-the-art approaches with
a packet delivery ratio of 99.29%, a packet loss rate of 0.71%, a throughput of
92.95 Mbps, energy consumption of 0.0891 mJ, a lifetime of 3529 rounds, and
accuracy of 99.38%.
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1 Introduction

Ubiquitous computing service aims to develop the variety of sensors and networks available to
provide timeless services and user location. A major challenge of ubiquitous computing can be context
awareness that it can provide numerous services to end users based on potential contextual data.
The physical world is converted into a ubiquitous computing environment because of the application
and deployment of ubiquitous systems [1]. IoT system service can be developed by incorporating
the physical world with computational abilities and decision-making through wireless devices and
smart sensing units. Communication networks, Multimedia, business, healthcare, information access,
and other applications for commercial and residential customers benefit from this environment
[2]. Communication technologies, third-party services, applications, local and distributed resources
incorporated with a pervasive computation environment, and querying requests are enhanced by
satisfying the users’ requirements and providing instant responses. Fig. 1 showcases the general
infrastructure of XAI.

Figure 1: General structure of XAI

Cloud and other network services are fetched by a layered technique in this environment to
guarantee the IoT-enabled wearable sensor has sufficient access to resources at the user network edge
[3,4]. A clustering method can partition sensors into distinct groups or clusters. Different security
strategies and technologies have been developed to protect network security. Intrusion detection is
a traditional network security technique [5–7]. An earlier intrusion detection system (IDS) mainly
utilizes misuse detection. Misuse detection records the attack through a signature database and judges
an intrusion with the data or event matching the signature. But misuse detection is non-practical since
it could identify unrecorded attacks. The anomaly detection technique is currently commonly utilized
[8] with machine learning (ML) advancement.

Explainable artificial intelligence (XAI) is a group of methods and processes that enables users
to trust and understand the output and results generated by ML algorithms [9]. Explainable AI
describes an AI technique, potential biases, and expected impact [10]. It can describe model outcomes,
accuracy, fairness, and transparency in AI-assisted decision-making. Recently, the development of the
blockchain (BC) technique has mentioned a path worth attempting to resolve the distributed trust issue
in the IoT platform [11]. BC is a peer-to-peer distributed system with decentralization, non-tempera,
system autonomy, and transparency [12], which could successfully improve network collaboration and
device security.

This study designs a novel Blockchain with Explainable Artificial Intelligence Driven Intrusion
Detection for IoT Driven Ubiquitous Computing System (BXAI-IDCUCS) model. The proposed
BXAI-IDCUCS model initially clusters the IoT nodes using the energy-aware duck swarm opti-
mization (EADSO) algorithm. Besides, deep neural network (DNN) is employed for detecting and
classifying intrusions in the IoT network. Blockchain (BC) technology is exploited for secure inter-
cluster data transmission processes. A comprehensive experimentation study is performed to ensure
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the productive performance of the BXAI-IDCUCS model, and the results are assessed under several
aspects.

2 Related Works

Liu et al. [13] presented a cooperative intrusion detection (ID) system that offloads the trained
models for distributing edge devices (for instance, related to vehicle and roadside units (RSUs). The
distributing federated-based model reduces the utilization of resources of the centralized servers;
however, privacy and security are assured. BC was utilized to store and share the trained methods
for ensuring the security of the aggregation method. The data-driven trust process dependent upon
blockchain was projected as a decentralized and energy-effectual solution to detect internal attacks
from IoT-driven SN [14]. During the grey and black hole attack setting, the message overhead was
enhanced utilizing the presented technique related to the present solution. In both grey and black hole
attacks, the time obtained to detect malicious nodes also decreased significantly.

In [15], a block-chain-based authentication method was presented to secure routing from the
WSNs. The malicious and unauthenticated nodes affected the routing procedure, and the accurate
detection of routing direction developed a challenging problem. Thus, during this method, the
registration of nodes was completed by Certificate Authority Node (CAN) to prevent the contribution
of malicious nodes from the networks. The authors in [16] examined the possible threat in SDN-
empowered WSN and detailed black hole attacks. During the case, it can also be presented a new
lightweight security method which exploits the BC method that capable of protecting the flow tables
from all the nodes, which is an essential target of a feasible routing attack. An unchangeable fingerprint
named the signature token to the flow entry can be created with a secret key going to all the nodes.

Mahapatra et al. [17] presented a Quantum Atom Search Optimization with BC-assisted Data
Transmission (QASO-BDT) method to a relay node election with security-supported data transmis-
sions. This method contains 3 stages, namely transmission, registration, and clustering. Primarily,
under the node registration stage, all sensor nodes (SNs) obtain registration from the blockchain
network with Capillary Gateway (CG). Afterwards, a CH was chosen under the clustering stage, and
an improved multi-view clustering method was utilized for clustering the node into distinct clusters.
Wang et al. [18] utilized SHapley Additive exPlanations (SHAP) and integrated local and global details
to improve the interpretation of IDS. The local explanation explains why the method creates particular
decisions based on the particular input. The authors in [19] progressed a new secure unequal clustering
protocol with an ID approach for achieving QoS parameters such as security, energy, and lifetime.

3 The Proposed Model

The BXAI-IDCUCS model has been developed in this study to accomplish maximum energy
efficacy and security in the IoT environment. The BXAI-IDCUCS model aims to find the existence of
intrusions in the clustered IoT environment and perform blockchain-driven secure data transmission.
The BXAI-IDCUCS model follows a three-stage process: clustering, intrusion detection, and BC-
based data transmission. Fig. 2 illustrates the workflow of the BXAI-IDCUCS algorithm.
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Figure 2: Workflow of BXAI-IDCUCS technique

3.1 EADSO-based Clustering Technique
The EADSO algorithm with a fitness function involving three variables is employed for the

clustering process. The EADSO algorithm is derived from the behaviour of ducks. Three major
processes of the DSO algorithm are given in the following: position of duck swarm afterwards queuing
(Population initialization), search for a food source (Exploration stage), and foraging in the group
(Exploitation stage). Note that two rules need to be obeyed in searching for food for ducks [20].

• While searching for food, ducks with stronger searching capacity are situated near the centre
of the food source, which attracts other individuals to get close to them; the upgraded position
is affected by neighbouring individuals.

• During foraging, all the individuals approach the food; the following location is affected by
nearby individuals and the leader duck or food position.

The randomly generated initial location in the D-dimension searching space can be expressed by:

Xi = Lb + (Ub − Lb) · 0 (1)

Whereas Xi signifies the spatial location of i-th duck (i = 1, 2, 3, N), N denotes the amount of
population size. Lb and Ub represent the upper and lower limits, and 0 denotes an arbitrary value
within (0, 1). Afterwards, the duck’s queuing behaviour arrived at a position with more food. All the
individuals disperse gradually and start to search for food; this procedure is described in the following:

X t+1
i =

{
X t

i + μ · X t
i · sign(r − 0.5), P > rand

X t
i + CF1 · (X t

leader − X t
i ) + CF2 · (X t

j − X t
i ), P < rand

(2)

In which F1 and CF2 denote cooperation and competition coefficients among ducks in the
searching process, correspondingly, sign(r − 0.5) denotes an effect on the food searching process. It is
fixed to −1 or 1. μ signifies the control variable of global searching, P denotes the search conversion
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possibility of the exploration stage, and C X t
leader characterizes the optimal duck location of the current

value in t-the iteration. xt
j signifies the agent around X t

i looking for food by a group of ducks in the
t-th iteration. Furthermore, variable μ is evaluated by:

μ = K ·
(

1 − t
tmax

)
(3)

Now, K is evaluated as follows:

K = sin (2 · rand) + 1 (4)

After the food searching process, sufficient food satisfies the foraging of the duck. This procedure
is strongly associated with the fitness of duck location, and it is described in the following:

X t+1
i =

{
X t

i + μ · (X t
leader − X t

i ), f (X t
i ) > f (X t+1

i )

X t
i + K1 · (X t

leader − X t
i ) + KF2 · (X t

k − X t
j ), else

(5)

In which KF1 and KF2 parameters signify the cooperation and competition coefficients among
ducks in the exploitation stage, correspondingly μ means the control variables of global searching in
the exploitation stage, X t

k and X t
j represent the agent around X t

i in foraging of the duck group in the
t-th iteration, X t

leader characterizes the optimal duck location of the existing value in the t-th iteration.
Whereas k �= j.

Note that the parameter values CF1, CF2, KF1 and KF2 are within (0, 2), and the following equation
can compute it:

CFi or KFi ← 1
FP

· rand(0, 1)(i = 1, 2) (6)

where FP denotes constant, it is fixed to 0.618; the rand indicates an arbitrary value within (0, 1).

In the exploitation stage, the procedure of duck upgrades its location pertaining to Xi, Xj·, Xk

and Xeader in a 2D searching space. Path 1 represents the selection of ducks with cooperation. Path 2
characterizes the competition between Xi and Xk and Xj in the t-th iteration. Path 3 denotes the selection
of the duck that fails to compete. The EADSO algorithm includes fitness variables such as residual
energy (RE), inter-cluster distance, and intra-cluster distance.

Residual Energy

CH performs several activities: data communication, gathering, sensing, aggregation, and so on.
Consequently, CH intakes the highest energy compared to others. Then, it is essential to describe an
FF that shares the loads between every sensor in the network. The following equations show the fitness
parameter utilized for effective network usage.

Re = e (ni)

Aνge = 1
n

n∑
i=0

e (ni)

f1 = CHopt ∗ Re

Avge

= CHopt ∗ e (ni)

1
n

∑n

i=0
e (ni)

∀CHopt = 5% of n, e (ni)

= 0.5 J or1.25 J or 1.75 J (7)
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Re, Aνge, & ni represent the network’s residual node energy, normal energy, and the total number
of sensors in the network. CHopt specifies the optimum percentage of CH. A value of f1 demonstrates
the ratio of Aνgeand Re.

Intra-Cluster Distance: SNs transfer the information to CH. When the CHs are farther from CM,
then the sensor depletes energy. In case when CHs are nearer to the member sensor, it employs the
lowest energy.

f2 = 1
nsτ

nsr∑
i=0

disT(CH, i)∀dist(CH, i) = 1 to 35 m, nsr = 1 to 100 (8)

Here, nsr & dist(CH, i) indicates the number of SNs and Euclidean distance from CH and node
in the sensing sequence. Therefore, the values of f3 should be lesser while reducing the intracluster
transmission energy.

Inter-Cluster Distance: While performing CH selection, the distance between BS and CH is
essential. When the chosen CH is farther from the sink, it employs energy quickly and is assessed
in the equation,

f3 = 1
CH

CH∑
i=0

dist(BS, CHi)∀dist(BS, CHi) = 1 to 70m, CH = 1 to 15 (9)

where dist(BS, CHi) represents the Euclidean distance between BS and CHi. The value of f3 is
minimized, meaning the selected CH is not far from the BS.

When f1, f2, and f3 are calculated, the cost function named FF can be defined,

F = Maximize Fitness = α ∗ f1 + β ∗ 1
f2

+ γ ∗ 1
f3

(10)

Let α, β, γ be the weight coefficients of f1, f2, f3, and FF variables. The weight coefficient ranges
from zero to one.

3.2 Intrusion Detection Process
In this phase, the DNN model is employed to detect and classify intrusions in the IoT system. The

DNN method comprised hidden, input, and resultant layers. In the training phase, DNN increases the
node weight in the hidden layer [21]. Due to the gradual increase in training iteration, the NN often
fits the labelled training information solution boundary. DNN, classifier accuracy, and 2 hidden layers
were introduced to increase the training method’s speed. In the hidden layer, entire nodes are described
in the following.

n =
√

a + b + c (11)

The number of input layers is characterized by a, and the amount of resultant layers is represented
as b, the amount of hidden layers is symbolized as n, and a constant value from [1, 10] is indicated
as c.

S = 1
1 + e−x

(12)

The input dataset of the system is called x, which can be assisted by a mapping function Mf .

Mf = sigm (ωix + βi) (13)
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Ω and β denote the weight matrix and a bias between resultant and hidden layers. As well it is
developed by labelled data samples (x, l) for the hidden layer, and a loss structure can be defined by,

S (Ws, bs; x, l) = 1
2m

m∑
j=1

∥∥hj (Ws, bs; x) − lj

∥∥2

2
(14)

Now Ws and bs determine a subset of bias, and m represents the number of neurons in a hidden
layer.

Cross entropy (CE) is employed as a loss function of DNN, regarded as the testing and training
configuration. The application of CE doesn’t employ the function of the sigmoid and softmax output
framework. It can be expressed as follows

CE = 1
n

n∑
k=1

[
YklogŶk + (1 − Yk) log(1 − Ŷk)

]
(15)

where n denotes the amount of training sample, Yk denotes the kth original training set results, and
Ŷk represents the kth determined testing set results.

3.3 Blockchain-Driven Secure Data Transmission
In this work, blockchain technology is exploited for secure inter-cluster data transmission.

Generally, BC meant that group of blocks. In these blocks, a single block comprises 4 segmented
data concerning the transaction (Bitcoin, Ethereum), Hash value of the existing block, Timestamp,
and Previous block [22]. In addition, the BC was determined as distributed, and the usual digital
ledger was utilized to save the transaction data in the diverse point. Therefore, when an attacker
tries to derive information, it can be difficult as all blocks have the cryptographic value of preceding
blocks. Fig. 3 defines the framework of BC. At this point, every transaction was reached in the
application of cryptographic hash value verified by all the miners. It can be taken with the same
value as a completed ledger and contains blocks of every transaction. The decentralized saved is
another source from BC, and a superior count of data was saved and connected in the existing block
for the preceding block utilizing smart contract code. Swarm, SiacoinDB, BigchainDB, LitecoinDB,
MoneroDB, Interplanetary File System (IPFS), and several other factors are presently executed to the
decentralized database.

Figure 3: Structure of blockchain

4 Performance Validation

In this section, a detailed validation of the BXAI-IDCUCS model is carried out under distinct IoT
nodes. Table 1 provides a comprehensive PDR and PLR examination of the BXAI-IDCUCS method
with recent models. Fig. 4 portrays a close PDR inspection of the BXAI-IDCUCS technique under
different IoT nodes. The results implied that the BXAI-IDCUCS approach had gained maximum PDR
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values over the other models. On 100 IoT nodes, the BXAI-IDCUCS technique has accomplished a
maximum PDR of 98.71%, whereas GAOC, MS-GAOC, DL-Leach, FAMACROW, and CTEEDG
models have obtained reduced PDR of 93.95%, 93.37%, 94.64%, 97.55%, and 97.84% correspondingly.
Furthermore, on 500 IoT nodes, the BXAI-IDCUCS approach has reached a high PDR of 98.95%,
whereas GAOC, MS-GAOC, DL-Leach, FAMACROW, and CTEEDG models have obtained lesser
PDR of 80.55%, 83.28%, 81.92%, 87.75%, and 88.75% correspondingly.

Table 1: PDR and PLR analysis of BXAI-IDCUCS technique under dissimilar IoT nodes

No. of IoT
nodes

GAOC MS-GAOC DL-Leach FAMACROW CTEEDG BXAI-
IDCUCS

Packet delivery ratio (%)

100 93.95 93.37 94.64 97.55 97.84 98.71
200 90.07 91.03 92.33 94.04 95.96 99.29
300 86.94 88.28 88.35 91.97 92.30 98.55
400 83.24 84.83 85.48 90.12 90.59 99.04
500 80.55 83.28 81.92 87.75 88.75 98.95

Packet loss rate (%)

100 6.05 6.63 5.36 2.45 2.16 1.29
200 9.93 8.97 7.67 5.96 4.04 0.71
300 13.06 11.72 11.65 8.03 7.70 1.45
400 16.76 15.17 14.52 9.88 9.41 0.96
500 19.45 16.72 18.08 12.25 11.25 1.05

Figure 4: PDR analysis of BXAI-IDCUCS technique under dissimilar IoT nodes

A detailed PLR assessment of the BXAI-IDCUCS model with existing approaches is performed
in Fig. 5. The outcome shows that the BXAI-IDCUCS model has gained effectual outcomes with
minimal values of PLR. On 100 IoT nodes, the BXAI-IDCUCS model has offered a reduced PLR of
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1.29%, whereas GAOC, MS-GAOC, DL-Leach, FAMACROW, and CTEEDG models have gained
higher PLR of 6.05%, 6.63%, 5.36%, 2.45%, and 2.16% respectively. Furthermore, on 500 IoT nodes,
the BXAI-IDCUCS model has an accessible reduced PLR of 1.05%. In contrast, GAOC, MS-GAOC,
DL-Leach, FAMACROW, and CTEEDG models have reached superior PLRs of 19.45%, 16.72%,
18.08%, 12.25%, and 11.25% correspondingly.

Figure 5: PLR analysis of BXAI-IDCUCS technique under dissimilar IoT nodes

Table 2 and Fig. 6 demonstrate a comparative throughput (THPT) analysis of the BXAI-IDCUCS
method under different IoT nodes. The results implied that the BXAI-IDCUCS approach had gained
maximal THPT values over the other methods. On 100 IoT nodes, the BXAI-IDCUCS system has
achieved enhanced THPT of 92.95 Mbps whereas GAOC, MS-GAOC, DL-Leach, FAMACROW,
and CTEEDG models have obtained lower THPT of 67.57, 68.69, 71.7, 76.59, and 82.44 Mbps
correspondingly. In addition, on 500 IoT nodes, the BXAI-IDCUCS technique has achieved a
maximum THPT of 81.88 Mbps. In contrast, GAOC, MS-GAOC, DL-Leach, FAMACROW, and
CTEEDG techniques have reduced THPT of 53.58 and 56.48 Mbps, respectively 61.84, 61.38, and
72.97 Mbps correspondingly.

Table 2: Throughput analysis of BXAI-IDCUCS technique under dissimilar IoT nodes

Throughput (Mbps)

No. of IoT
nodes

GAOC MS-GAOC DL-Leach FAMACROW CTEEDG BXAI-
IDCUCS

100 67.57 68.69 71.7 76.59 82.44 92.95
200 64.08 66.75 69.29 72.74 78.72 90.78
300 60.31 63.79 66.06 68.83 77.05 86.96
400 56.58 60.06 63.77 65.19 74.93 84.44
500 53.58 56.48 61.84 61.38 72.97 81.88
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Figure 6: Throughput analysis of BXAI-IDCUCS technique under dissimilar IoT nodes

With recent approaches, a brief ECM assessment of the BXAI-IDCUCS technique is performed
in Table 3 and Fig. 7. The experimental outcome indicated that the BXAI-IDCUCS system had gained
effectual outcomes with minimal values of ECM. On 100 IoT nodes, the BXAI-IDCUCS system
has accessible lower ECM of 0.0891 mJ whereas GAOC, MS-GAOC, DL-Leach, FAMACROW, and
CTEEDG methodologies have gained maximal ECM of 0.2234, 0.2044, 0.1753, 0.1566, and 0.1183
mJ respectively. Besides, on 500 IoT nodes, the BXAI-IDCUCS model has offered a reduced ECM
of 0.3257 mJ whereas GAOC, MS-GAOC, DL-Leach, FAMACROW, and CTEEDG models have
gained maximum ECM of 0.4391, 0.4219, 0.3964, 0.3798, and 0.2825 mJ correspondingly.

Table 3: Energy consumption analysis of BXAI-IDCUCS technique under dissimilar IoT nodes

Energy consumption (mJ)

No. of IoT
nodes

GAOC MS-GAOC DL-Leach FAMACROW CTEEDG BXAI-
IDCUCS

100 0.2234 0.2044 0.1753 0.1566 0.1183 0.0891
200 0.2924 0.2428 0.2339 0.2001 0.1584 0.1380
300 0.3571 0.3113 0.3000 0.2612 0.2026 0.2057
400 0.3954 0.3686 0.3531 0.3182 0.2439 0.2748
500 0.4391 0.4219 0.3964 0.3798 0.2825 0.3257

Table 4 and Fig. 8 illustrate a comparative NLT analysis of the BXAI-IDCUCS system under
different IoT nodes. The results exposed that the BXAI-IDCUCS model has gained maximum NLT
values over the other models. On 100 IoT nodes, the BXAI-IDCUCS model has achieved higherNLT
of 2025 rounds, whereas GAOC, MS-GAOC, DL-Leach, FAMACROW, and CTEEDG models have
obtained reduced NLT of 1318, 1366, 1305, 1351, and 1713 rounds correspondingly. Eventually, on
500 IoT nodes, the BXAI-IDCUCS methodology has achieved a maximum NLT of 3529 rounds. In
contrast, GAOC, MS-GAOC, DL-Leach, FAMACROW, and CTEEDG approaches have obtained
reduced NLT of 2483, 2308, 2537, 2670, and 3354 rounds correspondingly.
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Figure 7: ECM analysis of BXAI-IDCUCS technique under dissimilar IoT nodes

Table 4: Network lifetime analysis of BXAI-IDCUCS technique under dissimilar IoT nodes

Network lifetime (Rounds)

No. of IoT
nodes

GAOC MS-GAOC DL-Leach FAMACROW CTEEDG BXAI-
IDCUCS

100 1318 1366 1305 1351 1713 2025
200 1765 1552 1618 1702 2159 2416
300 1976 1705 1837 2009 2539 2866
400 2303 1864 2099 2284 2923 3255
500 2483 2308 2537 2670 3354 3529

Figure 8: NLT analysis of BXAI-IDCUCS technique under dissimilar IoT nodes
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Next, the performance of intrusion detection of the BXAI-IDCUCS model is validated using two
benchmark datasets, as given in Table 5. Fig. 9 portrays a pair of confusion matrices offered by the
BXAI-IDCUCS model on the test dataset. On NSL-KDD 2015 dataset, the BXAI-IDCUCS model
has identified 66855 samples under the normal class and 291 samples under the anomaly class. Besides,
on CICIDS 2017 dataset, the BXAI-IDCUCS approach has identified 2238867 samples under the
normal class and 548041 samples under the anomaly class.

Table 5: Dataset description

Dataset No. of instances No. of attributes No. of classes Normal/Anomaly

NSL-KDD 2015 125973 41 2 67343/58630
CICIDS 2017 2830743 80 2 2273097/557646

Figure 9: Confusion matrix of BXAI-IDCUCS technique under two datasets

Table 6 reports a brief IDS outcome of the BXAI-IDCUCS model on two datasets. With the NSL-
KDD2015 dataset, the BXAI-IDCUCS model has offered average accuracy of 99.38%, precision of
99.37%, DR of 99.39%, TNR of 99.39%, F-score of 99.38%, AUC of 99.39%, and the error rate of
0.62. Moreover, with CICIDS 2017 dataset, the BXAI-IDCUCS system has obtainable average accuy

of 98.53%, precn of 97.11%, DR of 98.35%, TNR of 98.35%, Fscore of 97.71%, AUC of 98.35%, and the
error rate of 1.47.
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Table 6: Result analysis of the BXAI-IDCUCS technique with different measures

Class Labels Accuy Precn DR TNR Fscore AUC Error Rate

NSL-KDD 2015

Normal 99.38 99.57 99.28 99.5 99.42 99.39 0.62
Anomaly 99.38 99.17 99.5 99.28 99.34 99.39 0.62

Average 99.38 99.37 99.39 99.39 99.38 99.39 0.62

CICIDS 2017

Normal 98.53 99.51 98.65 98.04 99.08 98.35 1.47
Anomaly 98.53 94.71 98.04 98.65 96.35 98.35 1.47

Average 98.53 97.11 98.35 98.35 97.71 98.35 1.47

A brief comparative study of the BXAI-IDCUCS with recent models is made in Table 7
[23–26]. Fig. 10 inspects a comparative accuracy examination of the BXAI-IDCUCS with recent
models. The figure indicated that the SVM system had offered a lower accuy of 87.16%. Followed by
the NN and DNN-SVM approaches have obtained somewhat enhanced accuy of 90.99% and 92.03%,
correspondingly. In line with this, the GA-Fuzzy and CNN models have correspondingly resulted in
accuy of 96.53% and 96.75%. The RF and TR-IDS models have also accomplished reasonable accuy

of 98.21% and 99.10%. But the BXAI-IDCUCS model has obtained the highest accuy of 99.38%.

Table 7: Comparative analysis of BXAI-IDCUCS technique with recent algorithms

Methods Accuy DR

SVM Model 87.16 80.48
NN Model 90.99 92.17
CNN Model 96.75 97.61
RF Model 98.21 97.81
TR-IDS 99.10 99.25
DNN-SVM 92.03 95.32
GA-Fuzzy 96.53 97.38
BXAI-IDCUCS 99.38 99.39

Fig. 11 demonstrates a comparative DR examination of the BXAI-IDCUCS approach with recent
models. The figure revealed that the SVM method offered a lower DR of 80.48%. Followed by the NN
and DNN-SVM methods have obtained somewhat higher DR of 92.17% and 95.32%, correspondingly.
Also, the GA-Fuzzy and CNN models have resulted in DR of 97.38% and 97.61%, correspondingly.
Along with that, the RF and TR-IDS techniques have accomplished reasonable DR of 97.81% and
99.25%. But the BXAI-IDCUCS method has gained maximum DR of 99.39%. Afterward inspecting
the results and discussion, it is confirmed that the BXAI-IDCUCS model has accomplished maximum
energy efficacy and security.
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Figure 10: Accuracy analysis of BXAI-IDCUCS technique with recent algorithms

Figure 11: DR analysis of BXAI-IDCUCS technique with recent algorithms

5 Conclusion

In this study, the BXAI-IDCUCS model has been developed to accomplish maximum energy
efficacy and security in the IoT environment. The BXAI-IDCUCS model follows a three stage process
namely clustering, intrusion detection, and blockchain based data transmission. For clustering process,
the EADSO algorithm with fitness function involving three variables is employed. In addition, DNN
model was utilized for the detection and classification of intrusions that exist in the IoT network.
Lastly, BC technology is exploited for secure inter-cluster data transmission process. To assure effectual
performance of the BXAI-IDCUCS model, a comprehensive experimentation study is applied and the
outcomes are assessed under several aspects. The comparison study highlighted the superiority of the
BXAI-IDCUCS approach over the recent state of art approaches with packet delivery ratio of 99.29%,
packet loss rate of 0.71%, throughput of 92.95 Mbps, energy consumption of 0.0891 mJ, lifetime of
3529 rounds, and accuracy of 99.38%. In the future, multihop route selection models can be developed
for optimal load balancing in the IoT environment.
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