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Abstract: Recently, COVID-19 has posed a challenging threat to researchers,
scientists, healthcare professionals, and administrations over the globe, from
its diagnosis to its treatment. The researchers are making persistent efforts to
derive probable solutions for managing the pandemic in their areas. One of the
widespread and effective ways to detect COVID-19 is to utilize radiological
images comprising X-rays and computed tomography (CT) scans. At the
same time, the recent advances in machine learning (ML) and deep learning
(DL) models show promising results in medical imaging. Particularly, the
convolutional neural network (CNN) model can be applied to identifying
abnormalities on chest radiographs. While the epidemic of COVID-19, much
research is led on processing the data compared with DL techniques, partic-
ularly CNN. This study develops an improved fruit fly optimization with a
deep learning-enabled fusion (IFFO-DLEF) model for COVID-19 detection
and classification. The major intention of the IFFO-DLEF model is to inves-
tigate the presence or absence of COVID-19. To do so, the presented IFFO-
DLEF model applies image pre-processing at the initial stage. In addition,
the ensemble of three DL models such as DenseNet169, EfficientNet, and
ResNet50, are used for feature extraction. Moreover, the IFFO algorithm
with a multilayer perceptron (MLP) classification model is utilized to identify
and classify COVID-19. The parameter optimization of the MLP approach
utilizing the IFFO technique helps in accomplishing enhanced classification
performance. The experimental result analysis of the IFFO-DLEF model
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carried out on the CXR image database portrayed the better performance of
the presented IFFO-DLEF model over recent approaches.

Keywords: COVID-19; computer vision; deep learning; image classification;
fusion model

1 Introduction

With the outburst of an unknown disease in late 2019 in China, a few individuals were infected
by the disease in a local marketplace. The disease was unidentified in the beginning; then, experts
identified the symptoms were similar to that of COVID-19 and flu [1]. The clinical characteristics of
COVID-19 have pneumonia, cough, respiratory symptoms, fever, and dyspnea. But such indications
shall not denote COVID-19 all the time, and it is monitored in numerous pneumonia cases, resulting
in prognostic issues for doctors [2]. As the RT-PCR test was considered a fixed method for diagnosing
coronavirus infection, the test contains restricting prospects with some characteristics that made
diagnosing the virus complex. RT-PCR test was complex, costly, manual process, and time taking
[3]. One such disadvantage of this particular test is there occurring demand for a lab kit; the provision
is impossible or hard for several nations at the time of epidemics and crises. The most significant means
for diagnosing COVID-19 is utilizing radiological images, which include computed tomography (CT)
scans and X-rays [4]. Chest imaging has been considered an easy and quick process suggested by health
and medical procedures, and it was indicated in numerous texts as the primary apparatus in screening
at the time of the epidemic [5]. When coronaviral infections spread worldwide, there is increasing
attention to the appropriateness of chest X-Rays (CXR) for diagnosing and managing patients with
alleged or identified coronavirus infections. Also, an increasing quantity of journals elaborates on the
CXR appearances in patients infected by COVID-19 [6].

The correctness of the CXR prognosis of coronavirus infection mostly depends on radiological
expertness because of the complicated morphological paradigms of pulmonary participation that
could vary in extent and appear on time [7]. The restricted quantity of subspecialty-trained thoracic
radiotherapists hinders the dependable analysis of complex chest analysis, particularly in developing
nations, where general radiotherapists rarely analyze chest imaging [8]. One major application of DL
in radiological practice is the identification of tissue skeletal irregularities and categorising syndromes.
The convolutional neural network (CNN) was the most significant DL system and efficient method
of identifying pathologies and abnormalities in chest radiographs [9]. Since the coronavirus pandemic,
many studies have been carried out on data processing in connection with DL methods, particularly
CNN. With the help of distinct methods and DL structures, such researchers embarked on recognising
and variance the prognosis of coronavirus infection [10].

This study develops an improved fruit fly optimization with a deep learning-enabled fusion (IFFO-
DLEF) approach for COVID-19 detection and classification. The presented IFFO-DLEF model
applies image pre-processing at the initial stage. In addition, the ensemble of three DL models such
as DenseNet169, EfficientNet, and ResNet50, are used for feature extraction. Moreover, the IFFO
algorithm with a multilayer perceptron (MLP) classification model is utilized to identify and classify
COVID-19. The parameter optimization of the MLP technique utilizing the IFFO approach supports
enhanced classification performance. The experimental result analysis of the IFFO-DLEF model was
carried out on the CXR image database.
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2 Literature Review

In [11], the authors have suggested a DL-NN-related technique, nCOVnet. This alternate fastest
screening technique is utilized for identifying the coronavirus infection by examining the patients’
X-rays that would be observed for visual indicators discovered in the chest radiography imaging of
COVID-19 patients. Vaid et al. [12] advanced a DL methodology to improve the correctness of cases
that have reported and accurately forecast the syndrome from CXR scans. This method depends
upon CNNs for detecting the classification of disease and structural abnormalities and which is
a key factor in uncovering concealed models. In [13], the researchers suggest a novel method for
detecting COVID-19 by exploiting a conditional generative adversarial network (GAN) to produce
synthetic images to expand the restricted quantity of data presented. Moreover, the researchers suggest
2 DL techniques, including lightweight architecture, commensurate with the entire volume of available
data. This study mainly aimed at binary classification for COVID-19 vs. Normal cases and multi-
categorization involving the third class for bacterial pneumonia. This technique reached a competitive
outcome than other researchers in the publications and a ResNet8 method.

In [14], the authors recommend CVDNet, a Deep CNN methodology for classifying COVID-19
from normal and other respiratory diseases with the help of CXR images. The suggested structure
depends on the residual NN, and it can be built by utilizing 2 parallel stages having distinct kernel
sizes for capturing global and local characteristics of the inputs. This method can be well-trained on
a dataset publicly existing consisting of a grouping of 1341 normal and 1345 viral pneumonia CXR
and 219 COVID-19 images. A methodology for COVID forecasting from CXRs utilizing CheXNet is
presented in [15]. This suggested method categorizes the binary classes (normal and COVID) with
99.9% precision. CheXNet was regarded as a CNN method which can leverage the ChestXray14
dataset, and it has been trained for detecting abnormalities in CXRs.

In [16], the research scholars recommend a weakly supervised DL strategy for classifying and
detecting coronavirus infection through CT images. The suggested technique may reduce the need for
labelling CT images manually however it can acquire precise infection identification and differentiate
COVID-19 from non-COVID19 cases. In [17], the researchers suggested a deep transfer learning
(DTL) method, which hastens the identification of COVID-19 cases with utilized of CT-Scan and X-
ray images of the chest. Initial CXR (CXR) cab screening offers important information for identifying
alleged COVID-19 cases. The researchers assumed 3 datasets: CXR Images (Pneumonia), COVID-
CXR, and SARS-COV-2 CT-scan. With the acquired outcomes, the suggested DL method could
identify coronavirus infection-positive cases in lesser than two seconds which will be faster when
compared with RT-PCR tests, which have been used in recent times for identifying COVID-19
cases. The researcher scholars also accomplished an association among COVID-19 patients with that
Pneumonia patient have discovered the model among COVID-19 and Pneumonia radiology images.

3 The Proposed Model

This study developed a new IFFO-DLEF approach for COVID-19 detection and classification
on CXR images. The presented IFFO-DLEF algorithm involves different subprocesses: image pre-
processing, ensemble fusion model, image classification, and parameter optimization. Using the fusion
process and hyperparameter optimization algorithm helps accomplish improved performance. Fig. 1
depicts the block diagram of the IFFO-DLEF approach.
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Figure 1: Block diagram of the IFFO-DLEF approach

3.1 Image Pre-processing
The presented IFFO-DLEF model performed image pre-processing at the initial stage. In the

primary step, the CXR images obtain pre-processing with removed noise utilizing the WF approach.
Noise removal is an image pre-processed method intended at improving the feature of images corrupted
by noise. The certain case was adaptive filtering in that the denoising entirely depends on the noise
content projected in the image locally. Consider that the corrupted image is determined as Î (x, y), the
noise variance with an entire is represented as σ 2

y , the local mean was offered as μ̂L on a pixel window,
and σy2 has provided local variance in the window ˆ . Next, the probable approach of denoising the
image was represented as:

ˆ̂I = Î (x, y) − σ 2
y

σ̂ 2
y

(
Î (x, y) − μ̂L

)
(1)

Here, when the noise variance through the image has been equal to zero, σ 2
y = 0 =>

ˆ̂I = Î (x, y).
When the global noise variance is minimal, and the local variance is superior to the global variance,
then the ratio is almost equal to one,

If σ̂ 2
y � σ 2

y , then ˆ̂I = I (x, y). While the higher local variance depicts the existence of an edge in the
image window. During this case, if the local, as well as global variances, were equivalent afterwards,

the equation progresses ˆ̂I = μ̂L as σ̂ 2
y ≈ σ 2

y

3.2 Ensemble of Fusion Model
In this study, the ensemble of three DL models such as DenseNet169, EfficientNet, and ResNet50,

are used for feature extraction. The transfer learning (TL) model represents the machine learning
algorithm that transmits data learned from one domain to related problems in a similar domain.
It is suggested to use the model developed and trained for a task as a basis of the tasks viz., same
as the trained one. The researcher utilized different notations for describing the concept of transfer
learning. The two fundamental concepts of TL, Task and Domain, are mathematically explained.
Transfer learning is arithmetically defined as making a clearer picture. The fusion of features is an
important process that integrates multiple features. It mainly depends upon the features fusion using
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entropy and the four vectors can be represented using Eqs. (2)–(4):

fGRU1×n = {GRU1×1, GRU1×2GRU1×3, · · · , GRU1×n} (2)

fLSTM×m = {LSTM1×1, LSTM1×2, LSTM1×3, · · · , LSTM1×m} (3)

fBiLSTM×l = {BiLSTM1×1, BiLSTM1×2, BiLSTM1×3, · · · , BiLSTM1×l}
fDBN1×p = {

DBN1×1, DBN1×2, DBN1×3, · · · , DBN1×p

}
(4)

The integration of derived features into a single vector takes place using Eq. (5).

Fused (features vector) 1 × q =
∑4

i=1

{
fGRU1×n, fLSTM×m, fBiLSTM×l, fDBN1×p

}
(5)

where f is the fused vector (1 × 1186). The entropy is utilized on the feature vectors to choose the
optimum ones using the score.

3.2.1 DenseNet-169 Model

DenseNet is one of the effectively utilized DL model for image classification [18]. In this work,
the DenseNet169 model is used. The initial phase is derived from the design of a deeper convolutional
network comprising short links among the layers closer to the input and output. This DL model is
precise and effective in the training process. It varies from the ResNet in the way that it has skin
connections which can bypass the non-linear transformations.

Also, the DenseNet append a straight linking from anyone layer to succeeding layer. Therefore,
the lth layer receive the feature maps of every preceding layer x0 to xl−1 as given Eq. (6).

xl = Hl ([x0, x1, . . . , xl−1]) (6)

where [x0, x1, . . . , xl−1] presents the feature maps produced in the layers 0, 1, 2, . . . , l − 1.

3.2.2 ResNet 50 Model

ResNet50 is the abbreviation of Residual Network with fifty layers. Once the researcher followed
the “the deeper, the better” phrase with the DL model, they faced difficulties. “Deeper the network
is the efficiency of network needed to be improved”; this concept proves them wrong once a deeper
network with fifty-two layers produced poor performance than that of the network with twenty to
thirty layers [19]. Various predictions are described the model performance reduction, and the major
reason for that is the gradient vanishing. Once the network is extremely in-depth, the gradient value
decreases to zero, causing the weight not to upgrade, and consequently, no learning is executed.

3.2.3 EfficientNet Model

EfficientNet-B0 network and uniformly scaled up the depth, resolution, and width using an
effective and compound coefficient to increase EfficientNet model B1–B7 [20]. The model attained
superiority and performed efficiently over the present CNN model on the ImageNet dataset. Efficient-
Net is faster, small with lesser parameters, and well generalized to attain high performance on other
popular data for the TL process. The presented work fine-tuned EfficientNet model B0–B4 on CXR
to identify COVID-19. As a result of the limited dataset in healthcare imaging, the data augmentation
method is used for generating further CXR images to control over-fitting. While transporting the
pre-trained EfficientNet to the CXR datasets, we finetuned the model by appending a global average
pooling (GAP) to handle overfitting and decrease the parameter count. Two dense layers follow the
GAP using a dropout rate of 0.4 and a ReLU function beforehand; a last dense layer acts as output
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using softmax activation function for determining the probability of input CXR demonstrating the
infected and normal classes. This can be attained by using the following equation

σ (q)i = eqi∑N

y=1e
qy

(7)

From the expression, σ refers to the softmax function, q indicates the input vector to output layer
i described from the exponential component eqi , N denotes the number of classes, and eqy signifies the
output vector of the exponential function.

3.3 Image Classification
Once the features are derived, the MLP classification model is utilized to identify and classify

COVID-19. The feedforward neural network (FFNN) is a well-known type of ANN, and MLP is the
most common form of FFNN that is extensively utilized in resolving realistic classification problems
[21]. An MLP is composed of: hidden (j), input (i), and output (k) layers. Every single layer comprises a
certain amount of neurons, and all the neurons have a fully-weighted connection with the neighbouring
layer neuron. Fig. 2 illustrates the single hidden layer MLP network. All the neurons perform two
functions in the MLP: activation and weighted summation. The following equation evaluates the
weighted sum for all the j hidden neurons:

sj =
∑n

i=1
wijxi + βj (8)

In Eq. (8), wij defines the connection weight, βj stands for the biased term, xi indicates the input
i, and n describes the input amount. Next, using the outcomes of Eq. (8), an activation function is
applied for calculating the neuron output, and it can be given as:

f
(
sj

) = 1
1 + e−sj

(9)

The widely employed sigmoid activation function was designated in the MLP. Using the outcomes
of the hidden neuron, the last production of the output neuron is calculated by:

yk = f (ok) = 1
1 + e−sk

(10)

sk =
h∑

j=1

wjkf
(
sj

) + βk.

Figure 2: MLP structure
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MLP performance highly relies on biases and weights; also, trainable MLP aims to find optimum
weight and bias. MLP training is a difficult process which results in a higher-performance MLP.

3.4 Hyperparameter Tuning
The parameter optimization of the MLP model using the IFFO algorithm helps in accomplishing

enhanced classification performance. Pan [22] proposed a basic FFO algorithm that is stimulated by
the foraging behaviour of natural fruit flies (FF). The foraging behaviour of FF is divided into the
visual and olfactory search phases. During olfactory foraging, the FF locate and search food sources
near the population, and then estimate the odour concentration corresponding to each potential food
source. In the visual foraging, an optimal food source with the highest smell concentration value was
introduced; later, the FF group fly nearer to it. The procedure of FOA has delineated in the following:

Step 1: Initialized parameter contains the highest count of iterations and size of the population.

Step 2: Initialize the position of the FF swarm.

Step 3: Olfactory foraging: makes different FF arbitrarily closer to the existing FF swarm position
to construct a population

Step 4: Evaluate the population to obtain the fitness values of each FF.

Step 5: Visual foraging: define the FF with optimal fitness value, then the FF group flies nearer
the optimal one.

Step 6: When the highest iteration is obtained, the process ends; otherwise, return to Step 3.

Before generating a new solution with each decision variable of population position as the original
FOA, IFFO makes a novel solution with an index arbitrarily selected to enhance the search from the
growth stage [23].

λ = λ max · exp
(

log
λmin

λmax

)
· Iter

Itermax

(11)

Let λ be the searching radius of FF from each round, λmax denotes the maximum searching radius,
and λmin indicates the minimum searching radius. Iter denotes the existing amount number of iterations,
and Max−Iter determines the maximum number of iterations.

xi,j =
{

δj ± λ · rand() if j = d
δj otherwise, j = 1, 2, . . . n

(12)

d ∈ {1, 2, . . . , n} indicates the arbitrarily selected index in uniform distribution variable, n
represents the solution dimension, rand() denotes the arbitrary integer lies within the interval of [0, 1],
and the position of xi,j gets upgraded in the above equation. δj indicates the value of the best solution
from the jth parameter.

The IFFO system develops a fitness function (FF) for achieving higher classifier performances.
It resolves a positive integer to imply the superior performance of candidate results. In this case, the
minimized classification error rate was assumed that FF is offering in Eq. (13).

fitness (xi) = Classifier Error Rate (xi)

= number of misclassified samples
total number of samples

∗ 100
(13)
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4 Experimental Validation

This section inspects the performance of the IFFO-DLEF model on the test CXR dataset [24],
containing 3224 COVID images and 3224 healthy images as illustrated in Table 1. A few sample images
are depicted in Fig. 3. The parameter settings are given as follows: learning rate: 0.01, dropout: 0.5,
batch size: 5, epoch count: 50, and activation: ReLU.

Table 1: Dataset detail

Class name Value

COVID 3224
Healthy 3224

Total number of instances 6448

Figure 3: Sample images

Fig. 4 exemplifies a set of confusion matrices generated by the IFFO-DLEF model on diverse
epochs. On 100 epochs, the IFFO-DLEF model has categorized 3192 COVID images and 3199
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Healthy images. In addition, on 600 epochs, the IFFO-DLEF methodology has categorized 3180
COVID images and 3173 Healthy images. Along with that, on 900 epochs, the IFFO-DLEF model has
categorized 3198 COVID images and 3199 Healthy images. Also, on 1200 epochs, the IFFO-DLEF
technique has categorized 3195 COVID images and 3204 Healthy images.

Figure 4: (Continued)
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Figure 4: Confusion matrices of IFFO-DLEF method under varying epochs (a) 100, (b) 200, (c) 300,
(d) 400, (e) 500, (f) 600, (g) 700, (h) 800, (i) 900, (j) 1000, (k) 1100, and (l) 1200

Table 2 and Fig. 5 highlight the COVID-19 classification results of the IFFO-DLEF model under
varying epochs. On 100 epochs, the IFFO-DLEF model has offered average accuy, precn, sensy, specy,
Fscore, and MCC of 99.12%, 99.12%, 99.12%, 99.12%, 99.12%, and 98.23% respectively. Simultaneously,
with 500 epochs, the IFFO-DLEF algorithm has rendered average accuy, precn, sensy, specy, Fscore,
and MCC of 99.24%, 99.24%, 99.24%, 99.24%, 99.24%, and 98.48% correspondingly. Moreover, with
1000 epochs, the IFFO-DLEF system has offered average accuy, precn, sensy, specy, Fscore, and MCC
of 99.21%, 99.21%, 99.21%, 99.21%, 99.21%, and 98.42% correspondingly. Furthermore, with 1200
epochs, the IFFO-DLEF methodology has provided average accuy, precn, sensy, specy, Fscore, and MCC
of 99.21%, 99.21%, 99.21%, 99.21%, 99.21%, and 98.42% correspondingly.

Table 2: Overall results of IFFO-DLEF approach with several epochs

Label Accuracy Precision Sensitivity Specificity F-Score MCC

Epoch-100

COVID 99.12 99.22 99.01 99.22 99.12 98.23
Healthy 99.12 99.01 99.22 99.01 99.12 98.23

Average 99.12 99.12 99.12 99.12 99.12 98.23

Epoch-200

COVID 98.99 99.01 98.98 99.01 98.99 97.98

Healthy 98.99 98.98 99.01 98.98 98.99 97.98

Average 98.99 98.99 98.99 98.99 98.99 97.98

Epoch-300

(Continued)
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Table 2: Continued
Label Accuracy Precision Sensitivity Specificity F-Score MCC

COVID 99.35 99.32 99.38 99.32 99.35 98.70
Healthy 99.35 99.38 99.32 99.38 99.35 98.70

Average 99.35 99.35 99.35 99.35 99.35 98.70

Epoch-400

COVID 99.24 99.38 99.10 99.38 99.24 98.48
Healthy 99.24 99.10 99.38 99.10 99.24 98.48

Average 99.24 99.24 99.24 99.24 99.24 98.48

Epoch-500

COVID 99.24 99.26 99.22 99.26 99.24 98.48
Healthy 99.24 99.22 99.26 99.22 99.24 98.48

Average 99.24 99.24 99.24 99.24 99.24 98.48

Epoch-600

COVID 99.32 99.35 99.29 99.35 99.32 98.64
Healthy 99.32 99.29 99.35 99.29 99.32 98.64

Average 99.32 99.32 99.32 99.32 99.32 98.64

Epoch-700

COVID 99.35 99.41 99.29 99.41 99.35 98.70
Healthy 99.35 99.29 99.41 99.29 99.35 98.70

Average 99.35 99.35 99.35 99.35 99.35 98.70

Epoch-800

COVID 99.02 99.04 99.01 99.04 99.02 98.05
Healthy 99.02 99.01 99.04 99.01 99.02 98.05

Average 99.02 99.02 99.02 99.02 99.02 98.05

Epoch-900

COVID 98.53 98.42 98.64 98.42 98.53 97.05
Healthy 98.53 98.63 98.42 98.64 98.53 97.05

Average 98.53 98.53 98.53 98.53 98.53 97.05

Epoch-1000

COVID 99.21 99.35 99.07 99.35 99.21 98.42

(Continued)
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Table 2: Continued
Label Accuracy Precision Sensitivity Specificity F-Score MCC

Healthy 99.21 99.07 99.35 99.07 99.21 98.42

Average 99.21 99.21 99.21 99.21 99.21 98.42

Epoch-1100

COVID 98.91 99.07 98.76 99.07 98.91 97.83
Healthy 98.91 98.76 99.07 98.76 98.92 97.83

Average 98.91 98.91 98.91 98.91 98.91 97.83

Epoch-1200

COVID 99.21 99.22 99.19 99.22 99.21 98.42
Healthy 99.21 99.19 99.22 99.19 99.21 98.42

Average 99.21 99.21 99.21 99.21 99.21 98.42

Figure 5: Average analysis of IFFO-DLEF method

A brief precision-recall analysis of the IFFO-DLEF technique on the test dataset is portrayed in
Fig. 6. By observing the figure, it is noted that the IFFO-DLEF system has accomplished maximum
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precision-recall performance under all classes. A detailed ROC examination of the IFFO-DLEF
technique on the test dataset is portrayed in Fig. 7. The results denoted the IFFO-DLEF algorithm
has exhibited its ability in categorizing two different classes on the test dataset.

Figure 6: Precision-recall curve analysis of IFFO-DLEF methodology

Figure 7: ROC curve analysis of IFFO-DLEF methodology

Table 3 reports a brief comparative study of the IFFO-DLEF model with different existing models
in terms of different measures [25–27].
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Table 3: Comparative analysis of the IFFO-DLEF approach with existing methods

Methods Accuracy Precision Sensitivity Specificity F-Score MCC

UNet model 97.76 97.72 95.46 96.11 98.27 97.02
ResNet18-UNet 96.02 98.36 98.35 95.55 95.90 97.21
DenseNet121-UNet 95.48 95.81 96.88 95.51 97.82 96.37
ResNet18-FPN 97.25 95.91 98.94 96.33 95.35 95.64
DenseNet121-FPN 95.13 98.45 97.76 98.31 96.99 98.41
Logistic regression 98.65 95.00 96.74 96.39 95.07 98.01

IFFO-DLEF 99.35 99.35 99.35 99.35 99.35 98.70

Fig. 8 offers a detailed comparative examination of the IFFO-DLEF model with recent models
in terms of sensy and specy. The figure indicated that the UNet model has attained the least sensy and
specy of 95.46% and 96.11% respectively. In addition, the DenseNet121-UNet, DenseNet121-FPN,
and LR models have shown slightly increased sensy and specy values. Along with that, the ResNet18-
UNet and ResNet18-FPN models have demonstrated moderately closer values of sensy and specy.
However, the IFFO-DLEF model has accomplished superior sensy and specy values of 99.35% and
99.35% respectively.

Figure 8: Sensy and Specy analysis of IFFO-DLEF approach with existing methodologies

Fig. 9 provides a brief comparative scrutiny of the IFFO-DLEF system with recent models in
terms of Fscore and MCC. The figure denoted the UNet method has attained the least Fscore and MCC
of 98.27% and 97.02% correspondingly. Moreover, the DenseNet121-UNet, DenseNet121-FPN, and
LR methodologies have shown slightly increased Fscore and MCC values. Also, the ResNet18-UNet and
ResNet18-FPN algorithms have demonstrated moderately closer values of score and MCC. However,
the IFFO-DLEF method has accomplished superior Fscore and MCC values of 99.35% and 98.70%
correspondingly.
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Figure 9: Fscore and MCC analysis of IFFO-DLEF approach with existing methodologies

Fig. 10 presents a detailed comparative investigation of the IFFO-DLEF algorithm with recent
models in terms of accuy and precn. The figure represented the UNet system has attained the
least accuy and precn of 97.76% and 97.72% correspondingly. Additionally, the DenseNet121-UNet,
DenseNet121-FPN, and LR methodologies have shown slightly increased accuy and precn values.
Along with that, the ResNet18-UNet and ResNet18-FPN systems have illustrated moderately closer
values of accuy and precn. However, the IFFO-DLEF model has accomplished superior accuy and precn

values of 99.35% and 99.35% correspondingly.

Figure 10: Accuy and Precn analysis of IFFO-DLEF approach with existing methodologies
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5 Conclusion

In this study, a new IFFO-DLEF approach was established for COVID-19 detection and classi-
fication on CXR images. The presented IFFO-DLEF model performed image pre-processing at the
initial stage. Followed by, the ensemble of three DL models such as DenseNet169, EfficientNet, and
ResNet50 models are used for feature extraction. Besides, the IFFO algorithm with MLP classification
model is utilized for the identification and classification of COVID-19. The parameter optimization
of the MLP algorithm utilizing the IFFO method supports accomplishing enhanced classification
performance. The experimental result analysis of the IFFO-DLEF model carried out on the CXR
image database portrayed the better performance of the presented IFFO-DLEF model over recent
approaches. In future, the performance of the IFFO-DLEF model is extended to the design of a
metaheuristic weight selection approach for the fusion model.
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