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Abstract: Solar energy will be a great alternative to fossil fuels since it is
clean and renewable. The photovoltaic (PV) mechanism produces sunbeams’
green energy without noise or pollution. The PV mechanism seems simple,
seldom malfunctioning, and easy to install. PV energy productivity signifi-
cantly contributes to smart grids through many small PV mechanisms. Precise
solar radiation (SR) prediction could substantially reduce the impact and
cost relating to the advancement of solar energy. In recent times, several
SR predictive mechanism was formulated, namely artificial neural network
(ANN), autoregressive moving average, and support vector machine (SVM).
Therefore, this article develops an optimal Modified Bidirectional Gated
Recurrent Unit Driven Solar Radiation Prediction (OMBGRU-SRP) for
energy management. The presented OMBGRU-SRP technique mainly aims
to accomplish an accurate and time SR prediction process. To accomplish
this, the presented OMBGRU-SRP technique performs data preprocessing to
normalize the solar data. Next, the MBGRU model is derived using BGRU
with an attention mechanism and skip connections. At last, the hyperparam-
eter tuning of the MBGRU model is carried out using the satin bowerbird
optimization (SBO) algorithm to attain maximum prediction with minimum
error values. The SBO algorithm is an intelligent optimization algorithm that
simulates the breeding behavior of an adult male Satin Bowerbird in the
wild. Many experiments were conducted to demonstrate the enhanced SR
prediction performance. The experimental values highlighted the supremacy
of the OMBGRU-SRP algorithm over other existing models.
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1 Introduction

Renewable energy is focused on fulfilling the rising energy demand sustainably by decreasing
greenhouse gas emissions and climate change risk reduction [1]. The most potential energy among
renewable energy is solar energy because of its availability. As a result, there comes a rise in solar
energy technology. But optimizing the utility and efficacy of solar energy will remain problematic
because of its difficulty in gathering and precisely examining the solar radiations [2]. Solar energy
projects could be very beneficial from reliable solar radiation data. Certainly, global solar radiation
will be considered a very appropriate variable in predicting, monitoring, sizing, and simulating solar
energy technology [3]. Currently, the study on solar radiation estimation is becoming more in-depth.
Among several predictive techniques, the meekest is the persistence technique that would assume that
the future solar radiations are equal to the present solar radiations [4]. Other solar radiation predictive
techniques are categorized into 4 categories: machine learning (ML) approaches, physical techniques,
hybrid techniques, and statistical approaches [5].

The physical technique accomplishes the solar power generation forecasting model under the
geographical atmosphere and meteorological data (like pressure, temperatures, humidity, and so on)
[6]. Such techniques are again clustered into 2 sub-categories: spatial correlation techniques and
numerical weather prediction (NWP) techniques [7]. NWP techniques utilize numerical simulation
for forecasting, i.e., physical and mathematical methods will be enforced on examining environmental
circumstances, and high-speed computers were used for predicting solar radiations [8]. In normal
circumstances, NWP techniques take a longer period to forecast. Furthermore, the weather and
atmospheric elements in NWP techniques will take more work to make clear choices. In the present
study, it is hard to enhance prediction accuracy [9]. The spatial correlation techniques harness spatial
co-relation of solar radiations for estimating solar energy in numerous locations. It is noticed that
spatial correlation approaches need rich historic data for simulating complicated temporal and spatial
variations [10]. In summary, NWP approaches and other physical techniques are unsuitable for short-
run and small regions because of long runtimes. In the meantime, they have more demands on
computational sources.

This article develops an optimal Modified Bidirectional Gated Recurrent Unit Driven Solar
Radiation Prediction (OMBGRU-SRP) for energy management. The presented OMBGRU-SRP
technique mainly aims to accomplish an accurate and time SR prediction process. To accomplish this,
the presented OMBGRU-SRP technique performs data preprocessing to normalize the solar data.
Next, the MBGRU model is derived using BGRU with an attention mechanism and skip connections.
At last, the hyperparameter tuning of the MBGRU model is carried out using the satin bowerbird
optimization (SBO) algorithm to attain maximum prediction with minimum error values. Many
experiments were conducted to demonstrate the enhanced SR prediction performance.

2 Literature Review

Reddy et al. [11], an elephant herd optimization approach presented with deep ELM (EHO-
DELM) for predicting solar radiation through weather predictions. The proposed algorithm imple-
ments preprocessing to make the data consistent with the regression model. Furthermore, the
presented method is employed for predicting the SR through the weather prediction dataset. In
addition, the suggested algorithm is exploited to tune the biases and weights. The author in [12]
developed two novel hybrid NN models, CNN-LSTM-ANN and CNN-ANN, for predicting global
solar radiation (GSR). Also, the ANN model is established and compared to the efficiency of the
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hybrid NN mechanism. The study contributed to the search for a precise solar radiation prediction
method. The hybrid NN model is tested or trained with the dataset from 10 different countries.

Zhu et al. [13] designed a novel LSTM-based attention module and GA (AGA-LSTM). The
attention module allocates different weights to all the features, so the module can further focus on
the main characteristics. In the meantime, the data selection and structure parameters are improved
by using the GA system, and time sequence memory and processing abilities of LSTM are employed
to forecast the direct normal irradiance and global horizontal irradiance after five, ten, and fifteen
minutes. In [14], the author proposed a CNN and BiLSTM-based hybrid DL method for predicting
efficient midterm solar radiation. The suggested method is tested under three distinct geo-location on
similar latitudes since it approximately obtains similar solar radiation.

Zhu et al. [15] investigated direct normal irradiance (DNI) as a prediction target. They developed
a Siamese CNN-LSTM (SCNN-LSTM) for predicting the inter-hour DNI via integrating the time-
dependent spatial feature of historical meteorological observations and total sky images. Firstly, the
features of overall sky images have been extracted automatically through an SCNN for describing
the cloud data. Then, the meteorological observations and image features were integrated and later
estimated, and the DNI was ten minutes in advance using an LSTM. Ghimire et al. [16] proposed a
hybridized DL architecture, which incorporates the CNN for recognizing patterns with the LLSTM
for forecasting half-hourly GSR. CNN is employed to strongly extract the input feature dataset from
prediction parameters (antecedent input) while LSTM absorbs them for prediction. The suggested
technique is benchmarked with a standalone model and other DL, Single Hidden Layer, and Tree-
based methods.

3 The Proposed Model

This article has developed a new OMBGRU-SRP technique to forecast SR for energy man-
agement. The presented OMBGRU-SRP technique mainly aims to accomplish an accurate and
time SR prediction process. It encompasses a three-stage process: data normalization, MBGRU-
based forecasting, and SBO-based hyperparameter tuning. Fig. 1 defines the block diagram of the
OMBGRU-SRP system.

Figure 1: Block diagram of OMBGRU-SRP system
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3.1 Data Preprocessing
In the beginning, the presented OMBGRU-SRP technique performs data preprocessing to

normalize the solar data. Before utilizing the data for training and creating the ML technique, the
data must endure normalized [17]. Data normalization is a usual approach executed for preparing the
information for ML. The aim is to alter the numeric value from the dataset by utilizing an ordinary
scale without changing variances in the ranges of values or losing data. With normalized data, it can
create novel values in the data that continue the common distribution and ratios from the source data
but keep value in a scale executed across every numeric column utilized during the model.

The meteorological data (input) were normalized by transforming them to values in the range
[−1, 1] utilizing fundamental coding from MATLAB. The equation of normalized and log transformed
is also demonstrated as under:

XN = X − Xmin

Xmax − Xmin

(1)

YT = log (1 + Y) (2)

whereas X refers to meteorological data (wind speed, temperature, relative humidity), Xmin represents
the minimal value of every accessible meteorological data, Xmax denotes the maximal value of every
accessible meteorological data, XN implies the meteorological normalization data, YT denotes the log
transformation outcome (solar radiation), and Y defines the actual outcome.

3.2 Solar Radiation Forecasting using MBGRU Model
In this study, the MBGRU model is derived using BGRU with an attention mechanism and

skip connections. The BGRU includes two groups of GRUs in several directions that recognize the
time dependency extracted from the backward and forward directions to input time series data [18].
Afterwards, the encoder ends, and the hidden encoding layer (HL) vector is considered an embedded
vector in HL construction. The attention layer computes the weighted vector Att at distinct time steps.
Next, the Att vector has multiplied by the encoding output resultant for obtaining the att-output
vector, emphasizing the control of important time-steps data. During the decoder phase, att-output is
directed to decoding BGRU as an input vector.

To provide a group of time consecutive dataset X = [x1, x2, x3, . . . , xt]T . Every xi comprises an
m-dimension sensor reading. Considering that the hidden layer of BGRU is h, the encoding output
vector and the final HL vector are attained with encoded BGRU units:(
H1×2h

e , Ot×2h
e

) = fe

(
X t×m

)
H1×2h

e = H1×h
f ⊕ H1×h

b (3)

whereas fe(.) defines the abstract function of encoder BGRU. Hf , Hb determines the forward and
backward final HLs, He defines the concatenated HL vector in Hf and Hb, and Oe indicates the output
vector of the encoder.

During the attention layer, it can be utilized H1×2h
e and Ot×2h

e for attention-weighted computation.
Initially, the first dimensional of H1×2h

e was copied t times for supporting with the dimensional of
the Ot×2h

e vector. Ht×2h
e and Ot×2h

e indicate the input to the attention layer for calculating the attention
weighted Att1×t at all steps. Afterwards, Att1×t is multiplied with Ot×2h

e to obtain the att−output1×2h vector
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that emphasizes the key encoder time-step data. att outcome is transported to the decoder BGRU unit
to compute the resultant vector and HL:

H1×2h
e

copy→ Ht×2h
e

Att1×t = attention
(
Ht×2h

e ⊕ Ot×2h
e

)
att − output1×2h = Att1×t × Ot×2h

e

(H1×2h
d , O1×2h

d ) = fd(att − output1×2h, H1×2h
e ) (4)

Afterwards, the att-output has concatenated with Od and input to linear predictive layer to decoder
x′

t that was repeating t times for predicting every encoder inputs X ′ = [x′
1, x′

2, x′
3, . . . , x′

t]
T . Therefore,

the MBGRU system was trained to minimize the entire reconstruction error E:

E = 1
2

∑t

i=1
(||ei||1)

2 (5)

whereas ||ei||1 stands for the 1-norm function that quickly converges and creates a further robust system
than the 2-norm function. If the MBGRU is trained effectively, then the last encoded HL He is assumed
that compression representation of input X . Once the MBGRU has been collected from several BGRU
layers, the embedded vector is achieved by concatenating the last HLs of every layer:

zt = H1
e ⊕ H2

e ⊕ . . . HL
e (6)

Hl
e defines the lth layer’s last HL vector, zt demonstrates the embedded vector to an input time

sequence dataset, and L defines the entire count of BGRU layers. Fig. 2 illustrates the architecture
of BGRU.

Figure 2: Structure of the BGRU model

3.3 Hyperparameter Optimization
At the final stage, the hyperparameter tuning of the MBGRU model is carried out using the

SBO algorithm. The SBO process is a metaheuristic algorithm that determines the global optimal
for the provided optimization issue [19]. It is a population-based, simple, robust, and efficient
method. Initially, the arbitrary bowers procedure starts with creating the population of arbitrary even
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distribution by considering the maximal and minimal bounds. Next, every location can be defined
using the variable which should be enhanced. The probability of parameter characterizes the attractive
nature of bower. A female Satin bower bird picks a bower according to the likelihood, and it could
define the possibility of all the individual members in the population with the following equation:

Probi = fiti∑NB

n=1 fitn

(7)

fiti =
⎧⎨
⎩

1
1 + f (xi)

, f (xi) ≥ 0

1 + |f (xi)| , f (xi) < 0
(8)

whereas NB indicates bower population size, fiti represents the fitness values of ani-th solution, and
f (xi) characterizes the fitness value of the bower.

The SBO approach exploits the notion of exclusivity that calculates the position of the optimum
bower and consequently permits the optimum solution to be protected at all levels of the optimization
procedure. The SBO method simulates the concept of bird-making nests according to the usual
constitution. In mating, the male satin bower bird uses their instinct for decorating besides building the
bower to attract female birds. It is suggested that the male bower relies on the acquaintance to impact
the innovative conclusion while building the bower; hence, the extremely familiar bird can build an
extremely attractive bower more than lower knowledgeable one.

The optimally created bower is regarded as the elite round in the presented method. Since the elite
position includes maximal fitness, it can affect another location. The modification of each current
bower, which defines the novel position calculated through the position of the optimum fit bower, is
defined as follows.

xnew
ik = xold

ik + λk

((
xjk + xelite,k

2

)
− xold

ik

)
(9)

whereas xi denotes the ith solution vector, xj is evaluated by the final solution amongst each solution in
the existing round, j is defined through the roulette wheel procedure, and xik indicates the k-th members.
xelite symbolizes the elite location. In Eq. (10), λk represents the attraction of the target bower, whereas
α represents maximal step size and pj indicates the probability accomplished, with the target bower in
pj ∈ (0, 1).

λk = α

1 + pj

(10)

In the mutation process that exists after all the rounds of the SBO approach, the arbitrary variation
is applied xik with specific possibilities. The standard distribution (N) in the mutation procedure is
exploited through an average of xold

ik , and the variance of σ 2, as demonstrated below:

xnew
ik ∼ N

(
xold

ik , σ 2
)

(11)

N
(
xold

ik , σ 2
) = xold

ik + (σ ∗N (0, 1)) (12)

σ = Z∗ (varmax − varmin) (13)

where σ describes the width proportion, varmin and varmax indicate the minimum and maximum
boundaries assigned to the variables. The Z parameter denotes the % of the variations amongst the
minimal and maximal limits. Eventually, the newly produced and early population are evaluated and
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incorporated and organized according to the fitness value. The novel population is produced according
to the predetermined value, while the remaining are rejected.

Algorithm 1: Pseudo-code of SBO approach
Initial bower population size (NB), maximal step size (α), the proportion of space width (σ ) mutation
probability (P), and % of the variations amongst maximal and minimal limits (Z) are defined.
Population generation.
Define the fitness value of the bower. Consider the initial optimum bower and assume it as elite.
While (ending condition is not met), Do
Determine the probability of bowers based on Eqs. (7) and (8).
For i = 1 to every bower, Do
For j = 1 to all the components of bower, Do
Arbitrarily choose a single bower through roulette wheel selection.
Decide step size (λk) using Eq. (10).
Upgrade the bower position based on Eqs. (9) and (12).
End for
Define fitness values of the bower.
End for
Arrange the bower using the fitness value.
Define the existing global best.

End while
Display the optimum fitness values.

The SBO technique will derive the main function related to mean square error (MSE) and can be
leveraged to estimate the MBGRU method’s testing output. It is expressed below.

MSE =
∑i

N

∣∣yi − ŷi

∣∣2

N
(14)

whereas y denotes the count of rounds, yi indicates the experimental value, and ŷi signifies the estimated
values correspondingly.

4 Results and Discussion

In this section, we investigate the solar radiation prediction performance of the OMBGRU-SRP
model under different runs. Table 1 offers a comprehensive set of solar radiation prediction results of
the OMBGRU-SRP model under five runs. The results represented that the OMBGRU-SRP model
has reached enhanced prediction results.

Fig. 3 represents the actual vs. prediction solar radiation forecasting results of the OMBGRU-
SRP model under run-1. The figure reported that the OMBGRU-SRP model has shown enhanced
forecasted outcomes under all hours of operation. It is also noted that the variance between the actual
and predicted solar radiation values is considered a minimum.
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Table 1: Result analysis of the OMBGRU-SRP system with distinct runs

Global radiation Wh/m2

Hours Actual Predicted
Run-1 Run-2 Run-3 Run-4 Run-5

1 186 203 168 200 203 164
25 641 624 639 618 619 652
50 173 157 196 158 193 150
75 365 355 341 378 374 390
100 625 650 642 639 608 616
125 123 119 145 121 117 111
150 707 721 699 694 701 697
175 517 494 523 497 517 514
200 481 467 476 491 477 471
224 338 360 324 350 359 331
225 283 294 287 274 268 291
250 638 655 620 628 640 662

Figure 3: Actual vs. prediction analysis of OMBGRU-SRP system under Run1

Fig. 4 portrays the actual vs. prediction solar radiation predictive outcomes of the OMBGRU-
SRP approach under run-2. The figure revealed the OMBGRU-SRP approach has displayed enhanced
forecasted results under all hours of operation. It should be noted that the variance between the actual
and predicted solar radiation values is minimum.
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Figure 4: Actual vs. prediction analysis of OMBGRU-SRP system under Run2

Fig. 5 signifies the actual vs. prediction solar radiation forecasting outcomes of the OMBGRU-
SRP method under run-3. The figure indicates the OMBGRU-SRP algorithm has exposed enhanced
forecasted outcomes under all hours of operation. The variance between the actual and predicted solar
radiation values will be considered a minimum.

Figure 5: Actual vs. prediction analysis of OMBGRU-SRP system under Run3

Fig. 6 illustrates the actual vs. prediction solar radiation forecasting outcomes of the OMBGRU-
SRP model under run-4. The figure signified the OMBGRU-SRP approach has exhibited enhanced
forecasted outcomes under all hours of operation. The variance between the actual and predicted solar
radiation values will be considered a minimum.

Fig. 7 denotes the actual vs. prediction solar radiation forecasting outcomes of the OMBGRU-
SRP method under run-5. The figure exhibited the OMBGRU-SRP approach has displayed enhanced
forecasted results under all hours of operation. It is also noted that the difference between the actual
and predictive solar radiation values will be minimum.
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Figure 6: Actual vs. prediction analysis of OMBGRU-SRP system under Run4

Figure 7: Actual vs. prediction analysis of OMBGRU-SRP system under Run5

Table 2 demonstrates the overall prediction results of the OMBGRU-SRP model with existing
models.

Table 2: Comparative analysis of the OMBGRU-SRP system with recent algorithms

Methods MSE RMSE MAE R squared MAPE (%)

OMBGRU-SRP 10.231 3.199 1.748 0.974 11.856
ANN 12.547 3.542 1.994 0.952 14.800
SCG 16.352 4.044 2.223 0.962 15.960
BR 14.471 3.804 2.047 0.956 13.876
SVR 18.392 4.289 2.351 0.968 15.121
MLP 16.365 4.045 2.289 0.967 16.222
LSTM 14.352 3.788 2.183 0.944 18.713
GRU 13.669 3.697 2.024 0.952 14.976
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Fig. 8 reports a close MSE inspection of the OMBGRU-SRP model. The results denoted that
the SVR model has reached an ineffectual MSE of 18.392 whereas the SCG and MLP models have
reached closer MSE of 16.352 and 16.365 respectively. Along with that, the BR and LSTM models
have resulted in reasonable MSE of 14.471 and 14.352. Although the ANN and GRU models have
attained near optimal MSE of 12.547 and 13.669, the OMBGRU-SRP model has gained the least
MSE of 10.231.

Figure 8: MSE analysis of OMBGRU-SRP system with recent algorithms

Fig. 9 reports a brief RMSE review of the OMBGRU-SRP method. The outcomes designated the
SVR approach have attained an ineffectual RMSE of 4.289 whereas the SCG and MLP algorithms
have reached closer RMSE of 4.044 and 4.045 correspondingly. Also, the BR and LSTM techniques
have resulted in reasonable RMSE of 3.804 and 3.788. Although the ANN and GRU approaches have
reached near optimal RMSE of 3.542 and 3.697, the OMBGRU-SRP method has attained the least
RMSE of 3.199.

Figure 9: RMSE analysis of OMBGRU-SRP system with recent algorithms
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Fig. 10 shows a detailed MAE review of the OMBGRU-SRP method. The outcomes denoted
that the SVR algorithm has reached an ineffectual MAE of 2.351 whereas the SCG and MLP
methodologies have reached closer MAE of 2.223 and 2.289 correspondingly. Also, the BR and
LSTM techniques have resulted in reasonable MAE of 2.047 and 2.183. Although the ANN and
GRU approaches have gained near optimal MAE of 1.994 and 2.024, the OMBGRU-SRP method
has reached the least MAE of 1.748.

Figure 10: MAE analysis of OMBGRU-SRP system with recent algorithms

Fig. 11 portrays a brief MAPE review of the OMBGRU-SRP method. The results indicated that
the LSTM algorithm had reached an ineffectual MAPE of 18.713%, whereas the SCG and MLP
approaches have reached closer MAPE of 15.960% and 16.222%, respectively. Also, the SVR and
GRU techniques have resulted in reasonable MAPE of 15.121% and 14.976%. Although the ANN
and BR approaches have reached near optimal MAPE of 14.800% and 13.876%, the OMBGRU-SRP
method has attained the least MAPE of 11.856%.

Figure 11: MAPE analysis of OMBGRU-SRP system with recent algorithms
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Finally, a detailed R-squared examination of the OMBGRU-SRP model with recent models is
given in Fig. 12. The results demonstrated that the OMBGRU-SRP model had shown effectual results
with an increased R-squared value of 0.974. In contrast, the ANN SCG, BR, SVR, MLP, LSTM, and
GRU models have reached reduced R-squared values. The detailed results affirm that the OMBGRU-
SRP model has shown enhanced solar radiation prediction performance.

Figure 12: R squared analysis of OMBGRU-SRP system with recent algorithms

5 Conclusion

In this article, a new OMBGRU-SRP technique has been developed to forecast SR for energy
management. The presented OMBGRU-SRP technique mainly aims to accomplish an accurate
and time SR prediction process. Firstly, the presented OMBGRU-SRP technique performs data
preprocessing to normalize the solar data. At the second level, the MBGRU model is derived using
BGRU with an attention mechanism and skip connections. Finally, the hyperparameter tuning of
the MBGRU model is carried out by using the SBO algorithm to attain maximum prediction with
minimum error values. Many experiments were conducted to demonstrate the enhanced SR prediction
performance. The experimental values highlighted the supremacy of the OMBGRU-SRP method over
other existing models. Thus, the presented OMBGRU-SRP model can be employed for accurate SR
forecasting. In future, hybrid DL models can be derived to extend the OMBGRU-SRP model for
improved prediction outcomes.
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