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Abstract: Wireless Sensor Networks (WSN) play a vital role in several real-time
applications ranging from military to civilian. Despite the benefits of WSN,
energy efficiency becomes a major part of the challenging issue in WSN, which
necessitate proper load balancing amongst the clusters and serves a wider moni-
toring region. The clustering technique for WSN has several benefits: lower delay,
higher energy efficiency, and collision avoidance. But clustering protocol has sev-
eral challenges. In a large-scale network, cluster-based protocols mainly adapt
multi-hop routing to save energy, leading to hot spot problems. A hot spot pro-
blem becomes a problem where a cluster node nearer to the base station (BS)
tends to drain the energy much quicker than other nodes because of the need to
implement more transmission. This article introduces a Jumping Spider Optimiza-
tion Based Unequal Clustering Protocol for Mitigating Hotspot Problems
(JSOUCP-MHP) in WSN. The JSO algorithm is stimulated by the characteristics
of spiders naturally and mathematically modelled the hunting mechanism such as
search, persecution, and jumping skills to attack prey. The presented JSOUCP-
MHP technique mainly resolves the hot spot issue for maximizing the network
lifespan. The JSOUCP-MHP technique elects a proper set of cluster heads
(CHs) using average residual energy (RE) to attain this. In addition, the
JSOUCP-MHP technique determines the cluster sizes based on two measures,
i.e., RE and distance to BS (DBS), showing the novelty of the work. The pro-
posed JSOUCP-MHP technique is examined under several experiments to ensure
its supremacy. The comparison study shows the significance of the JSOUCP-
MHP technique over other models.
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1 Introduction

Wireless Sensor Networks (WSNss) are advanced for monitoring and sensing vital signs of area and
environment using linked and distributed sensor nodes (SNs). The SNs were divided into Gateway Nodes
(GN), normal, and sink nodes [1]. The SNs were small in size and had insufficient sources concerning
processing, storage, and space energy [2]. In many cases, the SNs were deployed in a very harsh and
intense ecosystem. The first and foremost goal of this positioning was to sense information distantly and
sends it to the system or user for decision-making. To send data, there comes a demand for more
effective systems for managing the energy system of nodes and enhancing network lifetime [3]. The SNs
perceive and sense the data from nearby environments, make processes, and transmit it to the nearby
nodes until data arrives at the base station (BS). In WSN, because of the restricted energy sources of
SNs, there comes a crucial need for a well-effective and balanced data aggregation system and energy-
efficient routing protocol [4]. The energy feature becomes one factor to consider for devising any solution
for WSNs. Numerous routing protocols were devised to conserve the energy of SNs [5]. The clustering
approach becomes an effective topological control system that could efficiently enhance the scalability
duration and lifetime of WSNs. The WSN applications have achieved popularity, including health
monitoring, target tracking, disaster response, environmental monitoring, and security [6].

In a clustering ecosystem, data can be involved from one node to another and occurs energy holes or
hotspot difficulties [7]. A hotspot can be made by SNs positioned nearby the BS and rapidly drain energy
because traffic arises from other nodes and is sent from it. Such SNs not just transmit their data but also
send it from other bases because the initial death of nodes causes hotspot problems. The methods, namely
unequal clustering methods and mobile sinks or mobile data mules, were majorly utilized to resolve this
problem [8]. But many unequal clustering techniques were devised for the solution of the hotspot
leverages cluster, which is smaller in size adjacent to BS and cluster size rose case when we were going
far away from BS. The cluster size was inversely proportional to the distance from BS. The clusters
adjacent to BS hold a greater quantity of nodes that is helpful in efficient load sharing [9]. The projected
method for size allotment and size difference of clusters leads to a reduction of frequency where a
specific node turns out to be a cluster head (CH) [10]. This aids in the maintenance of the overall
connectivity and thwarts network isolation. In line with this, hot spot issues can be reduced. One of the
problems concerning unequal clustering was cluster size decreasing or increasing ratio that was not
conferred in prevailing methods.

This article introduces a Jumping Spider Optimization Based Unequal Clustering Protocol for
Mitigating Hotspot Problems (JSOUCP-MHP) in WSN. The JSO algorithm is stimulated by the
characteristics of spiders in nature and mathematically modelled the hunting mechanism such as search,
jumping skills, and persecution to attack prey. The presented JSOUCP-MHP technique mainly resolves
the hot spot issue for maximizing the network lifespan. To attain this, the JSOUCP-MHP technique elects
a proper set of cluster heads (CHs) using average RE. In addition, the JSOUCP-MHP technique
determines the cluster sizes based on two measures i.e., RE and distance to BS (DBS). The proposed
JSOUCP-MHP technique is examined under several experiments to ensure its supremacy.

2 Related Works

Arikumar et al. [11] modelled an Energy Efficient LifeTime Maximization (EELTM) technique that uses
intelligent techniques of Fuzzy Inference System (FIS) and particle swarm optimization (PSO). In addition,
an optimal CH—CR selecting method in this technique exploits fitness values (FV) computed by the PSO
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approach for determining 2 optimal nodes in every cluster to serve as Cluster Router (CR) and CH. The CH,
which is selected, exclusively accumulates the data from its cluster members. However, the CR is
accountable for receiving the data collected from its CH and sending it to BS. Mehra [12] formulated an
enhanced fuzzy unequal clustering and routing protocol (E-FUCA) in which vital variables were regarded
at the time of CH candidate selection, and non-CH nodes considered intellectual decisions utilizing FL at
the time of the election of its CH for forming clusters. FL is utilized as the next-hop choice for effective
routing to expand the lifespan. And carried out the simulation experimentations for 4 cases, and a
comparison was made with the propound performance of protocol with recent similar protocols.

Wang et al. [13] introduced an energy-efficient unequal clustering routing algorithm (UCRA). At first,
the monitoring region was separated by concentric circles as rings of various sizes. Then, the CH was
selected relating to RE and position. Before clustering, every typical sensor links cluster related to the
electability of every CH. Nguyen et al. [14] presented a new optimization technique, like the compact bat
algorithm (cBA), for using it for optimisation issues involving gadgets containing inadequate hardware
sources. A real-valued prototype vector can be employed for probabilistic functions for generating every
candidate solution for optimizing cBA. The projected cBA was widely assessed on numerous continual
multi-modal functions and the unequal clustering of WSN (uWSN) issues.

In [15], competitive swarm optimization (CSO) related methods were introduced, together called such
methods as CSO-UCRA. Initially, the CH selecting approach relies on CSO related approach after assigning
non-CH sensors to CHs. At last, a CSO-related routing method was provided. New fitness functions and
efficient particle encoding techniques were advanced for such methods. Guleria et al. [16] devise the new
ant colony meta-heuristic related to unequal clustering for novel CH election. The neighbor finding level
and link maintenance by Meta-Heuristic Ant Colony Optimization (ACO) technique choose the optimal
path among the nodes that raises the packets distributed to the destiny. Though several models are
available in the literature review, still much work is needed to resolve the hot spot problem. In addition,
unequal clustering should be performed by the use of multiple input parameters.

3 The Proposed Unequal Clustering Protocol

This article presented a novel JSOUCP-MHP algorithm for resolving hot spot issues in WSN. The JSO
algorithm is stimulated by the characteristics of spiders in nature and mathematically modelled the hunting
mechanism such as search, jumping skills, and persecution to attack prey. The presented JSOUCP-MHP
technique mainly resolves the hot spot issue for maximizing network lifespan. Fig. 1 depicts the overall
process of the JSOUCP-MHP approach.

3.1 System Model

A WSN comprises N uniform distribution sensors. There is one BS interconnected with users through
the Internet. Let assume S = {S 1382, ., 8iy SN—1, SN} as the group of nodes, whereby s; denotes a nodei and
|S| = N. WNS makes use of wireless radio transceivers depending on the different variables, for example,
energy utilization and distance. The distance between the receiver and transmitter, followed by attenuated
transceiver power, exponentially reduced with increased distance. Now, we represent (x;, -y;) and (x_,-, -y,-)
were the coordinates of nodes i and j. Assume node 7 sent to destination node j, the energy consumed on
communication over d distance can be evaluated as follows:

I x Eelec + ¢ x d*,d < dj

I x Eelec + &, X d*,d > d, (M

ETx/(ld) = ETXfelec (l) + ETX*CImp(lg d) — {
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Figure 1: Overall process of JSOUCP-MHP approach

In Eq. (1), E refers to the energy consumption; Tx is to transfer, elect, amp specifies electronic and
amplify to modulate, digitalized coding, spreading, and filter signals. It illustrates that multi-hop
transmission is highly efficient in WSN. d,, denotes a threshold of space model,

&f
dy = [, )
Emp

In Eq. (2), the power loss &4 /e, are free space and multi-path model, and it is formulated by
Einf(l) = ERy st (l> =1 X Eglec- (3)

WSN considered N node in the region of 2D M? with k cluster. In relation to the hotspot, perplexity in
WSN was balancing the load amongst CHs according to the clustering technique. Unequal clustering
decreases the cluster size nearer to BS, and the size of the cluster rises as the distance between the BS ad
well as CH rises. The cluster member senses the real-time parameter and transfers the sensed value to
CH. CH aggregates and receives information to eliminate inessential information and transfer aggregated
information to BS directly or through intermediatory CH. In equal clustering, the cluster size remains
unchanged all over the network. But, in unequal clustering, the cluster size can be described according to
the DBS [17]:

N
Ecluster = ECH + <E - 1) X Emember7 (4)

Let N/k — 1 be the average of member nodes from the cluster, Ecy, Enempers denotes dissipated energy
for CH and member correspondingly, and it is evaluated by:

Epemper = 1 X Eerec + 1 X & X dtzoCH’ (5)
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N N
Ecg =1 X Egee X <;—1> + 1 x Epy x;+leelec+l><gmp><d;LBS. 6)

As a result, the energy consumed for WSN from the generation formulated from the energy process and
transceiver was given by:

Etotal = Ep + Efmme = Ep +k x Eclustera (7)

In Eq. (7), E, 1s the energy consumed for the microcontroller and source voltage of the node. It doesn’t
affect the optimization process. As a result, the consumed energy Ej,n. optimizes according to the distance
for clustering optimization.

3.2 Design of JSO Algorithm

The mathematical modelling of the jumping spider’s hunting strategy is initially proposed. Then, The
JSOA approach was introduced. The hunting strategies are searching, jumping on the prey, and attacking
by persecution [18]. Also, the algorithm describes the pheromone rate of the spider as follows.

Once the spider is away from a distance, whereas it could catch the prey by jumping, it moves closer by
indulging in certain stealthy movements till it is at an attainable distance where it can catch the prey and
pounces on it. The persecution approach can be described as the uniform accelerated rectilinear motion.

1
X; = Eat2 + vt (®)
In Eq. (8), x; demonstrates the location of the i f‘(})llower spider, ¢ refers to the time, vy represents the
speed initially. The acceleration can be shown as a = p where v =y — y,.

In this study, to optimize, every iteration can be regarded as the duration, in which the differences
between iterations are equivalent to 1, and initially, the speed is fixed as zero, vg = 0. And it is
formulated as follows:

[y

Lilg+1)=7 (¥ (g) —x — (9)) ©)

In Eq. (9), x/(g + 1) represents the novel location of the search agent to generation g + 1, X/ (g)
indicates the present i-th searching agent in generation g, and x,(g) — denotes the r-th searching agent
arbitrarily chosen, with i # r, whereas r represents an arbitrary value ranging from 1 to the size of
maximal searching agent.

The jumping spider follows the prey and jumps on them. The hunting strategy of jumping on prey is
characterized by a projectile motion.

7 = Vo oS (oc)?
d.
Z 7, = v cos ()i (10)
dt

Likewise, the vertical axis and the derivative w.r.t time can be given as.
Vi = (vosen(oc)z‘z1 — gtz)f (11)
dy — -

L7, = (vsen(z) — g1
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Similarly, time is characterized by strategy 1. Thus we attain the trajectory equation as follows.

_
2

8Xi
y:xtan (OC) —W (12)

Lastly, the trajectory is formulated by:

—

2
e+ 1) = T () - 5 (13)
_ oy
=180

In Eq. (13), %/ (g + 1) refers to the novel location of a searching agent, representing jumping spider
movement, X;(g) denotes the existing i-th searching agent, ¥, is fixed as 100 mm/seg, g denotes the
gravity (9.80665 m/s?), and the o angle can be measured by an ¢ angle arbitrarily produced within zero
and one.

The Jumping spider implements a random search around the environment to locate prey. Local and
global search are the two mathematical functions presented as follows.

The local search can be defined as follows:
1
fi)(g + 1) = Xpest(g) + walk — <E — g) (14)

In Eq. (14), %7 (g + 1) refers to the novel location of the searching agent, x,.(g) denotes the optimal
searching agent found from the preceding iteration, the walk was a normally distributed pseudo-random
integer within (—2,2), ¢ denotes a pseudo-random number uniformly distributing from (0, 1).

At the same time, the Global search can be expressed as follows.
X7 (g + 1) = Tbest(8) + (Xest (&) — Foworsr () 2 (15)

In Eq. (15), X/ (g + 1) denotes the novel location of a searching agent, Xpes;(g) and X,,o5(g) indicates the
best and worst searching agent form preceding iteration; correspondingly, and A refers to a Cauchy random
integer with u fixed as 0 and 0 fixed as 1.

Pheromone is released by several animals, amongst which were insects, together with spiders.
Nonetheless, they produce pheromones; the modelling of the rate of pheromones was taken and described
as follows:

Fitnessm,x — Fitness(i)

(16)

heromone (i) =
P (@ Fitnessmax — Fitnessmin
In Eq. (16), Fitnessmax and Fitness,,; represent the worst and the best FV in the present generation,
correspondingly, while Fitness(i) refers to the present FV of the i-th searching agent. Eq. (16) normalizes
the FV within zero and one whereas 0 indicates the worst pheromone rate, while 1 denotes the optimal.
The criteria involve for lower pheromone rate value equivalent to or lesser than 0.3 as follows:

%(g) = Ti(e) +5 (%7 () — (-1 (2) (7

In Eq. (17), x; (g) represent the searching agent (jumping spider) with a lower pheromone rate that is
upgraded, 7, and r, indicate arbitrary number produced from 1 to the maximal size of a searching agent,
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with 7| # 7y, while X" (g) and X, (g) are the 7, r2th searching agent selected, Xpey (g) indicates the best
searching agent from preceding iteration and ¢ indicates a binary number produced, o € {0, 1}.

3.3 Process Involved in JSOUCP-MHP Technique

In the real-time application of WSN, a massive amount of nodes is positioned generally with a higher
node density. Assume a proper threshold T for controlling the proportion of CH, T is fixed at 0.4. Every node
S; evaluates the value of u. When u < T, node S; become a CCH; or else, node S; becomes a regular node and
go to a dormant state until the last CH selection is accomplished as follows.

Eavg
= Ho REI‘ 9

J (18)

In Eq. (18), y, refers to a uniformly distributed arbitrary value within [0, 1], and E,,, indicates the
average RE of an alive node. The computation method was given in the following: The data packet
transferred by the node includes RE;. Afterward, the BS received, the average RE E,,, of each alive node
is evaluated; RE; characterizes the RE of node S;. Clearly, the large of RE;, the small of u, hence the
better possibility that S; becomes a CH.

In the JSOUCP-MHP technique, consider the distance from CH to BS and ignore the energy. This might
leads to a lower energy node being the CH, and afterward generating a cluster, the member in the cluster
causes an increase in the energy usage of CH. As a result, a competitive radius considering distance and
energy is presented, and the competitive radius for CH v; is evaluated as follows.

dmax —d ivBS REV
Vi.Rcomp =1|1- wi (V ) — W2<1 — E‘>:| X RO (19)

comp’
dmax - dmin 0 P

In Eq. (5), dmax and dun denotes the maximal and minimal distances from the alive node to the BS;
correspondingly, d(v;, BS) represents the distance from v; to the BS, RE,, indicates the RE of v;, wy and
w; are constant within [0, 1], and w; + wp = 1.

4 Performance Validation

A brief set of experimental analyses is carried out to demonstrate the enhanced performance of the
JSOUCP-MHP model on WSN. The initial energy is 1 mJ, the node count is 500, and first-order radio
energy model is used.

Table 1 and Fig. 2 showcase the network lifetime (NLT) inspection of the JSOUCP-MHP model with
existing models under the varying density of sensor nodes (DSN). The experimental outcomes depicted
that the JSOUCP-MHP model has shown enhanced performance with higher NLT values. For instance,
with 50 DSN, the JSOUCP-MHP model has exhibited an increased NLT of 1757 whereas the enhanced
metaheuristic-driven energy-aware cluster-based routing (IMD-EACBR), sunflower optimization (SFO),
grey wolf optimization (GWO), and genetic algorithm (GA) models have demonstrated reduced NLT of
1549, 1433, 1422, and 1343 respectively. Moreover, with 250 DSN, the JSOUCP-MHP model has
attained a higher NLT of 2556, whereas the IMD-EACBR, SFO, GWO, and GA models have obtained
lower NLT of 2374, 2276, 2012, and 1852 respectively. On the other hand, with 500 DSN, the JSOUCP-
MHP model has illustrated an improved NLT of 3802, whereas the IMD-EACBR, SFO, GWO, and GA
models have depicted reduced NLT of 3789, 3691, 3650, and 3369 respectively.

Table 2 and Fig. 3 exhibits the number of Alive Sensor Nodes (NOASN) analysis of the JSOUCP-MHP
algorithm with existing models under varying count of rounds. The experimental outcomes depicted that the
JSOUCP-MHP approach has shown enhanced performance with higher NOASN values. For example, with
2000 rounds, the JSOUCP-MHP approach has exhibited improved NOASN of 481 where the IMD-EACBR,
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SFO, GWO,

shown reduced NOASN of 87, 11, 0, and 0 correspondingly.

Table 1: NLT analysis of JSOUCP-MHP approach with recent algorithms under distinct DSNs
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and GA methods have demonstrated reduced NOASN of 473, 405, 391,
283 correspondingly. Furthermore, with 3000 rounds, the JSOUCP-MHP method has reached a higher
NLT of 367 whereas the IMD-EACBR, SFO, GWO, and GA models have acquired lower NOASN of
264, 112, 80, and 78 correspondingly. In contrast, with 4000 rounds, the JSOUCP-MHP model has
demonstrated an improved NOASN of 176 whereas the IMD-EACBR, SFO, GWO, and GA models have

Network lifetime (Rounds)

Density of  JSOUCP-MHP IMD-EACBR SFO algorithm GWO algorithm Genetic algorithm
sensor nodes
50 1757 1549 1433 1422 1343
100 1923 1789 1679 1504 1416
150 2160 2038 1773 1733 1611
200 2530 2171 2133 1870 1668
250 2556 2374 2276 2012 1852
300 2832 2666 2599 2468 2062
350 3104 2967 2852 2715 2354
400 3282 3145 3059 3050 2613
450 3487 3452 3418 3340 2976
500 3802 3789 3691 3650 3369

4500

mm JSOUCP-MHP GWO Algorithm
4000 IMD-EACBR mmm Genetic Algorithm

3500

3000

2500

Network Lifetime (Rounds)
S
o
=)

1500

1000

mmm SFO Algorithm

50

100 150 200 250 300 350 400 450 500

Density of Sensor Nodes

Figure 2: NLT analysis of JSOUCP-MHP approach under distinct DSNs
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Table 2: NOASN analysis of JSOUCP-MHP approach with recent algorithms under distinct rounds

No. of alive sensor nodes (NOASN)
No. of rounds JSOUCP-MHP IMD-EACBR SFO algorithm GWO algorithm Genetic algorithm

2000 481 473 405 391 283
2250 468 386 343 267 182
2500 451 393 230 216 125
2750 435 317 175 135 96
3000 367 264 112 80 78
3250 289 168 86 59 41
3500 245 133 49 26 19
3750 204 109 19 0 0
4000 176 87 11 0 0
600
mm JSOUCP-MHP
IMD-EACBR
2 20d mmm SFO Algorithm
'8 GWO Algorithm
E 400 mmm Genetic Algorithm
g
@ 300
H
E 200
°
o
o | ‘ | ‘ |
i L Ll . 1L,

2000 2250 2500 2750 3000 3250 3500 3750 4000
No. of Rounds

Figure 3: NOASN analysis of JSOUCP-MHP approach under distinct rounds

A detailed number of dead sensor node (NODSN) assessments of the JSOUCP-MHP with recent
approaches were performed in Table 3 and Fig. 4. The results inferred the JSOUCP-MHP technique has
resulted in enhanced results with minimum values of NODSN. For instance, with 2000 rounds, the
JSOUCP-MHP model has achieved the least NODN of 19 whereas the IMD-EACBR, SFO, GWO, and
GA models have reached increased NODN of 27, 95, 109, and 217 respectively. Meanwhile, with
3000 rounds, the JSOUCP-MHP model has resulted in decreased NODN of 133 whereas the IMD-
EACBR, SFO, GWO, and GA models have exhibited increased NODN of 236, 388, 420, and
422 respectively. Eventually, with 4000 rounds, the JSOUCP-MHP method has rendered a minimal
NODN of 324 whereas the IMD-EACBR, SFO, GWO, and GA models have achieved maximum NODN
of 413, 489, 500, and 500 correspondingly.
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Table 3: NODSN analysis of JSOUCP-MHP approach with recent algorithms under distinct rounds

No. of dead sensor nodes (NODSN)
No. of rounds JSOUCP-MHP IMD-EACBR SFO algorithm GWO algorithm Genetic algorithm

2000 19 27 95 109 217
2250 32 114 157 233 318
2500 49 107 270 284 375
2750 65 183 325 365 404
3000 133 236 388 420 422
3250 211 332 414 441 459
3500 255 367 451 474 481
3750 296 391 481 500 500
4000 324 413 489 500 500
700
mm JSOUCP-MHP GWO Algorithm
600 IMD-EACBR mmm Genetic Algorithm
§ mm SFO Algorithm
S 500
&
£ 400
[}
)
® 300
o
Q
s 200 ‘ | ‘
[}
2
100 ‘ I ‘
- | ald EEN |

o 2000 2250 2500 2750 3000 3250 3500 3750 4000

No. of Rounds

Figure 4: NODSN analysis of JSOUCP-MHP approach under distinct rounds

A detailed energy consumption (ECON) evaluation of the JSOUCP-MHP with recent methods is
executed in Table 4 and Fig. 5. The results implicit the JSOUCP-MHP method have resulted in enhanced
results with the least values of ECON. For example, with 50 DSN, the JSOUCP-MHP method del has
gained the least ECON of 0.0585 mJ whereas the IMD-EACBR, SFO, GWO, and GA models have
acquired increased ECON of 0.0936, 0.1117, 0.1373, and 0.2183 mJ correspondingly. In the meantime,
with 250 DSN, the JSOUCP-MHP algorithm has resulted in decreased ECON of 0.3004 mJ whereas the
IMD-EACBR, SFO, GWO, and GA algorithms have exhibited improved ECON of 0.3201, 0.4321,
0.5201, and 0.5545 mlJ respectively. Finally, with 500 DSN, the JSOUCP-MHP model has presented a
minimal ECON of 0.5437 mJ whereas the IMD-EACBR, SFO, GWO, and GA models have gained
maximum NODN of 0.6608, 0.6678, 0.8210, and 0.8433 mJ correspondingly.
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Table 4: ECON analysis of JSOUCP-MHP approach with recent algorithms under distinct DSNs

Energy consumption (mJ)

The density of sensor JSOUCP- IMD- SFO GWO Genetic
nodes MHP EACBR algorithm algorithm algorithm
50 0.0585 0.0936 0.1117 0.1373 0.2183
100 0.1199 0.1467 0.2031 0.2171 0.3396
150 0.1074 0.1851 0.2507 0.3078 0.4064
200 0.2350 0.2729 0.3578 0.4194 0.5030
250 0.3004 0.3201 0.4231 0.5201 0.5545
300 0.3910 0.4030 0.5945 0.5585 0.6187
350 0.4355 0.4941 0.5978 0.6704 0.6951
400 0.5019 0.5108 0.6196 0.6940 0.7837
450 0.5228 0.5598 0.6437 0.7575 0.8135
500 0.5437 0.6088 0.6678 0.8210 0.8433
1.2
= JSOUCP-MHP GWO Algorithm
IMD-EACBR mmm Genetic Algorithm

[
°

mmm SFO Algorithm

=)
(-]

Energy Consumption (m})
= o
ES o

o
N

o
=)

.||||‘|‘MM
50

100 150 200 250 300 350 400 450 500
Density of Sensor Nodes

Figure 5: ECON analysis of JSOUCP-MHP approach under distinct DSNs

Table 5 and Fig. 6 display the throughput (THROU) review of the JSOUCP-MHP model with existing
models under varying DSN. The experimental outcomes indicated the JSOUCP-MHP model has shown
enhanced performance with higher THROU values. For example, with 50 DSN, the JSOUCP-MHP
method has exhibited an increased THROU of 0.9875 Mbps whereas the IMD-EACBR, SFO, GWO, and
GA models have demonstrated reduced THROU of 0.9323, 0.8915, 0.8640, and 0.8136 Mbps
correspondingly. In addition, with 250 DSN, the JSOUCP-MHP model has gained higher THROU of
0.9517 Mbps whereas the IMD-EACBR, SFO, GWO, and GA models have obtained lower THROU of
0.8955, 0.7997, 0.7435, and 0.7031 Mbps correspondingly.
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Table 5: THROU analysis of JSOUCP-MHP approach with recent algorithms under distinct DSNs

Throughput (Mbps)

The density of sensor JSOUCP- IMD- SFO GWO Genetic
nodes MHP EACBR algorithm algorithm algorithm
50 0.9875 0.9323 0.8915 0.8640 0.8136
100 0.9660 0.9313 0.8776 0.8069 0.7964
150 0.9598 0.9247 0.8578 0.7831 0.7724
200 0.9562 0.9038 0.8404 0.7701 0.7398
250 0.9517 0.8955 0.7997 0.7435 0.7031
300 0.9489 0.8794 0.7833 0.7071 0.6677
350 0.9405 0.8445 0.7661 0.6900 0.6286
400 0.9337 0.8307 0.7389 0.6651 0.6032
450 0.9123 0.8180 0.7275 0.6325 0.5766
500 0.8910 0.8054 0.7161 0.5999 0.5500
1.2
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Figure 6: THROU analysis of JSOUCP-MHP approach under distinct DSNs

Conversely, with 500 DSN, the JSOUCP-MHP model has exemplified enhanced THROU of
0.8910 Mbps whereas the IMD-EACBR, SFO, GWO, and GA models have depicted reduced NLT of
0.8054, 0.7161, 0.5999, and 0.5500 Mbps correspondingly.

A detailed Packet Loss Rate (PLR) valuation of the JSOUCP-MHP with recent methods is exhibited in
Table 6 and Fig. 7. The results denoted the JSOUCP-MHP approach has resulted in enhanced results with the
least values of PLR. For example, with 50 DSN, the JSOUCP-MHP model has attained least PLR of 0.94%
whereas the IMD-EACBR, SFO, GWO, and GA models have gained increased PLR of 1.78%, 3.69%,
3.88%, and 4.96% correspondingly.
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Table 6: PLR analysis of JSOUCP-MHP approach with recent algorithms under distinct DSNs

1295

Packet loss rate (%)

Density of sensor JSOUCP- IMD- SFO GWO Genetic
nodes MHP EACBR algorithm algorithm algorithm
50 0.94 1.78 3.69 3.88 4.96
100 1.11 2.02 3.99 4.17 5.08
150 1.38 2.19 4.22 4.35 5.22
200 1.51 2.48 4.39 4.64 5.38
250 1.79 2.67 4.68 4.89 5.57
300 2.02 2.77 491 5.06 5.85
350 2.14 2.98 5.17 5.20 6.11
400 2.40 3.11 5.37 5.79 6.24
450 2.65 3.40 5.58 5.80 6.48
500 2.89 3.69 5.71 5.85 6.72
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Figure 7: PLR analysis of JSOUCP-MHP approach under distinct DSNs

Meanwhile, with 250 DSN, the JSOUCP-MHP model has resulted in decreased PLR of 1.79% whereas
the IMD-EACBR, SFO, GWO, and GA models have exhibited increased PLR of 2.67%, 4.68%, 4.89%, and
5.57% correspondingly. Finally, with 500 DSN, the JSOUCP-MHP model has offered a lesser PLR of 2.89%
whereas the IMD-EACBR, SFO, GWO, and GA models have acquired maximum PLR of 3.69%, 5.71%,
5.85%, and 6.72% correspondingly. These results confirmed that the JSOUCP-MHP technique has
accomplished enhanced performance over other models.
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5 Conclusion

In this article, a novel JSOUCP-MHP system has been presented for resolving hot spot issues in WSN.
The JSO algorithm is stimulated by the characteristics of spiders naturally and mathematically modelled the
hunting mechanism such as jumping skills, persecution, and search, to attack prey. The presented JSOUCP-
MHP technique mainly resolves the hot spot issue for maximizing the network lifetime. To attain this, the
JSOUCP-MHP technique elects proper set of CHs using average RE. Also, the JSOUCP-MHP system
determines the cluster sizes dependent upon two measures such as RE and DBS. The proposed JSOUCP-
MHP technique is examined under several experiments to ensure its supremacy. The comparison study
shows the significance of the JSOUCP-MHP technique over other models. In upcoming years, the
performance of the JSOUCP-MHP system will be improved by data aggregation approaches.
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