
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.037505
Article

An Efficient Way to Parse Logs Automatically for Multiline Events

Mingguang Yu1,2 and Xia Zhang1,2,*

1School of Computer Science and Engineering, Northeastern University, Shenyang, 110169, China
2Neusoft Corporation, Shenyang, 110179, China

*Corresponding Author: Xia Zhang. Email: zhangx@neusoft.com
Received: 06 November 2022; Accepted: 06 January 2023

Abstract: In order to obtain information or discover knowledge from system
logs, the first step is to perform log parsing, whereby unstructured raw logs can
be transformed into a sequence of structured events. Although comprehensive
studies on log parsing have been conducted in recent years, most assume
that one event object corresponds to a single-line message. However, in a
growing number of scenarios, one event object spans multiple lines in the log,
for which parsing methods toward single-line events are not applicable. In
order to address this problem, this paper proposes an automated log parsing
method for multiline events (LPME). LPME finds multiline event objects via
iterative scanning, driven by a set of heuristic rules derived from practice.
The advantage of LPME is that it proposes a cohesion-based evaluation
method for multiline events and a bottom-up search approach that eliminates
the process of enumerating all combinations. We analyze the algorithmic
complexity of LPME and validate it on four datasets from different back-
grounds. Evaluations show that the actual time complexity of LPME parsing
for multiline events is close to the constant time, which enables it to handle
large-scale sample inputs. On the experimental datasets, the performance of
LPME achieves 1.0 for recall, and the precision is generally higher than 0.9,
which demonstrates the effectiveness of the proposed LPME.

Keywords: Log parsing; log management; log analysis; system maintenance

1 Introduction

1.1 Background
Modern large-scale information systems continuously generate a substantial volume of log data.

These data record the system running state, operation results, business processes, and detailed infor-
mation on system exceptions. Thus, log analysis techniques have attracted considerable attention from
researchers in the past decade. Many distinguished works have emerged, including detecting program
running exceptions [1,2], monitoring network failures and traffic [3,4], diagnosing performance
bottlenecks [5], and analyzing business [6] and user behavior [7].

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.037505
https://www.techscience.com/doi/10.32604/csse.2023.037505
mailto:zhangx@neusoft.com


2976 CSSE, 2023, vol.46, no.3

Logs are printed by logging statements, such as “log.info (...)” or “print (...)” written by program-
mers. The contents and formats of logs are free because virtually no strict restrictions are placed on
them while coding. However, structured input is required for most data mining models used in log
analysis techniques. Therefore, the first step of log analysis is log parsing, in which unstructured log
messages in plain text are transformed into structured event objects. Fig. 1 refers to some logging code
in OpenStack’s sources as an example to illustrate the log printing and parsing process described above.
In the log parsing shown in Fig. 1, a resource request event is obtained from the original log through
log parsing.

Figure 1: Illustrative example of log parsing

Traditional approaches to archive log parsing rely heavily on manually customized regular
expressions. However, the rapid growth in log volume has brought unbearable labor and time costs. At
the same time, artificial rules can hardly keep up with the frequent updates of modern software systems.
For these reasons, many research efforts on automated log parsing techniques have emerged [8–13],
which are dedicated to contributing automated log parsing methods to overcome the shortcomings of
the manual method.

1.2 Motivation
With the rapid development of advanced technologies, such as cloud computing and the Internet

of Things [14,15], the logs generated by modern information systems are becoming increasingly
complex. In the log’s output by complex systems, it is common for multiple lines of text in a log to
form an event object. That poses new challenges to log parsing, one of which is that existing log parsing
efforts assume that an event maps to one text line in the log.

Fig. 2 compares single-line event parsing and multiline event parsing with an example. The yellow
background color area in the middle of Fig. 2 shows a sample of raw logs; if parsed to single-line events,
as shown by the upwards blue arrow in the figure, the six lines of raw log text will yield six separate event
objects. However, these six lines of log text are strongly correlated and record a unit event together. If
they are considered separately, fragmented information will hinder the subsequent analysis work. For



CSSE, 2023, vol.46, no.3 2977

example, the 6th line represents a claim. Suppose it is not associated with the context. In that case,
the subsequent analysis will be confused by questions such as the specific parameters of the successful
claim, how much memory is requested for the successful claim, and how many CPU cores are requested
for the successful claim. However, if the raw log text is parsed correctly to a single multiline event, as
shown by the downwards green arrow in the figure, the above problems will not arise. Therefore, it is
essential to determine how to identify multiline events in complex logs.

Figure 2: The difference between single-line event parsing and multiline event parsing

To the best of our knowledge, there is no current research on log parsing that focuses on
the problem of multiline event parsing. In order to address this problem, this paper innovatively
proposes LPME, an automated log parsing method for multiline events. LPME is an iterative scanning
algorithm based on the results of single-line text templates, and it employs a set of heuristic rules to
identify multiline event objects.

1.3 Contributions
The contributions of this paper are summarized as follows: 1) We present the problem of multiline

event parsing, which is explained based on practical experience. To address this problem, we design
a multiline event-oriented parsing method called LPME. 2) We perform a thorough analysis of the
complexity of the algorithm and conduct experiments on four datasets from different backgrounds to
illustrate the effectiveness and feasibility of LPME.

The rest of the paper is organized as follows: Section 2 examines related research. Section 3
illustrates the details of LPME. Section 4 presents the experimental analysis. Finally, we conclude
this paper and discuss future work in Section 5.



2978 CSSE, 2023, vol.46, no.3

2 Related Work

Log analysis plays a vital role in service maintenance. Log parsing is the first step in automated
log analysis [8]. Traditional methods of log parsing rely on handcrafted regular expressions or grok
patterns to extract event templates. Although straightforward, manually writing ad hoc rules requires
a deep understanding of the logs, and considerable manual effort is required to register different rules
for various kinds of logs.

In order to reduce the manual effort devoted to log parsing, many studies have investigated
automated log parsing [16]. Xu et al. [17] obtained log templates through system source code analysis;
however, in most cases, the source code is inaccessible. Therefore, most existing automated methods
favor data-driven approaches to analyzing the log data to obtain templates of the events. Data-driven
log parsing techniques can be roughly classified into three main categories: frequent pattern mining,
clustering, and heuristic rules [8].

Frequent pattern mining is used to discover frequently occurring line templates from event logs;
this approach assumes that each event is described by a single line in the event log and that each line
pattern represents a group of similar events. Simple logfile clustering tool (SLCT) [18] is the first log
parser to utilize frequent pattern mining. Furthermore, LogCluster [19] is an extension of SLCT that is
robust to shifts in token positions. Logram [9] uses n-gram dictionaries to achieve efficient log parsing;
it parses log messages into static text and a dynamic variable by counting the number of appearances
of each n-gram. Paddy [10] clusters log messages incrementally according to Jaccard similarity and
length features. It uses a dynamic dictionary structure to search template candidates efficiently.

The second category is cluster-based approaches, which formulate log parsing as a clustering
problem and use various techniques to measure the similarity and distance between two log messages
(e.g., log key extraction (LKE) [20], LogSig [21], LogMine [22], and length matters (LenMa) [23]).
For example, LKE employs a hierarchical clustering algorithm based on the weighted edit distance
between pairwise log messages.

The last category is heuristic approaches, which perform well in terms of accuracy and efficiency.
Compared to general text data, log messages have some unique characteristics. In addition, some
methods use heuristics to extract event templates. For example, Drain [24] used a fixed-depth tree to
represent the hierarchical relationship between log messages. Each tree layer defines a rule for grouping
log messages (e.g., log message length, preceding tokens, and token similarity). Iterative partitioning
log mining (IPLoM) [25] applies an iterative partition strategy to partition log messages into groups
according to the token amount, token position, and mapping relation. Abstracting execution logs
(AEL) [26] groups logs by comparing the occurrence times of constants and variables and then obtains
log templates if they have the same static components.

In addition to the above three categories, other data-driven methods exist. For example, Spell [11]
proposed an online log parsing method based on the longest common subsequence (LCS) and can
dynamically extract real-time log templates. In contrast, reference [12] built a graph in which each
node represents a log message and clusters logs according to the word count and Hamming similarity.
LogParse [13] is a novel method that transforms the log parsing problem into a word classification
problem.

Unfortunately, the above research assumes that one event object corresponds to a single text line.
However, as mentioned in Section 1.2, a single event often corresponds to multiple text lines in many
complex logs. To the best of our knowledge, there has been no research work on multiline event parsing.



CSSE, 2023, vol.46, no.3 2979

Therefore, in this paper, we propose multiline event parsing and design a solution based on existing
work to fill this gap.

3 Methods

In this section, we first present the main process of LPME and then describe each sub-step
separately before finally analyzing the algorithm complexity.

3.1 Algorithm Overview
Regarding whether the problem of multiline event parsing can be solved by simply generalizing

existing single-line event-oriented parsing methods, our answer is no. The underlying reason for our
response is that multiline event parsing implies a sub-problem of line division. An “event” can be
composed of x lines of text, where x is indeterminate. Therefore, based on previous related research,
this paper proposes LPME, a log parsing method for multiline events. Fig. 3 illustrates the LPME
framework. LPME is a two-stage process with phases: “Phase-1: Parsing Templates for Single Lines”
and “Phase-2: Discovering Templates of Multiline”. The initial input to LPME, i.e., the “Raw Logs
Sample,” is a continuous n-line sample taken from the original log. Phase 1 could process the “Raw
Logs Sample” by employing any existing single-line parsing method, such as AEL [26] or IPLoM [25],
and even online parsing methods, such as Drain [24] or Spell [11]. LPME treats the output of Phase 1
as the intermediate result, which is input into Phase 2 to obtain the multiline templates. Phase 1 can
utilize existing methods. Thus, this paper focuses on Phase 2.

Figure 3: Framework of LPME

For convenience, we use S to represent the “Middle Results” in Fig. 3. S is the output of Phase 1
and serves as the input to Phase 2. S can be assumed to be a sequence of n length, each element
corresponding to the original n lines of the “Raw Logs Sample” with a one-to-one mapping. Each
element includes the original text line and the single-line template. If sliding windows of size 2, 3, 4,
. . . , n are used to scan S with a step size of 1 and the window fragments obtained during the scan are
collected, then n(n-1)/2 window fragments can be obtained. We use a set W = {w| w represents all
possible sliding window fragments of size 2 to n} to describe the result obtained via the above sliding
scan. An element w in W has three key attributes: 1) the single-line template sequence, subseq, captured
by the sliding window, 2) the start timestamp tss of the window sequence, and 3) the end timestamp tse

of the window sequence. W can be represented in triplet form as <subseq, tss, tse>. To collect the subseq
of all elements of W and remove the duplicates, we obtain the set SETseqs. The focus of this paper is to
find all subseq in SETseqs that are indeed multiline events. The final results can be organized into a hash



2980 CSSE, 2023, vol.46, no.3

table R, of which the range of keys is {k | k is an integer and 2 ≤ k ≤ n}. R[k] is a set, and each element
represents a k-line event template. The k-line event template can be expressed as templatek

i (0 ≤ i ≤
R[k].size). templatek

i records the corresponding subseq and some attached parameters to represent a
multiline event template.

From a practical perspective, logs requiring multiline template analysis usually originate from
complex systems, often as big data. In practice, we also tend to draw large sample sizes. Therefore, S
may be a huge sequence. For example, its length may be on the order of 104 or even 105. In this case,
if full scans collect R, then the time consumption of the task will be unbearable. Therefore, we must
consider the actual situation to develop optimization methods to improve the efficiency of algorithm
execution so that the final approach applies to production.

Experience from system log analysis indicates that the single-line templates constituting a multiline
event are typically different from other ordinary single-line templates; they generally appear only in
multiline events. Therefore, the multiline event template manifests as a cohesive-sequence template,
with a priori characteristics similar to the frequent itemset. As a result, if the sequence subseq is not part
of a multiline event, then the superset of subseq will not be part of a multiline event either. Conversely, if
subseq is indeed a component of a multiline event, then any subset of subseq must also be a component
of that multiline event. Moreover, we can obtain the corollary that if any subset of subseq is not a
component of any multiline event, then subseq is not either.

Based on the above reasoning, LPME is designed to conduct an iterative layer-by-layer search.
The mining results can be organized into a hash table R. The idea guiding the search is that R[K + 1]
must grow from the pre-result R[k]; that is, R[k] is fundamental for the derivation and evaluation of
R[K + 1].

Next, we detail how to evaluate the candidate templates in the iterative process. To answer
this question, we define some preliminary concepts. Let templatek

i be the template to be evaluated.
templatek

i is collected by a sliding window of length k, and templatek
i represents an element of set W .

In templatek
i, the single-line sequence subseq consists of sj ( j = 1, 2, . . . , k). We define the cohesion

support for templatek
i by component sj as Eq. (1).

CohesionSup
(
templatei

k, sj

) = Total Occurrence of sj in R [k]
Total Occurrence of sj in S

(1)

In turn, we can obtain the cohesion coefficient of templatek
i according to Eq. (2).

CohesionCoef
(
templatei

k

) =

n∑

j=1

CohesionSup
(
templatei

k, sj

)

n
(2)

Based on the above definition, the main criterion for evaluating candidate templatek
i can be based

on the cohesion coefficient. The core logic is that the higher CohesionCoef is, the more likely templatek
i

will be treated as a multiline event template.

Fig. 4 presents the overall multiline template discovery process, performed layer-by-layer. The
process starts with the search and evaluation of the templates in layer k = 2, and then the search
and evaluation of templates in layer k (k > 2) can be executed based on layer k−1. The final merge
step is a bottom-up merge of the preliminary results of the iterative growth to eliminate redundancy
due to possible inclusion relationships between adjacent layers.

The core step shown in Fig. 4 is “Search for R[k],” which contains two branches, including cases
k = 2 and k > 2. Each branch includes two similar steps, “Collect the potential templates” and



CSSE, 2023, vol.46, no.3 2981

“Evaluate and filter the templates.” However, there are subtle differences. The first difference is in
the collection method. No previous works consider the case where k = 2, and the collection of items
to be evaluated involves all the original adjacent sj, which requires a complete traversal of S. When
k > 2, there is no need to completely traverse S since the k−1 layer results are already available. The
results are directly expanded to k layers with some specific strategies based on the results of the k−1
layers. The second difference is in the evaluation method. When k = 2, the cohesion support must
be calculated twice separately to obtain the cohesion coefficient, while if k > 2, there is no need to
calculate each cohesion support again because the cohesion coefficients of the k−1 layer results are
already obtained. Thus, only one calculation is needed for the growing component.

Figure 4: Overall process for multiline template discovery

3.2 Detail Processes
This section details the crucial steps of the “Search for R[k]” module shown in Fig. 4.

Step-A1: Collect the potential templates belonging to R[2] to prepare for the next step of
evaluation and screening.

As mentioned previously, R[2] is a special stage result in the iterative process, which is the starting
point of the whole iterative exploration. Compared with iterations in the higher layers, the initial
collection and determination of R[2] results are slightly different. A more detailed explanation of this
step is provided in Algorithm 1, which details the process of scanning S. In Algorithm 1, a control
parameter, MAX_WINODW_TS_SPAN, is used in the scan to determine whether there is a possibility
that two adjacent line templates can join into a two-line template. MAX_WINODW_TS_SPAN limits
the maximum time span between the start and end rows in a multiline event template. This logic is
easy to understand: usually, there is no substantial delay between steps for a single multiline event.
According to our experience, MAX_WINODW_TS_SPAN should be set to 3–5 s.



2982 CSSE, 2023, vol.46, no.3

Algorithm 1: Collect the candidate template2

Require: S; Maximum time span of multiline event MAX_WINODW_TS_SPAN
Ensure: ct2set - Set of the candidate template2

1: initialize an empty ct2set to store candidate templates
2: i = 0
3: while i < S.length-1 do
4: si = S[i]
5: si+1 = S[i + 1]
6: if si+1.timestamp - si+1.timestamp ≤ MAX_WINODW_TS_SPAN then

7: get template(
si ,si+1)

2 from ct2set, if not exists then construct one and put it into ct2set

8: template(
si ,si+1)

2 .occurrence + +
9: end if
10: end while
11: return ct2set

Step-A2: Evaluate the candidate set obtained from Step-A1 and acquire the filtered R[2].

A detailed description of this step is provided in Algorithm 2. The input of Step-A2 is ct2set,
which is the output of Step-A1. Since the parameters required for computing the cohesion coefficient
are available after Step-A1, Step-A2 no longer needs to access S again but only needs to traverse ct2set.

Two necessary conditions exist in the evaluation process. One condition is whether the occurrence
of a multiline template is above the threshold MIN_OCCURRENCE, which means those general
events should have a certain repeatability. If the candidate’s statistical occurrence obtained in the
preliminary collection is lower than MIN_OCCURRENCE, it should be screened. The other con-
dition is the cohesion coefficient of the multiline templates. Because the higher CohesionCoef is,
the more likely it is that the candidate template will be treated as a real multiline event template
when evaluating multiline event template candidates, MIN_COHESION_COEF is used to screen the
multiline candidates. Since the calculation of the cohesion coefficient for two-line templates does not
have a prior basis, we must perform calculations for each component’s cohesion support of the two
constituent elements. After obtaining the cohesion coefficient, the candidate templates can be filtered
according to MIN_COHESION_COEF to obtain the R[2] results.

Algorithm 2: Evaluate and filter the ct2set to get R[2]
Require: ct2set; Minimal occurrences of multiline event MIN_OCCURRENCE; Minimal
CohesionCoef of multiline event MIN_COHESION_COEF
Ensure: R[2]
1: for each templatei

2 in ct2set do
2: if templatei

2.occurrence < MIN_OCCURRENCE then
3: remove templatei

2 from ct2set
4: continue
5: end if

6: CohesionCoef
(
templatei

2

) = CohesionSup
(
templatei

2, s1

) + CohesionSup
(
templatei

2, s2

)

2
7: if CohesionCoef

(
templatei

2

)≤ MIN_COHESION_COEF then
8: remove templatei

2 from ct2set
(Continued)



CSSE, 2023, vol.46, no.3 2983

Algorithm 2: Continued
9: continue
10: end if
11: end for
12: R[2] =ct2set

Step-B1: Collect all candidate templates that may belong to R[k] (k > 2) based on R[k − 1] to
prepare for the next step of evaluation and selection.

As mentioned previously, multiline template discovery explores R[k] based on R[k−1]. Step-A1
and Step-A2 can be regarded as initialization steps. Based on R[2], the subsequent iterations already
have the starting conditions. Like the process of collecting and evaluating R[2], each subsequent
iteration involves collecting and evaluating the results of the current layer for filtering. The detailed
process of the initial collection of templatek in the R[k] (k > 2) layer is described in Algorithm 3.

Algorithm 3: Collect all of the candidate templatek based on R[k-1] (k > 2)
Require: S; R[k − 1]
Ensure: ctkset
1: Initialize an empty ctkset to store candidate templates
2: i = 0
3: for each pair

(
templatep

k−1, templateq
k−1

)
in the R[k-1] do

4: if templatep
k−1.subseq [1 : last] == templateq

k−1.subseq [0 : last − 1] then
5: nSubseq = templatep

k−1.subseq.append(templateq
k−1.subseq [last])

6: construct templatek

7: templatek.subseq = nSubseq
8: templatek.CohesionCoef = templatep

k−1.CohesionCoef
9: put templatek into ctkset
10: end if
11: end for
12: return ctkset

Compared to the collection of ct2set in Step-A1, Step-B1 has support from the lower layer R[k−1].
Therefore, a proper growth strategy can replace the full traversal of S, which significantly improves
execution efficiency.

Step-B2: Evaluate the ctkset output from Step-B1 to obtain the filtered R[k] (k > 2) result.

In contrast to the evaluation for R[2], we do not need to compute the cohesion support for each
component line of the candidate template in ctkset. Since the R[k−1] result is already determined, for
the ctkset candidate template, we only need to compute the cohesion support of the last grown line
based on the k−1 layer. A detailed description of this sub-process is provided in Algorithm 4.

Algorithm 4: Evaluate and filter the ctkset to obtain R[k] result
Require: ctkset; S; Maximum time span of multiline event MAX_WINODW_TS_SPAN;
Minimal CohesionCoef of multiline event MIN_COHESION_COEF;
Ensure: R[k];
1: for each templatek in ctkset do
2: t = templatek [last]

(Continued)



2984 CSSE, 2023, vol.46, no.3

Algorithm 4: Continued
3: t_occurrences = accumulate the number of occurrences of t in the S
4: p_occurrences=accumulate the number of occurrences of templatek.subseq (within
MAX_WINODW_TS_SPAN) in the S
5: t_CohesionSup = t_occurrences/p_occurrences
6: templatek.CohesionCoef = (templatek.CohesionCoef × (k − 1) + t_CohesionSup) /k
7: if templatek.CohesionCoef < MIN_COHESION_COEF then
8: remove templatek from ctkset
9: end if
10: end for
11: R[k] = ctkset

Step-C: Review result R to eliminate redundant items.

Since R is obtained by layer-by-layer growth, there may be situations that higher-layer templates
contain lower-layer templates. Therefore, R must be reviewed after its initial acquisition to eliminate
redundancy. The situation may be complicated, such as assuming R[3] contains susvsw and R[4] contains
susvswsx and susvswsy. The correct result has two possible orientations: 1) eliminating susvsw in R[3] and
keeping only the two templates in R[4]; 2) susvsw in R[3] has the reasons to be kept independently, so it
is necessary to keep all three templates. To accurately eliminate the redundancy, R must be reviewed
from the bottom up. The detailed process is described in Algorithm 5.

Algorithm 5: Merge result from R[k] to R[k + 1]
Require: R; GROWTH_FACTOR
Ensure: filtered R;
1: k = 2
2: while k < R.size do
3: for each templatei

k in R[k] do
4: count = 0
5: for each templatej

k+1 in R[k + 1] do
6: if templatej

k+1 extends from templatei
k then

7: count = count + templatej
k+1.occurrences

8: end if
9: end for
10: if abs

(
count − templatei

k.occurrences
)
/templatei

k.occurrences < GROWTH_FACTOR then
11: remove templatei

k from R[k]
12: end if
13: end for
14: k = k + 1
15: end while

Algorithm 5 describes the process of eliminating possible redundancies arising from adjacent
entailment relations from R. Specifically, for some template in the lower layer of two adjacent layers,
the total number of occurrences of the higher-level templates extending from it is calculated, and
the redundancy of the targeted lower-layer template is determined by comparing the calculated
result with its occurrence number. If the two occurrence numbers are close, the targeted lower-layer
template is determined to be redundant, and if not, it is kept as a valid result. A threshold parameter,



CSSE, 2023, vol.46, no.3 2985

GROWTH_FACTOR, is used to control the trade-off when making interlayer redundancy judgments.
Notably, the algorithm can benefit from support information obtained from the preorder steps to
determine whether the inclusion relation is true. With Step C, the redundant subsequences in R will
be eliminated from the low to the high layers.

3.3 Algorithm Parameters
In this subsection, several control parameters involved in LPME are briefly described. LPME has

four critical control parameters that make it more applicable. Users can configure these parameters
with reasonable values for different context environments to drive LPME to produce optimal results.
These four parameters belong to two categories: those used to control the capacity of the sliding
window, namely, MAX_WINODW_TS_SPAN, and those used to adjust the evaluation criteria
to filter the initial collection of multiline template candidates, namely, MIN_OCCURRENCE,
MIN_COHESION_COEF, and GROWTH_FACTOR.

MAX_WINODW_TS_SPAN limits the maximum time span between the start and end rows in
a multiline event template. Usually, there is no substantial printing latency between the multiple lines
recording the same event. According to our experience, MAX_WINODW_TS_SPAN should be set
to 3–5 s.

In order to filter out incorrect multiline template candidates, a frequency threshold must be
defined according to field experience. This threshold is named MIN_OCCURRENCE. If the eval-
uated items have a lower frequency than MIN_OCCURRENCE, they will be filtered out because
they are not sufficiently representative.

Because of the logic that the higher CohesionCoef is, the more likely it is that the candidate tem-
plate will be treated as a real multiline event template, when evaluating multiline event template candi-
dates, the most crucial evaluation indicator is the value of CohesionCoef . According to the definition
in Eq. (2) in Section 3.1, the range of the cohesion support is [0.0, 1.0]. The larger the cohesion support
value of the evaluated multiline event, the more likely it is to be true. MIN_COHESION_COEF is used
to screen the multiline candidates. However, according to practical experience, the ideal value of 1.0 is
not suitable for use as the real evaluation criterion. Noise interference is inevitable in the production
environment. Additionally, the discovery of multiline templates is based on the recognition of single-
line templates, and that baseline is usually not 100% exact. Therefore, MIN_COHESION_COEF
should be set to a value less than but close to 1.

In the iterative layer-by-layer search to obtain R, since the judgment input of layer k + 1 originates
from layer k, once the iteration of layer k + 1 is complete, it is necessary to check whether there are
redundant templates within these two adjacent layers. For example, consider the case where there is
one template susvsw at layer three and two templates susvswsx/susvswsy at layer 4. There is a trade-off for
the above case: whether susvsw is retained in the final result. We introduce the GROWTHTH_FACTOR
parameter, which takes a value in [0, 1], to control the trade-off when making interlayer redundancy
judgments. The smaller the GROWTHTH_FACTOR is, the more likely it is that only the low-layer
results are kept; the larger the GROWTHTH_FACTOR is, the more likely it is that only the high-layer
results are extended.

3.4 Complexity Analysis
Based on the explanation of Step-A1 and Step-A2 in Section 3.2, in the computing process for

R [2], one full scan of S is performed using a sliding window of size 2, and a total of (n–1) calculations
are performed. The subsequent computations for R[k] (k > 2) do not require another full scan of S



2986 CSSE, 2023, vol.46, no.3

but are based on the results of R[k−1], which grows by matching the prefixes and suffixes between
each pair in R[k−1]. For example, a multiline template, template5, with a length of five, is computed
as shown in Fig. 5. The figure shows five layers, corresponding to 5 iterations of the layer-by-layer
growth calculation. Each dashed box at every layer in Fig. 5 is an operation of matching and evaluating.
The operation can benefit from maintaining the indexes on some required information, including the
template prefixes and suffixes, as well as the positions and counts of si in S so that the complexity of
the matching and evaluation process can be considered as constant time with order O(1). Therefore,
in Fig. 5, the computation numbers for the <s1s2s3s4s5> template are exactly the number of dashed
boxes; in this case, 1 + 2 + 3 + 4 = 10. Generally, for a multiline template, templatel, with length l,
the number of computations required is 1 + 2 + 3 + · · · + (l-2) + (l-1) = l × (l-1)/2. Therefore, the
complexity of LPME is not related to the scale of the input S but is related to the scale of the output
result, including the length l of the multiline template and the number of types of multiline templates

v. In summary, the time complexity of LPME can be expressed as
v∑

i=1

li × (li − 1)/2. From the practical

application perspective, the length l of the final multiline template is much smaller than the length n of
S, and in most cases, it is at most a few dozen lines. In addition, the number of multiline event types v
contained in a batch of samples is generally approximately a few dozen. Therefore, the time complexity
of the actual execution is on the order of approximately 102. Moreover, the length of the input S is n,
and n is often on the order of 104 or 105. Thus, the time complexity of the actual execution is far less
than O(n). If l and v are predictable, it is closer to a constant time.

Figure 5: The computation for a multiline template template5

Concerning space complexity, the total space complexity depends on the size of the intermediate
results generated during the traversal process. The intermediate results are the multiline template
candidates. For simplicity’s sake, each template line is treated as a storage unit, and the space
complexity is calculated based on the number of multiline template candidates. The number of
multiline template candidates corresponds to the number of dashed boxes in Fig. 5. The result is

v∑

i=1

li × (li − 1)/2. Therefore, similar to the time complexity, the size of the space occupied by the

algorithm is at the same level as the number of final multiline templates present in the input sample.
The number of multiline templates in an input sample is extremely limited, generally from a dozen to
several dozen. In summary, the space complexity of LPME, on average, is close to the constant space
complexity.

4 Evaluation

In this section, we perform an experimental evaluation of LPME on four real datasets. The
experimental results corroborate the theoretical analysis and demonstrate the effectiveness of LPME.



CSSE, 2023, vol.46, no.3 2987

4.1 Experimental Setting
The datasets used in our experiments are outlined in Table 1. The essential information of the

datasets is as follows.

1) Windows OS logs are generated by the component-based servicing (CBS) module of Microsoft
Windows. The logs record various components’ loading, updating, and unloading processes.

2) OpenStack logs are generated by OpenStack. The logs record the running status of OpenStack.
OpenStack is an open-source cloud computing management platform that manages and
controls many computing, storage, and network resources in data centers and provides cloud
hosts.

3) HealthApp logs are generated by a mobile application named HealthApp. The logs trace the
running status of this app.

4) Payment System logs are from the payment system of a commercial bank. These logs record
the traces of service calls in the distributed system.

Table 1: Summary of the experimental datasets

Log source Lines Data size Time Accessibility

Windows OS 35,040 4.79 MB 11 days Public
OpenStack 52,312 14.7 MB 6 h Public
HealthApp 253,395 22.4 MB 10 days Public
Payment system 308,388 38.3 MB 48 h Private

Datasets 1–3 are publicly available. They are obtained from Zhu et al. [8], who reviewed the
research in the field of automated log parsing and summarized the datasets used in previous
research, from which we select three representative logs from an operating system, middleware, and an
application. In addition to the three public datasets, we test LPME with logs from a payment system of
a commercial bank, with whom we cooperate on a log-driven artificial intelligence for IT operations
(AIOPS) project. This dataset cannot be disclosed due to confidentiality. These logs record traces of
service calls in a distributed system. The trace of an entire payment transaction consists of multiple
single-line logs. Compared to the three publicly available datasets, this dataset is complex. After a
manual review, we obtain the number of single-line and multiline templates in these four datasets and
list them in Table 2. We published the multiline templates of public datasets online [27].

Table 2: The statistics of the event templates in the test datasets

Log source Number of single-line templates Number of multiline templates

Windows OS 50 2
OpenStack 43 5
HealthApp 75 2
Payment system 104 23

The settings of the experimental parameters are presented in Table 3. MAX_WINODW_
TS_SPAN, MIN_OCCURRENCE, MIN_SUPPORT, and GROWTH_FACTOR are the control
parameters of the algorithm, of which the values come from the empirical optimization results.



2988 CSSE, 2023, vol.46, no.3

INPUT_SAMPLE_SIZE is the size of the input sample. This parameter should be set appropriately
to ensure that the sample contains as many multiline event types as possible.

Table 3: The experimental parameters

Parameters Experimental datasets

Windows OS OpenStack HealthApp Payment system

MAX_WINODW_TS_SPAN 3 3 3 3
MIN_OCCURRENCE 50 60 600 600
MIN_SUPPORT 0.9 0.95 0.98 0.98
GROWTH_FACTOR 0.01 0.02 0.02 0.02
INPUT_SAMPLE_SIZE 2,000 2,000 2,000 5,000

We use the F1-score to evaluate the effectiveness of LPME. The F1-score is pervasively used in
clustering and retrieval algorithm evaluation [28]. Its definition is shown in Eq. (3).

F1 − Score = 2 × Precision × Recall
Precision + Recall

(3)

The definitions of precision and recall are given in Eqs. (4) and (5), respectively.

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

In the above formula, TP (true positive) represents the correct induction of multiline events; FP
(false positive) represents erroneous inductions that are not real multiline events; FN (false negative)
represents results that should be multiline events but are not recognized. The statistics in Table 2 are
used as the ground truth to calculate the F1 score.

To the best of our knowledge, no other work on automated parsing of multiline events has
been published. Therefore, no other algorithms have the same purpose for comparative analysis.
Thus, the experimental work focuses on the effectiveness of LPME for different types and sizes
of logs. Theoretically, LPME is not dependent on pre-parsing for single-line templates, and any
available single-line template parsing algorithm can be applied. To verify this assumption, for the
pre-parsing of single-line logs in LPME, we use AEL [26], IPLoM [25], Drain [24], and Spell [11].
For the implementation of these algorithms, we referenced the published code (available online at
[https://github.com/logpai/logparser]) from [8]. We code the program in Java 8. All the experiments
are conducted on a server with an Intel(R) Core(TM) i5-8250U CPU @ 1.6 GHz, 1.80 GHz, 16 GB
RAM, and Windows 11 installed.

4.2 Effectiveness
We divided the experiments into four groups according to the pre-parsing method, and each

group was validated on four datasets. The evaluation results are provided in Table 4. As seen from
the resulting data in Table 4, the F1 score of most of the experiments exceeds 0.9. Each group mainly
obtained individual lower F1 scores for the OpenStack dataset because the total number of multiline
event types in the OpenStack dataset is only five. When one or two false-positive results appear in the



CSSE, 2023, vol.46, no.3 2989

parsing result, it will considerably affect the precision. Therefore, for the above case, the effectiveness
of LPME is sufficient to achieve the target of assisting manual recognition of multiline events.

According to the cross-group comparison of the results, different pre-parsing algorithms will
not lead to conspicuous differences in the effectiveness of subsequent multiline event parsing. The
prerequisite for correct parsing of multiline events is the accuracy of the pre-parsing, especially the
accuracy of extracting the single-line templates contained in the multiline events. LPME is independent
of the selected technical route of the pre-parsing algorithm. In our experiments, all four pre-parsing
algorithms can correctly identify the single-line templates composing the multiline events in each
dataset. However, for the OpenStack dataset, the precision is lower because some false multiline
templates are misidentified.

Overall, LPME acquires acceptable results on different datasets that are sufficient to assist humans
in identifying multiline events efficiently and correctly.

Table 4: The evaluation results. The experiments are divided into four groups according to the
pre-parsing method, and each group is validated on four datasets

Group no. Pre-parsing methods Datasets F1 Precision Recall

1 AEL Windows System 1.00 1.00 1.00
OpenStack 0.83 0.71 1.00
HealthApp 1.00 1.00 1.00
Payment System 0.94 0.88 1.00

2 IPLoM Windows System 1.00 1.00 1.00
OpenStack 0.91 0.83 1.00
HealthApp 1.00 1.00 1.00
Payment System 0.96 0.92 1.00

3 Drain Windows System 1.00 1.00 1.00
OpenStack 1.00 1.00 1.00
HealthApp 1.00 1.00 1.00
Payment System 0.94 0.88 1.00

4 Spell Windows System 1.00 1.00 1.00
OpenStack 0.91 0.83 1.00
HealthApp 1.00 1.00 1.00
Payment System 0.98 0.96 1.00

4.3 Performance and Scalability
In the big data era, the log volume is continuously growing. Meanwhile, the INPUT_SAMPLE

_SIZE parameter in the above validation experiments is generally set as large as possible to ensure the
integrity of the parsing results. This setting applies intense pressure to the performance and scalability
of log parsing methods. Whether LPME can achieve satisfactory throughput for large-scale parsing
samples is critical. To evaluate the scalability of LPME, we gradually increase the input sample size.
Then, we use several comparison groups to assess the increasing time cost of running LPME. For
the Windows System, OpenStack, and HealthApp datasets, INPUT_SAMPLE_SIZE is set to 2, 4,
8, 16, and 32 k. For the payment system dataset, INPUT_SAMPLE_SIZE is set to 5, 10, 20, 40,
and 80 k. The experimental results are shown in Fig. 6. The time cost recorded in our experiment
is only for the multiline event parsing process and does not include pre-parsing. As seen from the



2990 CSSE, 2023, vol.46, no.3

resulting data in Fig. 6, regardless of the preceding part, the running time of LPME does not increase
considerably when the input size doubles; only a slight increase is observed. The main reason for
the slight growth is that the increasing input scale increases the I/O overhead of the first load and
traversal process. In addition, when comparing the performance of different pre-parsing methods on
the same dataset, no substantial differences were observed; pre-parsing methods do not considerably
affect the runtime of multiline event parsing in LPME. The phenomena observed in the experiment
are consistent with the conclusions of the algorithm complexity in Section 3.4. The actual run time
of LPME is not correlated with the size of input S but with the output’s scale. In our experiments,
both the number of types and the length of the multiline template are within an order of 102, such that
LPME’s performance is close to constant time. Another notable point is that due to the periodicity of
the logs, an extreme increase in sample size is equivalent to the effect of repeating samples. Therefore,
after the input samples reach some threshold, further increasing the sample size no longer positively
impacts the algorithm’s effectiveness.

(a) Windows System

(b) OpenStack

(c) HealthApp

(d) Payment System

Figure 6: The scalability test results. The horizontal axis represents different input sizes. The vertical
axis represents the running time. The unit of the running time is seconds, and the presented value is
the average of ten runs



CSSE, 2023, vol.46, no.3 2991

4.4 Interference of Noise
Due to factors such as concurrent processes, it cannot be ruled out that some multiline events

are interleaved with other unrelated log outputs. Therefore, consecutively output multiline events
may become discontinuous in the printed log text. This situation is regarded as noise disruption. We
examine the noise tolerance of LPME as follows. We deliberately insert noisy logs into the interior
of the multiline events to randomly disturb the experimental datasets. We control the noise level by
the probability p. The larger p is, the greater the amount of noise added to the datasets. For the four
datasets, we take p = 0%, p = 10%, p = 15% and p = 20%. For every experiment, we repeat the tests ten
times and take the average F1 score for comparison. The results are shown in Fig. 7. The result when
p = 0% is the original noise-free result. Fig. 7 shows that as p increases, the F1-score obtained by LPME
decreases rapidly. Moreover, the performance of LPME does not decrease linearly with an increasing
value of p but accelerates. Starting from p = 15%, LPME can hardly obtain the correct parsing result.
The reason for the above phenomenon is that the LPME is designed based on cohesiveness, but the
added noise damages the cohesiveness. Therefore, noise can easily lead to algorithm failure. Although
noise is not naturally present in the validation dataset, we artificially create noise for the experiments,
and such noise may exist in other types of system logs. Therefore, this problem will need to be solved
in future work.

Figure 7: Testing for noise interference

5 Conclusion and Future Work

5.1 Conclusion and Discussion
Automated log parsing is required for log mining and analysis. Still, existing research on auto-

mated parsing assumes that each event object corresponds to only a single line of log text, which is
inconsistent with current application requirements. Based on previous research, this paper proposes
LPME, an automated parsing method for multiline events. LPME is a layer-by-layer iterative search
algorithm based on heuristic and empirical rules. In addition to the theoretical analysis, we experi-
mentally test the proposed algorithm on four real datasets, including three publicly available datasets
and one confidential dataset. Evaluations show that the actual time complexity of LPME parsing for
multiline events is close to the constant time, which enables it to manage large-scale sample inputs.
On the experimental datasets, the performance of LPME achieves 1.0 for recall, and the precision is



2992 CSSE, 2023, vol.46, no.3

generally higher than 0.9. The experimental results corroborate the theoretical analysis and confirm
the effectiveness and practicability of LPME.

In addition, we give the following notes about limitations and crucial assumptions in this
paper. First, as discussed in Section 4.4, LMPE currently shows limits when dealing with noisy
log data. The experimental data show that the performance of LPME is almost dissipated at noise
probability = 15%. Although there is no naturally occurring noise in the dataset used for the validation
in this paper, various types of noise inevitably exist in other logs in reality. Therefore, it is necessary to
supplement the response to this issue in future work. Second, LPME is essentially an offline batch data
processing method that requires the user to provide samples for processing. This paper assumes that
the user can select sample logs of appropriate size and content. Although we tested the performance
of LPME in Section 4.3 and concluded that LPME has a good execution time performance for the
growth of sample inputs, LPME can handle larger data samples. However, if the samples are not
selected sufficiently, the results obtained by LPME will be incomplete. Therefore, it will be necessary
to provide a more scientific method to guide users in selecting log samples.

5.2 Future Work
In future work, we will consider the possible noise interference and the sample selection problem

mentioned above. In this regard, we envisage that a preprocessing module can be added to LPME
to preprocess the total amount of logs. The purpose of preprocessing is 1) to mark the noisy data
so that the subsequent steps can ignore the noisy log messages and 2) to mark the most reasonable
range of log samples, which is guaranteed to contain all types of log messages without being too
large. Machine learning techniques will be one of the possible routes to explore to implement the
preprocessing module. In particular, recurrent neural network (RNN) technology with contextual
memory represented by long short term memory (LSTM) [29,30], which has a natural echo with the
characteristics of log message streams, will be one of the technologies worthy of verification in the
future. For LPME, these future efforts will effectively enhance the robustness, expand the scope of
application, and improve the ease of use.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu et al., “DeepTraLog: Trace-log combined microservice anomaly

detection through graph-based deep learning,” in IEEE/ACM 44th Int. Conf. on Software Engineering
(ICSE), Pittsburgh, PA, USA, pp. 623–634, 2022.

[2] R. Sinha, R. Sur, R. Sharma and A. K. Shrivastava, “Anomaly detection using system logs: A deep learning
approach,” International Journal of Information Security and Privacy, vol. 16, no. 1, pp. 1–15, 2022.

[3] S. Zhang, L. Song, M. Zhang, Y. Liu, W. Meng et al., “Efficient and robust syslog parsing for network
devices in datacenter networks,” IEEE Access, vol. 8, pp. 30245–30261, 2020.

[4] M. Abolfathi, I. Shomorony, A. Vahid and J. H. Jafarian, “A game-theoretically optimal defense paradigm
against traffic analysis attacks using multipath routing and deception,” in Proc. of the 27th ACM on Symp.
on Access Control Models and Technologies, New York, NY, USA, pp. 67–78, 2022.

[5] R. Wang, S. Ying and X. Jia, “Log data modeling and acquisition in supporting SaaS software performance
issue diagnosis,” International Journal of Software Engineering and Knowledge Engineering, vol. 29, no. 9,
pp. 1245–1277, 2019.



CSSE, 2023, vol.46, no.3 2993

[6] M. Macák, D. Kruzelova, S. Chren and B. Buhnova, “Using process mining for Git log analysis of projects
in a software development course,” Education and Information Technologies, vol. 26, no. 5, pp. 5939–5969,
2021.

[7] Y. Tao, S. Guo, C. Shi and D. Chu, “User behavior analysis by cross-domain log data fusion,” IEEE Access,
vol. 8, pp. 400–406, 2020.

[8] J. Zhu, S. He, J. Liu, P. He, Q. Xie et al., “Tools and benchmarks for automated log parsing,” in Proc. of
the 41st Int. Conf. on Software Engineering: Software Engineering in Practices, Montreal, QC, Canada, pp.
121–130, 2019.

[9] H. Dai, H. Li, C. -S. Chen, W. Shang and T. -H. Chen, “Logram: Efficient log parsing using nn-gram
dictionaries,” IEEE Transactions on Software Engineering, vol. 48, no. 3, pp. 879–892, 2022.

[10] S. Huang, Y. Liu, C. J. Fung, R. He, Y. Zhao et al., “Paddy: An event log parsing approach using dynamic
dictionary,” in IEEE/IFIP Network Operations and Management Symp., Budapest, Hungary, pp. 1–8, 2020.

[11] M. Du and F. Li, “Spell: Online streaming parsing of large unstructured system logs,” IEEE Transactions
on Knowledge and Data Engineering, vol. 31, no. 11, pp. 2213–2227, 2019.

[12] H. Studiawan, F. Sohel and C. Payne, “Automatic event log abstraction to support forensic investigation,”
in Proc. of the Australasian Computer Science Week, Melbourne, VIC, Australia, vol. 1, pp. 1–9, 2020.

[13] W. Meng, Y. Liu, F. Zaiter, S. Zhang, Y. Chen et al., “LogParse: Making log parsing adaptive through word
classification,” in 29th Int. Conf. on Computer Communications and Networks, Honolulu, HI, USA, pp. 1–9,
2020.

[14] G. Ayoade, A. El-Ghamry, V. Karande, L. Khan, M. F. Alrahmawy et al., “Secure data processing for IoT
middleware systems,” The Journal of Supercomputing, vol. 75, no. 8, pp. 4684–4709, 2019.

[15] C. Qiu, H. Yao, C. Jiang, S. Guo and F. Xu, “Cloud computing assisted blockchain-enabled internet of
things,” IEEE Transactions on Cloud Computing, vol. 10, no. 1, pp. 247–257, 2022.

[16] D. El-Masri, F. Petrillo, Y. -G. Guéhéneuc, A. Hamou-Lhadj and A. Bouziane, “A systematic literature
review on automated log abstraction techniques,” Information and Software Technology, vol. 122, no. 2, pp.
106276, 2020.

[17] W. Xu, L. Huang, A. Fox, D. A. Patterson and M. I. Jordan, “Detecting large-scale system problems by
mining console logs,” in Proc. of the 27th Int. Conf. on Machine Learning (ICML-10), Haifa, Israel, pp.
37–46, 2010.

[18] R. Vaarandi, “Mining event logs with SLCT and LogHound,” in IEEE/IFIP Network Operations and
Management Symp.: Pervasive Management for Ubioquitous Networks and Services, Salvador, Bahia, Brazil,
pp. 1071–1074, 2008.

[19] R. Vaarandi and M. Pihelgas, “LogCluster-a data clustering and pattern mining algorithm for event logs,”
in 11th Int. Conf. on Network and Service Management, Barcelona, Spain, pp. 1–7, 2015.

[20] Q. Fu, J. -G. Lou, Y. Wang and J. Li, “Execution anomaly detection in distributed systems through
unstructured log analysis,” in The Ninth IEEE Int. Conf. on Data Mining, Miami, Florida, USA, pp. 149–
158, 2009.

[21] L. Tang, T. Li and C. -S. Perng, “LogSig: Generating system events from raw textual logs,” in Proc. of the
20th ACM Conf. on Information and Knowledge Management, Glasgow, United Kingdom, pp. 785–794,
2011.

[22] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang et al., “LogMine: Fast pattern recognition for log
analytics,” in Proc. of the 25th ACM Int. Conf. on Information and Knowledge Management, Indianapolis,
IN, USA, pp. 1573–1582, 2016.

[23] K. Shima, “Length matters: Clustering system log messages using length of words,” arXiv, 1611.03213,
1–10, 2016.

[24] P. He, J. Zhu, Z. Zheng and M. R. Lyu, “Drain: An online log parsing approach with fixed depth tree,” in
2017 IEEE Int. Conf. on Web Services, Honolulu, HI, USA, pp. 33–40, 2017.



2994 CSSE, 2023, vol.46, no.3

[25] A. Makanju, A. N. Zincir-Heywood and E. E. Milios, “A lightweight algorithm for message type extraction
in system application logs,” IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 11, pp.
1921–1936, 2012.

[26] Z. M. Jiang, A. E. Hassan, G. Hamann and P. Flora, “An automated approach for abstracting execution
logs to execution events,” Journal of Software Maintenance and Evolution: Research and Practice, vol. 20,
no. 4, pp. 249–267, 2008.

[27] LPME, 2022. [Online]. Available: https://github.com/yumg/lpme
[28] P. He, J. Zhu, S. He, J. Li and M. R. Lyu, “Towards automated log parsing for large-scale log data analysis,”

IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 6, pp. 931–944, 2018.
[29] A. Althobaiti, A. A. Alotaibi, S. Abdel-Khalek, E. M. Abdelrahim, R. F. Mansour et al., “Intelligent data

science enabled reactive power optimization of a distribution system, sustainable computing,” Informatics
and Systems, vol. 35, pp. 100765, 2022.

[30] C. You, Q. Wang and C. Sun, “sBiLSAN: Stacked bidirectional self-attention LSTM network for anomaly
detection and diagnosis from system logs,” in Intelligent Systems and Applications-Proc. of the 2021
Intelligent Systems Conf., Amsterdam, The Netherlands, vol. 296, pp. 777–793, 2021.

https://github.com/yumg/lpme

	An Efficient Way to Parse Logs Automatically for Multiline Events
	1 Introduction
	2 Related Work
	3 Methods
	4 Evaluation
	5 Conclusion and Future Work
	References


