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Abstract: Intelligent identification of sandstone slice images using deep learning
technology is the development trend of mineral identification, and accurate miner-
al particle segmentation is the most critical step for intelligent identification. A
typical identification model requires many training samples to learn as many dis-
tinguishable features as possible. However, limited by the difficulty of data acqui-
sition, the high cost of labeling, and privacy protection, this has led to a sparse
sample number and cannot meet the training requirements of deep learning image
identification models. In order to increase the number of samples and improve the
training effect of deep learning models, this paper proposes a tight sandstone
image data augmentation method by combining the advantages of the data defor-
mation method and the data oversampling method in the Putaohua reservoir in the
Sanzhao Sag of the Songliao Basin as the target area. First, the Style Generative
Adversarial Network (StyleGAN) is improved to generate high-resolution tight
sandstone images to improve data diversity. Second, we improve the Automatic
Data Augmentation (AutoAugment) algorithm to search for the optimal augmen-
tation strategy to expand the data scale. Finally, we design comparison experi-
ments to demonstrate that this method has obvious advantages in generating
image quality and improving the identification effect of deep learning models
in real application scenarios.

Keywords: Tight sandstone; image synthesis; generative adversarial networks;
data augmentation; image segmentation

1 Introduction

Unconventional oil and gas have become a critical replacement field for the sustainable development of
the global oil industry [1,2]. Unlike conventional oil and gas, unconventional oil and gas reservoirs
represented by tight sandstones have complex pore structures and special fluid transport and aggregation
mechanisms, making their large-scale exploration and development difficult [3,4]. Therefore, the image
identification of tight sandstone thin slices is important to analyze the microscopic pore structure and
explore the fluid transport and aggregation mechanisms [5,6].
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Currently, deep learning-based image analysis methods are widely used for tight sandstone image
analysis tasks because they have the advantages of more accurate results and faster speed than traditional
methods [7–9]. However, such deep learning algorithms typically fall within the domain of supervised
artificial intelligence and often rely too much on high-quality, labeled big data for training. The tight
sandstone image dataset is relatively limited due to the difficulty of data acquisition, the high cost of
labeling, and privacy protection. This makes it hard to improve the generalization ability of deep learning
models. For this reason, researchers usually use data deformation methods or data oversampling methods
for data augmentation to generate “new data” by transforming the original data, so that deep learning
models can extract more useful information and improve the generalization ability of the models [10].

The data deformation method takes a single image itself as the object of operation. It changes the
manifestation of the original image by various transformations (rotation, scale, distortion, etc.) to produce
a large number of “new images” different from the original image [11]. Cirillo et al. [12] used data
deformation methods to achieve brain tumor image augmentation. By comparing the augmentation effects
of different operations, he concluded that augmentation strategies need to be developed based on image
properties and task requirements. But the augmentation strategy needs to be manually chosen, making it
relatively subjective and inefficient. Inspired by previous works of Automatic Machine Learning
(AutoML) on Neural Architecture Search (NAS) [13–15], some researchers propose using reinforcement
learning [16] or density matching [17] to search for augmentation strategies, which solved the problem of
augmentation strategies requiring manual selection and obtained higher validation accuracy than the
manual formulation of augmentation strategies on the target dataset [18–20]. However, such algorithms
were designed for natural images, so it is hard to apply directly to the tight sandstone image augmentation.

Generative Adversarial Networks (GANs) are a representative technique of data oversampling methods
[21], which synthesize “new images” that do not exist in real scenes but have a probability of occurrence by
oversampling the data distribution. But the network requires a large amount of data for training, and it is hard
to generate high-resolution images [11]. Karras et al. [22–24] investigated the application of GANs in
generating high-resolution images and effectively improved the quality of generated images with small-
scale data training by redesigning the generator’s structure and adding adaptive discriminator
augmentation. However, the quality of the generated images is unsatisfactory in the case of many
foreground targets, complex structures, and relatively smaller training data scales [8].

In summary, it is difficult to solve the tight sandstone image augmentation problem with limited quantity
and complex image structure using the data deformation method or the data oversampling method alone. To
this end, this paper proposes a hybrid tight sandstone image augmentation method by fusing the respective
advantages of the data deformation method and the data oversampling method. Firstly, to improve the data
diversity, the style control method and the augmentation intensity adjustment period are modified for the
StyleGAN to propose the Self-Attention-Based Style Generative Adversarial Network (SA-StyleGAN) to
generate high-resolution tight sandstone images. Secondly, to expand the data scale, the augmentation
strategy search space and the search algorithm are redesigned for the AutoAugment to propose the
Adaptive Stochastic Natural Gradient-Based Automatic Data Augmentation (ASNG-AA) algorithm to
search for the optimal augmentation strategy. Finally, the effectiveness of the method is experimentally
demonstrated in real appliance scenarios.

The method proposed in this paper has been applied to real scenarios and has good results. For example,
this method was used by the Research Institute of Exploration and Development of Daqing Oilfield to
augment the tight sandstone thin slice images in the Putaohua reservoir in the Sanzhao Sag of the
Songliao Basin [25] to train the Mask Region-Based Convolutional Neural Network (Mask R-CNN) [26]
algorithm to realize the segmentation and recognition of tight oil reservoir sandstone images. In the
practical application process, the method effectively improves the recognition performance of the model,
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saving considerable time and economic costs for research institutions and contributing to unconventional oil
and gas reservoir evaluation and exploration research.

The rest of this paper is organized as follows. Section 2 elaborates on the tight sandstone image
augmentation research method and condenses the key issues. The improvement schemes of SA-
StyleGAN and ASNG-AA are described in Section 3 and Section 4, respectively. Section 5 discusses the
experimental results. Section 6 summarizes the work of this paper and provides an outlook for future work.

2 Tight Sandstone Image Augmentation Framework

In order to solve the problems of insufficient diversity and the limited number of tight sandstone images,
this study proposes a hybrid tight sandstone image augmentation method based on the idea of “divide and
conquer, complementary advantages.” The problems are solved separately by integrating the generative
adversarial network and automatic data augmentation. The general framework of the proposed method is
shown in Fig. 1.

The framework for augmentation of tight sandstone images proposed in this paper primarily consists of
the following four parts. The first two are the critical parts of research.

(1) Image generation: Based on the basic architecture of StyleGAN, SA-StyleGAN is proposed to use the
original tight sandstone image training to generate new images.
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Figure 1: The framework of the hybrid tight sandstone image augmentation method
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(2) Augmentation strategy search: Based on the basic architecture of AutoAugment and with Residual
Network 50 (ResNet50) [27] as the sub-network, ASNG-AA is proposed to train a sub-network using
the original tight sandstone images to search for the optimal augmentation strategy.

(3) Data hybridization: Hybridizing the original image with the generated image improves data diversity
and preliminarily expands the data scale.

(4) Data augmentation: Augmentation of hybrid datasets through search strategies to achieve large-scale
dataset augmentation.

2.1 Critical Technologies

2.1.1 StyleGAN
StyleGAN achieves unsupervised and highly controllable natural image generation by mainly relying on

three components: latent code, noise, and adaptive discriminator augmentation. The natural image has a
single number of foreground targets, continuous information, and significant stylistic variation, making it
significantly different from the tight sandstone image. The issues with these three components when
generating tight sandstone images are discussed further below.

(1) Latent code and mixing regularization

StyleGAN controls the key features such as shape, color, and texture of foreground targets in the
generated images by latent codes and further achieves a scale-specific level of feature control with the
help of mixing regularization operations. However, the number of foreground targets in tight sandstone
images is numerous. The mixing regularization operation will lead to feature fusion of different kinds of
neighboring foreground targets, making the generated images difficult to distinguish and process.

(2) Noise

The StyleGAN generation network adds noise to each pixel in the generated image after each
convolution to achieve random changes in the image features. This noise affects only the feature details
of the generated image. It does not change the image’s key features and overall structure. However, the
same class of foreground target features in the tight sandstone image are similar and do not differ
significantly. Too much-added noise will cause the generated image to contain unnecessary noise and
degrade the quality.

(3) Adaptive discriminator augmentation

StyleGAN augments the training images during the training process and uses a heuristic Eq. (1) to judge
the degree of model overfitting once every 4 minibatch and reduces or increases the augmentation strength
according to the degree of model overfitting to alleviate the overfitting problem arising from training with
limited data. The heuristic is defined as

r ¼ E½signðDtrianÞ� (1)

E½signðDtrianÞ� indicates the mean value of the discriminator judged results on four consecutive small
batches when r ¼ 0 indicates no overfitting and r ¼ 1 indicates overfitting. Since there are only 1=10 as
many training images in this paper as there are in the citation [24], it is hard to effectively alleviate the
overfitting problem by using a fixed judgement interval to adjust the strength of the augmentation.

2.1.2 AutoAugment
AutoAugment mainly relies on the augmentation strategy search space and the search algorithm to

realize the automatic search of augmentation strategies. Given a search algorithm and a sub-network, the
Recurrent Neural Network (RNN) controller [28] trains the sub-network by sampling augmentation
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strategies from the augmentation strategy search space and returning the validation accuracy of the sub-
network to the controller, enabling it to generate better augmentation strategies over time.

Since this is the first time AutoAugment has been applied to tight sandstone image augmentation, the
problems of these two parts in the search process of the tight sandstone image augmentation strategy are
described in detail below.

(1) Augmentation strategy search space

There are differences in semantic information and image structure between natural images and tight
sandstone images. Therefore, it is hard to transfer the augmentation strategy search space designed for
natural images to the domain of tight sandstone images.

(2) Search algorithm

AutoAugment uses reinforcement learning [15] as the search algorithm, trained using partial data from
the target dataset [18], which still takes 5000 GPU hours. Fast AutoAugment uses an augmentation strategy
search method based on density matching [29], which requires splitting the training data into K-folds [30].
However, the tight sandstone image dataset is small. Overfitting happens when too little data is used to train
sub-networks.

2.2 Question Condensation

We combine the above and the introduction section to know that the tight sandstone image augmentation
method proposed in this paper must solve the following two problems to achieve tight sandstone image
augmentation:

(1) How to improve StyleGAN to generate high-quality tight sandstone images to increase the variety of
data.

(2) How to improve AutoAugment to make it applicable to tight sandstone image augmentation and
quickly search for the optimal augmentation strategy in the augmentation strategy search space to
expand the data scale.

Given the above problems, the critical techniques are improved to be applicable for tight sandstone
image augmentation in this paper. Details of the improvements will be elaborated on in chapters 3 and 4.

3 Tight Sandstone Image Generation

To address the differences between tight sandstone images and natural images, we modified the style
control method and the augmentation intensity adjustment period based on the original StyleGAN, added
the self-attention mechanism [31,32], and named it SA-StyleGAN to generate high-quality tight sandstone
images, and the completed modifications are as follows. The network structure of SA-StyleGAN is shown
in Fig. 2.

3.1 Modification of the Style Control Method

(1) Remove mixed regularization

To address the problem of feature fusion easily occurring between different kinds of neighboring
foreground targets in generating tight sandstone images. This paper abandoned mixed regularization and
used only one latent code to control the key features of the generated image. That eliminates the problem
of foreground target distortion overlap and unclearness in the generated image.
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(2) Improved noise addition mechanism

Since the foreground target features of the same kind in the tight sandstone images are similar, not much
random variation is needed. In this paper, we improve the noise addition mechanism by adding noise only
once after the second 3� 3 convolutional layer in the generator block, except for the first generator block
(which adds noise twice), and so on, to reduce the impact of noise on the generated images.

(3) Self-attention Module

Due to the many foreground targets in tight sandstone images, this paper adds the self-attentive module
to the generator (only in the 256� 256 and 512� 512 pixels generator blocks) and discriminator networks
as a complement to the traditional convolution to better extract the foreground target features of tight
sandstone images. The specific equation is as follows:

Figure 2: The network structure of the SA-StyleGAN
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As shown in Eq. (2), we use attention weights aj to indicate the extent to which the model attends to the

ith location when synthesizing the jth region. x ¼ xif g Np

i ¼ 1
is the feature map from the previous

convolutional layer, and N is the number of feature locations in the feature map. Wk and Wv are 1� 1
convolution modules.

aj ¼ expðWkxjÞ
PNp

i¼1
expðWkxiÞ

(2)

As shown in Eq. (3), using the weights aj, the global feature oj of location jth is calculated by weighted
average.

oj ¼ Wv

XNp

j¼1

ajxj (3)

Finally, we add the output of the attention layer and the original feature image through the matrix to
obtain the output feature map z. As shown in Eq. (4).

zi ¼ xi þ oi (4)

Fig. 3 compares the tight sandstone samples generated by the original StyleGAN and the SA-StyleGAN.

As shown in Fig. 3, (a) and (b) are the samples generated by the original StyleGAN, and (c) and (d) are
the samples generated by SA-StyleGAN. Compared with the original StyleGAN, SA-StyleGAN generated
images have almost no noise, different kinds of sandstone particles have no distortion similar to the style
transfer, and the edges of the particles are more apparent, which are high-quality samples.

3.2 Adaptive Augmentation Intensity Adjustment Period

In this paper, we stop using a fixed interval to adjust the intensity of the augmentation and instead use the
adaptive augmentation intensity adjustment period. As shown in Eq. (5), this allows the model to change the
intensity of the augmentation based on the degree of overfitting while adjusting the position of the next
judgment dynamically.

Figure 3: Comparison of StyleGAN and SA-StyleGAN generated samples, where (a), (b) represent the
images generated by the original StyleGAN, (c), (d) represent the images generated by SA-StyleGAN
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an ¼
an�1 þ 1; if 2 � an�1 � N and r ¼ 0
an�1 � 1; if 2 � an�1 � N and r ¼ 1

N ; if an�1 ¼N and r ¼ 0
1; if an�1 , 2 and r ¼ 1

8>><
>>:

(5)

The initial minibatch interval a0 ¼ N is set first, and the training process uses recursive Eq. (5) to
dynamically calculate where the adaptive discriminator will next determine the degree of model fit. From
Eq. (1), if r ¼ 1, it means that the model is overfitted, reduce the adjustment interval a until a ¼ 1; if
r ¼ 0, it means that the model is overfitted, increase the adjustment interval a until a ¼ N . Fig. 4 shows
the changes in the quality of StyleGAN and SA-StyleGAN generated images as the number of iterations
increases.

Fig. 4 shows that the original StyleGAN gets the best result when Epoch ¼ 900, but the Fréchet
Inception Distance (FID) [33] value tends to go up during further training, which means that the model
has been overfitted. The SA-StyleGAN achieves the best result at Epoch ¼ 2800, stays stable during
further training without overfitting, and always has a lower FID value than the original StyleGAN. That
shows that the quality and stability of the best results of the images generated by the SA-StyleGAN
proposed in this paper are significantly better than the original StyleGAN.

4 Tight Sandstone Image Augmentation Strategy Search

In order to realize the automatic search of tight sandstone image augmentation strategies, this paper
selects and improves AutoAugment to describe the problem of finding the optimal augmentation strategy
as a discrete search problem. First, redesign the augmentation strategy search space applicable to tight
sandstone images; second, set the augmentation constraint rules to reduce the sampling scale of the
augmentation strategy and the search complexity; and finally, use the Adaptive Stochastic Natural
Gradient (ASNG) [34] method as the optimization algorithm to improve the search speed. The ASNG-
AA algorithm framework is shown in Fig. 5.
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Figure 4: Variation of generated image quality with iterations
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4.1 Augmentation Strategy Search Space for Tight Sandstone Images

Since this is the first time the AutoAugment algorithm has been applied to the tight sandstone image, we
must design the augmentation strategy search space for the ASNG-AA algorithm. There are 12 augmentation
operations from Augmentor [35] in the search space of this paper. Each of these operations has three basic
properties: (1) the kind of operation, (2) the magnitude of the operation, and (3) the probability of applying
this operation. The complete list of augmentation operations used in this paper is shown in Table 1.

In this paper, the following expansion constraint rules are set to reduce the search complexity of the
augmentation strategy while keeping diversity and ensuring that the category distribution of the
augmented images stays within a safe range.

(1) To reduce the search complexity while maintaining the diversity of the expansion strategies. Set a
fixed magnitude interval for each augmentation operation, determine the left boundary (LB) and

Figure 5: ASNG-AA algorithm framework. Dtrain and Dval represent the training dataset and validation
dataset respectively, ph represents the distribution of the augmentation strategy S

Table 1: Augmentation operation description and parameter range

Operation name Description LB LR

Zoom Zoom in to an image, while maintaining its size. [0.6, 0.8] [0.8, 1]

Rotate Rotate the image magnitude degrees. [−25, 0] [0, 25]

Rotate90 Rotate the image 90 degrees.

Rotate180 Rotate the image 180 degrees.

Rotate270 Rotate the image 270 degrees.

ShearX Shear the image along the horizontal axis with rate magnitude. [−15, 0] [0, 15]

ShearY Shear the image along the vertical axis with rate magnitude. [−15, 0] [0, 15]

Fliplr Flip input images horizontally.

Flipud Flip input images vertically.

Brightness Adjust the brightness of the image [0.7, 1] [1, 1.3]

Contrast Control the contrast of the image. [0.5, 1.2] [1.2, 1.9]

Elastic
transformation

The elastic transformation can distort the image while maintaining
the image aspect ratio

[2, 5] [5, 8]
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the right boundary (LR) of the magnitude interval, and discretize the magnitude into 10 values with a
uniform interval. Similarly, the application probability of each operation is discretized from 0 to
1 into 11 values with a uniform interval.

(2) To maintain the augmentation strategy rationality and avoid the situation where the augmented image
category deviates from the actual data distribution due to multiple augmentation operations on the
same image. It is specified that each augmentation strategy contains only two augmentation
operations.

In summary, searching for one augmentation operation has 1011 possibilities, so an efficient
augmentation strategy search algorithm is needed, as described below.

4.2 Stochastic Relaxation Optimization of Strategy Search

In this paper, we will describe the augmentation strategy search as a bi-level optimization problem,
which can be written as follows:

w�ðsÞ ¼ argmin
w

ftrainðw; sÞ
min
s

fvalðw�ðsÞ; sÞ

8><
>:

(6)

In Eq. (6), f ðw; sÞ is the differentiable objective function of the augmentation strategy s 2 S and the
network parameters w 2 W . ftrain and fval are the training loss and the validation loss, respectively. The
augmentation strategy search algorithm aims to optimize w and s by using gradients rwf and rsf ,
respectively. The optimal network weight w� is first found using the minimization of training loss. Then,
the optimal network weight is used to find the optimal augmentation strategy s� by minimizing the
validation loss. However, we cannot get the gradient rsf of the objective function with respect to
strategy s, so it is hard to use the gradient descent method to optimize strategy s. Although reinforcement
learning is utilized to search for s in the paper [16], evaluating each s performance is computationally
very costly.

So that gradient descent can be used to optimize strategy s, this paper first uses stochastic relaxation [34]
to turn the problem of coupled optimizing both the weight and the strategy into an optimization problem for a
differentiable objective function J. Then, the weight and the strategy are optimized using a natural gradient
descent method [36] and adaptive learning rates.

The idea of stochastic relaxation is not to directly optimize the gradient rsf of the strategy s, instead
defines a probability distribution phðsÞ parameterized by h to minimize the validation loss fval of the
objective function f ðw; sÞ for h, as shown in Eq. (7).

min
h

J ðw; hÞ ¼ R
s2Sfvalðw�ðsÞ; sÞphðsÞds

w�ðsÞ ¼ argmin
w

ftrainðw; sÞ

8><
>:

(7)

The stochastic relaxation objective function J not only takes on all of the properties of the objective
function f ðw; cÞ, but it also makes differentiable both w and h, so that the gradient descent method can
be used to update w and h. However, the gradient rwJ ðw; hÞ cannot be processed because the mean
performance of s cannot be evaluated in a closed-form way. Therefore, the gradient rwJðwt; siÞ of w is
estimated using Monte-Carlo (MC), as shown in Eq. (8).
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Gwðwt; htÞ ¼ 1

Nw

XNw

i¼1

rwftrainðwt; siÞ (8)

si � phtðsÞ; i ¼ 1; . . . ; Nw in Eq. (8), using adaptive stochastic natural gradient descent [34] to update
wt. Since Gwðwt; htÞ is used instead of rwJðw; hÞ, wt can be expressed as:

wtþ1 ¼ wt � lwGwðwt; htÞ (9)

lh represents the learning rate, and this paper uses the adaptive learning rate to accelerate the training
speed. For ht, the gradient rhJ ðw; hÞ of h is estimated using MC. Since the distance between the two
probability distributions is not Euclidean, we update ht using natural gradient descent [36], as shown in
Eq. (10).

htþ1 ¼ ht � lhFðhtÞ�1 1

Nh

XNh

j¼1

rhfvalðwtþ1; sjÞ ln phðsjÞ (10)

FðhtÞ is the Fisher matrix and is calculated as seen in the paper [34]. The execution process of the
algorithm is as follows:

Algorithm 1: ASNG-AA

Input:

w0, h0, lw, lh, Nw, Nh;

Training dataset Dtrain, validation dataset Dval, test dataset Dtest.

Output:

Optimal augmentation strategy s�, Optimal network weight w�.

Begin

01 for i = 1 to epoch do

02 for t = 1 to T do

03 Generate Nw strategies in accordance with pht ;

04 Augment Dtrain by Nw strategies, respectively;

05 Acquire the loss ftrainðwtþ1; siÞ ði ¼ 1; . . . ; NwÞ on Dtrain;

06 Update wt in accordance with Eq. (9), then acquire wtþ1;

07 Generate Nh strategies in accordance with ph;

08 for j = 1 to Nh do

09 Augment Dtrain in accordance with strategy sj;

10 Update wt to acquire ŵt;

11 Acquire the validation loss fvalðŵtÞj on Dval;

12 Recover the network parameters ŵt = wt;

13 end for

14 Update ht using the validation loss fvalðŵtÞj and strategies sjðj ¼ 1; . . . ; NhÞ in accordance with
Eq. (10);

(Continued)
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15 end for

16 end for

17 Using Dtest to test the sub-network;

18 return the final sub-networks

End

5 Example Verification

The experiments in this paper include the experiments on generated image quality comparisons and the
effects evaluation of the augmentation method. A brief description of the experimental design is shown
below.

(1) Describe how the experiment was prepared, including the experimental environment, experimental
dataset, validation algorithm, and evaluation metrics.

(2) Compare the generated image quality evaluation results of SA-StyleGAN and the comparison
algorithm to argue that SA-StyleGAN generated images have obvious advantages in terms of
clarity and diversity.

(3) Analyze the variation of performance metrics of the Mask R-CNN model under various conditions to
demonstrate that ASNG-AA, SA-StyleGAN, and hybrid tight sandstone image augmentation
methods have significant advantages in enhancing the generalization ability of the model.

5.1 Experiment Preparation

(1) Experimental environment. The operating system is Ubuntu 20.04.3, the experimental framework is
TensorFlow-GPU 1.15.0, the CPU is Intel Xeon Silver 4210R, the memory is 64 G, and the GPU is
RTX 6000.

(2) Experimental dataset. The experimental dataset is the tight sandstone thin slice images in the
Putaohua reservoir in the Sanzhao Sag of the Songliao Basin. It has 150 sandstone thin slice
images, each with a fixed size of 616� 468 pixels and a mode of three-channel RGB images, as
shown in Table 2.

Table 2: The experimental dataset distribution

Well
no.

Magnification
4� 10

Magnification
10� 10

Total

1 22 10 32

2 20 8 28

3 39 4 43

4 17 4 21

5 20 6 26

Total 118 32 150

Algorithm 1 (continued)
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In this experiment, we use the Resize image processing method to resize the image to 512� 512 pixels
and divide it into a training dataset, validation dataset, and test dataset according to the ratio of 7:2:1 under
the condition that the distribution is as equal as possible.

(3) Validation algorithm. The Mask R-CNN instance segmentation algorithm is used as the validation
algorithm, and the backbone network is Residual Network 101 (ResNet101) [27]. Using
Stochastic Gradient Descent (SGD) [37] as the optimizer, the initial learning rate is set to 0.01,
and the learning rate decay factor is also set to 0.01. The momentum factor is set to 0.9 so that
the model training does not fall into the local optimum. The transfer learning [38] method speeds
up training by using as a pre-trained model the model that was trained with the coco dataset [39].

(4) Generate image quality evaluation metrics. Three metrics, FID, Inception Score (IS) [40], and Kernel
Inception Distance (KID) [41], were used to measure the clarity and diversity of the generated
images.

(5) Augmentation performance evaluation metrics. The training Mask R-CNN model’s recognition
accuracy and segmentation precision on the test dataset is used as the augmentation performance
evaluation metrics. The IOU value is set to 0.5 during testing.

Recognition accuracy represents the number of correctly recognized targets as a percentage of the total
number of correct, incorrect, and missed detections, as shown in Eq. (11).

Accuracy ¼ TP

TP þ FP þ FN
(11)

In the above equation, TP denotes the number of correctly recognized targets, FP denotes the number of
incorrectly recognized targets, and FN denotes the number of unrecognized targets.

The segmentation precision is expressed in the segmentation error rate r, which represents the error
between the correct segmentation of sandstone particle content by the model and the manual labeling of
sandstone particle content, as shown in Eq. (12). We use the mask to calculate the sandstone particle
pixel size, as shown in Fig. 6.

r ¼ ðS1 � S2Þ
S1

(12)

In the above equation, S1 and S2 are the particle content values for manual labeled and Mask R-CNN
segmentation, respectively.

Figure 6: Calculate particle content using the results of Mask R-CNN segmentation

CSSE, 2023, vol.47, no.1 1221



5.2 Quality Comparison Experiments of Generated Images

In this paper, SA-StyleGAN and StyleGAN, Deep Convolutional GANs (DC-GAN) [42], Gradient
Penalty Based Wasserstein GANs (WGAN-GP) [43], and Least Squares GANs (LS-GAN) [44] were
trained using the original image training dataset to generate 1000 images of sandstone thin slice images,
respectively. Due to the model performance limitation, DC-GAN, WGAN-GP, and LS-GAN generate
images of 256� 256 pixels in size. The generated samples are evaluated 20 times, and the average of the
20 evaluations is finally calculated. The experimental results are shown in Table 3 and Fig. 7.

In Table 3, the IS value (higher is better) of the sandstone thin slice images generated by SA-StyleGAN
is the highest, reaching 2.3, which is 0.61, 1.1, 1.31, 1.24, and 1.31 higher than the other five methods,
respectively. The FID value (lower is better) was the lowest, reaching 24.97, which was 44.05, 264.42,
283.11, and 295.03 lower than the other five methods, respectively. The KID value (lower is better) is the
lowest, reaching 0.04, which is 0.03, 0.31, 0.42, and 0.4 lower than the other five methods, respectively.
This indicates that SA-StyleGAN generates images with higher clarity and better diversity.

Table 3: Quality evaluation results of different models generated sandstone thin slice images

Metrics
Pixels

SA-StyleGAN
512� 512

StyleGAN
512� 512

DC-GAN
256� 256

WGAN-GP
256� 256

LS-GAN
256� 256

FID 24.97 69.02 289.39 308.08 320

IS 2.31 1.7 1.21 1.07 1

KID 0.04 0.07 0.35 0.46 0.44

Figure 7: Comparison results of different models generated sandstone thin slice images
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5.3 Effect Experiments of Augmentation Methods

Before starting the experiment, set the kind of training dataset, the quantity level, and the number of
training iterations of the Mask R-CNN algorithm. Use D, D0, and D00 to denote the original image training
dataset, the original StyleGAN generated image training dataset, and the SA-StyleGAN generated image
training dataset, respectively. It is ensured that the three training datasets have the same number of
samples and that the sample distribution is as similar as possible. To see how the performance of a model
changes as training data is added, the data groups D1

aug � D2
aug � 	 	 	 � D11

aug are established, where aug
stands for the augmentation method and the number stands for the order of quantity level that increases in
turn. The first data group D1

aug contains only pre-augmentation training images. We create many
augmented images for each original training image using augmentation strategies. Then, we use random
sampling to add the same number of augmented images to each data group until all of the augmented
images have been added. During model training, the number of iterations is set to 100, and the weight
with the lowest validation loss is selected as the training result. To test the actual training effect of the
model, Mask R-CNN used 15 images from the original image test dataset for recognition and
segmentation, and the average recognition accuracy and segmentation error rate were counted and calculated.

5.3.1 ASNG-AA Method Effect Evaluation Experiment
The optimal augmentation strategy is searched on the original image training datasetD using the ASNG-

AA algorithm. For the selection of sub-networks in the search strategy process, we draw on the paper [16] in
which Ekin et al. chose to use small networks to implement the search and validation of the strategies and
then used the searched strategies on more complex and different types of networks. The model performance
was still improved, demonstrating that the selection of sub-networks does not affect the effectiveness of the
final strategy. Therefore, for computational cost consideration in this paper, we use ResNet50 as a sub-
network and set the training initial learning rate to be set to 0.01 and the learning rate decay factor to be
set to 0.01. After the training was completed, the 25 best augmentation strategies were selected as the
final strategies, and the training dataset was expanded to 26 times the original scale. Table 4 shows the
top five augmentation strategies (some operations do not use magnitudes, such as Rotate90 and Fliplr).
Fig. 8 shows the training images and their labels after the final strategy augmentation.

For the choice of comparison algorithms, the search augmentation strategy using AutoAugment in the
paper [16] takes a lot of time and computational cost. Fast AutoAugment in the paper [17] is overfitted with a
small amount of training data. The existing augmentation strategies of the two methods above are for natural
image search. They cannot be transferred to the field of tight sandstone images. So, in this paper, we design a
manual augmentation strategy (MA) based on expert knowledge instead of using the first two methods as the
comparison algorithm. The operations used are included in the ASNG-AA augmentation strategy search
space. We use two strategies to augment the original image training dataset and then train the Mask

Table 4: Top 5 search strategies

Strategy Operation 1 Operation 2

policy1 (ElasticTransformation, 0.6, 8) (Fliplr, 0.8, 3)

policy2 (Contrast, 0.8, 1.3) (Rotate90, 0.8, 7)

policy3 (ElasticTransformation, 0.8, 5) (Rotate, 0.6, 15)

policy4 (Fliplr, 0.5, 2) (Zoom, 0.6, 1.3)

policy5 (Rotate, 0.7, 10) (Brightness, 0.8, 1.2)
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R-CNN model, respectively. After the training is completed, the original image test dataset is used for
instance segmentation, and the model recognition accuracy and the segmentation error rate of the two
algorithms are compared. The experimental results are shown in Fig. 9.

By analyzing the experimental results, we obtained the following conclusions.

(1) As shown in Fig. 9a, the Mask R-CNN recognition accuracy without data augmentation is 46.64%.
The recognition accuracy of the model gradually increased with the increase of training images and
finally reached saturation ðD4

AA ¼ 2160;D3
MA ¼ 1485Þ with the recognition accuracy of 77.03%

(ASNG-AA) and 68.02% (MA), respectively. It indicates that ASNG-AA can effectively improve
the model’s recognition accuracy relative to MA.

(2) As shown in Fig. 9b, the segmentation error rate of the Mask R-CNN without data augmentation is
69.69%. The segmentation error rate of the model gradually reduced with the increase of training

Figure 8: The examples of ASNG-AA search strategy augmentation. The first line is the original image and
its corresponding labels, and the second is the augmented image and its corresponding labels
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Figure 9: Comparison of the effects of the ASNG-AA search strategies and the MA strategies
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images and finally reached saturation ðD4
AA ¼ 2160;D3

MA ¼ 1485Þwith the segmentation error rate of
17.65% (ASNG-AA) and 23.16% (MA), respectively. It indicates that ASNG-AA can effectively
reduce the model’s segmentation error rate relative to MA.

5.3.2 SA-StyleGAN Method Effect Evaluation Experiment
The original image training datasetD and the generated dataset (D0,D00) are augmented using the ASNG-

AA algorithm search strategy. The Mask-RCNNmodel is trained using the augmented training dataset. After
the training is completed, the original image test dataset is used for instance segmentation and to compare the
variation of model recognition accuracy and segmentation error rate with increasing quantity levels for the
three datasets. The experimental results are shown in Fig. 10.

By analyzing the experimental results, we obtained the following conclusions.

(1) As shown in Fig. 10a, the Mask R-CNN models were trained using the generated datasets D0 and D00,
respectively, and the recognition accuracy of 40.68% and 45.95% without augmentation. The
recognition accuracy gradually increased with the increase of training images and finally reached
saturation (D0

AA
3 ¼ 1485,D00

AA
4 ¼ 2160) with the recognition accuracy of 64.91% and 76.7%. It

indicates that under the condition of the same training data, the model recognition accuracy of the
generated dataset D00 is higher than that of D0 and is close to the real data.

(2) As shown in Fig. 10b, the Mask R-CNN models were trained using the generated datasets D0 and D00,
respectively, and the segmentation error rate of 75.33% and 70.13% without augmentation. The
segmentation error rate gradually reduced with the increase of training images and finally reached
saturation (D0

AA
3 ¼ 1485,D00

AA
4 ¼ 2160) with the recognition accuracy of 30.97% and 18.78%. It

indicates that under the condition of the same training data, the model segmentation error rate of
the generated dataset D00 is lower than that of D0 and is close to the real data.

5.3.3 Hybrid Tight Sandstone Image Augmentation Method Effect Evaluation Experiment
The original dataset D and the generated dataset D00 are augmented using the ASNG-AA search strategy.

Firstly, the Mask-RCNN model is trained using the augmented training dataset D. When the model
performance reaches saturation, the location of the saturation point is recorded, and the generated dataset
D00 is added at the initial saturation point to continue the training. The original image test dataset is used
to instance segmentation after the training is completed, and the change in recognition accuracy and the
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Figure 10: Comparison of the instance segmentation effects of the three datasets
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segmentation error rate of the model after the generated data is added is observed. The experimental results
are shown in Fig. 11.

(1) As shown in Fig. 11a, the training is performed using the original dataset D. When no augmentation
is used, the model recognition accuracy is 46.64%. The model’s recognition accuracy gradually
increases with the number of training images until it reaches saturation at D4

AA ¼ 2160, after
which adding more training data cannot improve the model’s recognition effect any further. The
saturation recognition accuracy is 77.03%, and Fig. 12a shows the confusion matrix of the
saturation point. We call D4

AA ¼ 2160 the saturation point, and after adding the augmented
generated image dataset D00 at this point, we find that the recognition accuracy of the model
continues to improve and reaches saturation at D4

AA þ D00
AA

4 ¼ 4860 with a recognition accuracy of
87.42%. The best recognition effect confusion matrix is shown in Fig. 12b.
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Figure 11: Experimental results for hybrid tight sandstone image augmentation

Figure 12: Confusion matrix for target recognition results. The labels Qu, Fe, Li, PP, CP, CDP, and Mi stand
for Quartz, Feldspar, Lithic, Primary Pore, Casting Pore, Cemented Dissolution Pore, and Microcrack
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(2) As shown in Fig. 11b, the training is performed using the original dataset D. When no augmentation
is used, the model segmentation error rate is 69.69%. The model’s segmentation error rate gradually
reduced with the number of training images until it reaches saturation at D4

AA ¼ 2160, after which
adding more training data cannot improve the model’s segmentation effect any further. The
saturation recognition accuracy is 17.65%. We call D4

AA ¼ 2160 the saturation point, and after
adding the augmented generated image dataset D00 at this point, we find that the segmentation
error rate of the model continues to reduce and reaches saturation at D4

AA þ D00
AA

4 ¼ 4860 with a
recognition accuracy of 7.3%. Table 5 shows the difference between the manual labeled content
and saturation point detected content of the test dataset.

As a side note, Figs. 13 and 14 show a comparison of the instance segmentation effects of Mask R-CNN
trained with the optimal original data augmentation and the optimal hybrid data augmentation, as well as the
training and validation loss curves of the model in the optimal hybrid data augmentation state.

Table 5: Manual labeled content vs. saturation point detection content

Image no. Saturation point 1 (D4
AA ¼ 2160) Saturation point 2 (D4

AA þ D00
AA

4 ¼ 4860)

Number of pixels Accuracy (%) Number of pixels Accuracy (%)

1 208090 79.38 233387 89.03

2 227725 86.87 250138 95.42

3 219284 83.65 247202 94.3

4 222718 84.96 248355 94.74

5 217553 82.99 242509 92.51

6 217842 83.1 244816 93.39

7 209191 79.8 239678 91.43

8 200252 76.39 233282 88.99

9 208509 79.54 239023 91.18

10 214722 81.91 241828 92.25

11 219048 83.56 245183 93.53

12 225156 85.89 249168 95.05

13 208981 79.72 239652 91.42

14 209243 79.82 240465 91.73

15 229822 87.67 250452 95.54

Average 215876 82.35 243009 92.7
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6 Conclusion

In this paper, we propose a tight sandstone image augmentation method to solve the problem of poor
augmentation effects of traditional augmentation methods caused by the sparse sample, complex image
structure, and difficulty of the domain transfer by integrating the respective advantages of the generative
adversarial network and automatic data augmentation, which effectively improves the training effect of
the Mask R-CNN algorithm. The research conclusions are given as follows through theoretical
elaboration and experimental demonstration.

(1) SA-StyleGAN can generate high-resolution tight sandstone images. The experimental results show
that SA-StyleGAN generates images with significantly higher clarity, diversity, and realism than
other algorithms, which can effectively improve data diversity;

(2) ASNG-AA is applicable to search for tight sandstone image augmentation strategies. The
experimental results show that the augmentation strategy searched by the ASNG-AA algorithm
can produce a better recognition segmentation effect by the Mask R-CNN algorithm compared
with the manual formulation augmentation strategy, and the search process only takes less than
300 GPU hours;

Figure 13: Comparison of instance segmentation effects
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Figure 14: Validation loss curve of Maks R-CNN trained using optimal hybrid data augmentation
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(3) The hybrid tight sandstone image augmentation method proposed in this paper can improve data
scale and diversity simultaneously. However, as the training data increases, the model
performance eventually reaches saturation. Adding more data not only fails to improve the
training performance but also reduces the training speed of the model. Therefore, the scale of the
training data needs to be adjusted to strike a balance between the “model performance saturation
point” and the “model training speed.”

In future work, we plan to improve the Mask R-CNN instance segmentation algorithm to further
enhance the recognition effect by optimizing the network structure design. Furthermore, we are interested
in applying the method to multi-foreground target image augmentation and recognition in the medical cell
field to evaluate the potential of the method.
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