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Abstract: It can be said that the automatic classification of musical genres
plays a very important role in the current digital technology world in which the
creation, distribution, and enjoyment of musical works have undergone huge
changes. As the number of music products increases daily and the music genres
are extremely rich, storing, classifying, and searching these works manually
becomes difficult, if not impossible. Automatic classification of musical genres
will contribute to making this possible. The research presented in this paper
proposes an appropriate deep learning model along with an effective data
augmentation method to achieve high classification accuracy for music genre
classification using Small Free Music Archive (FMA) data set. For Small
FMA, it is more efficient to augment the data by generating an echo rather
than pitch shifting. The research results show that the DenseNet121 model
and data augmentation methods, such as noise addition and echo generation,
have a classification accuracy of 98.97% for the Small FMA data set, while
this data set lowered the sampling frequency to 16000 Hz. The classification
accuracy of this study outperforms that of the majority of the previous results
on the same Small FMA data set.

Keywords: Music genre classification; Small FMA; DenseNet; CNN; GRU;
data augmentation

1 Introduction

Today, advanced digital technology has dramatically changed how people create, distribute, enjoy,
and consume music. On one hand, the number of musical works created by mankind is extremely
large and constantly increasing. On the other hand, the musical genres are also very rich. Therefore,
manually sorting, classifying, and searching for such musical works is an extremely difficult, if not
impossible, task. Computers, machine learning, and deep learning tools have enabled such tasks to
be performed automatically. In addition, various music data sets have been developed, which are very
helpful for research in this area.

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.


https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.036858
https://www.techscience.com/doi/10.32604/csse.2023.036858
mailto:loan.trinhvan@hust.edu.vn

658 CSSE, 2023, vol.47, no.1

Traditional classifiers can be used for music genre classification problems; however, with the strong
advancement of technology, deep learning classifiers have provided outstanding results. On the data
side, depending on the nature of the data, there are appropriate data augmentation methods that
improve recognition or classification accuracy [1,2]. According to [1,2], appropriate data augmentation
improves classification accuracy. In addition, data augmentation is required to increase the amount of
memory and the training time.

This paper presents research that classifies music genres using deep learning tools and effective
data augmentation methods for the Small FMA data set. The rest of the paper is organized as follows:
Section 2 discusses related work. Section 3 describes the data augmentation methods for Small FMA.
Section 4 describes the models used in experiments. Section 5 presents the results and a discussion.
Finally, Section 6 concludes the paper.

2 Related Work

The FMA was introduced by Defferrard et al. in [3]. FMA is a large-scale data set for evaluating
several tasks in music information retrieval. It consists of 343 days of audio from 106,574 tracks by
16,341 artists on 14,854 albums arranged in a hierarchical taxonomy of 161 genres. It provides full-
length, high-quality audio, pre-computed features, tracks, user-level metadata, tags, and free-form text
such as biographies. There are four subsets defined by the authors: full, the complete data set; large,
the full data set with audio limited to 30-s clips extracted from the middle of the tracks (or entire track
if shorter than 30 s); medium, a selection of 25,000 30-s clips with a single root genre; and small, a
balanced subset containing 8,000 30-s clips, with 1,000 clips per one of eight root genres. The eight
root genres are electronic, experimental, folk, hip-hop, instrumental, international, pop, and rock.

Owing to hardware constraints, Small FMA was used in this study. For comparison with other
studies, this section also presents research that has used the same Small FMA in recent years. More
details on related research are presented in Table 1 (at the end of this study). The models used for
Music Genre Classification (MGC) and Small FMA are described below. The authors of [4] used a
Bayesian network, whereas Wang [5], Ke et al. [6] used SVM [7] for MGC. Most studies have used
deep neural networks (DNNs) for MGC. Convolutional Neural Networks (CNNs) were originally
used for image processing [¢,9] but were also used for MGC [10-12]. The research in [13—15] used
Convolutional Recurrent Neural Networks (CRNNSs). In [16], Bottom-up Broadcast Neural Networks
(BBNNs) were used. The authors in [17] exploited LSTM and DenseNet was used in [18]. In [19], a
Siamese neural network [20] was used, which is made up of twin networks that share weights and
configurations before providing unique inputs to the network and optimizing similarity scores. Most
authors used the Mel spectrogram for the feature parameters, as in [6,10,12-17,21]. Others have used
spectrograms, asin [11,18,22]. Pimenta-Zanon et al. [4] used EXAMINNER for the feature extraction.
The authors of [23] used 500 features from the FMA data set for their research. An approach in MGC
that is not yet popular is the classification of detailed sub-genres. ResNet18b, MobileNetV3, VGGI16,
DenseNet121, ShuffleNetV2, and vision transformers (ViT) with a Mel spectrogram were used in [24]
for the classification of sub-genres: FH (future house), BH (bass house), PH (progressive house), and
MH (melodic house). In [24], the highest accuracy was 75.29% with ResNet18b.
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Table 1: Summary of research results on MGC with Small FMA

Reference Year Corpus Model Parameters Accuracy (%)

[11] 2018 Small FMA CNN Spectrogram 60.5

[17] 2018 Small FMA CRNN, LSTM Mel spectrogram 60 (CRNN)

52 (LSTM)
(Validation Acc.)

[19] 2018 GTZAN, Small Siamese neural network 256-dimension  56.73 (FMA)
FMA features

[12] 2019 Small FMA CNN Mel spectrogram 88.54

[14] 2019 GTZAN, Small CRNN Mel spectrogram 61:9 (FMA)
FMA

[18] 2019 GTZAN, DenseNet Spectrogram 68.9 (FMA)
Small FMA

[22 2019 Small FMA Recurrent neural network  Spectrogram 55.88 (FMA)

(RNN) with a gated
recurrent unit (GRU)

[13] 2019 Small FMA CRNN Mel spectrogram Precision 71.2
(Only 7 genres, Recall 80.4
no international
genre)

[5] 2020 GTZAN, Small SVM with SMD Gray-scale 94.5 (FMA)
FMA (Speech/Music spectrogram

Discrimination) and
entropy-based VAD (Voice
Activity detection)

for input

[6] 2020 GTZAN, Small SVM Mel spectrogram 61.48 (FMA)
FMA

[4] 2021 GTZAN, Small Bayes EXAMINNER 99.4 (FMA)
FMA Network feature extraction

[10] 2021 Small FMA CNN Mel spectrogram 56.39

[16] 2022 GTZAN, Small Bottom-up Broadcast Mel spectrogram 58.3 (FMA)
FMA Neural Networks (BBNN)

[15] 2022 Small FMA Hybrid ensembles formed Mel spectrogram 50.00

from deep neural networks
(CRNN) and classical
classifiers

[23] 2022 Small FMA Wide ensembles of neural 500 features in ~ 65.8

network classifiers En10 the FMA dataset
(The best model)
Ours 2022 Small FMA DenseNet121 Mel spectrogram 98.97
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With the content presented above, it can be seen that in addition to traditional classifiers,
innovations in deep learning have been used in MGC, from early models of deep learning such as CNN,
CRNN, and LSTM to later variants with more complex architectures such as GRU, Siamese neural
networks, ResNet, and DenseNet. In addition to using the Mel Spectrogram as a feature parameter
for MGC, other features in the time and frequency domains [25] were also exploited. Features in the
frequency domain include spectral bandwidth, spectral centroid, spectral roll-off, and Mel frequency
cepstral coefficients (MFCCs). In the time domain, the commonly used feature parameters are the
zero-crossing rate, short-time energy, tempo, and root-mean-square energy. Chroma-based parameters
also represent the tonal content of a musical audio signal in condensed form. In machine learning and
deep learning, models are important for solving classification and recognition problems. However, a
good model with poor data quality and a lack of data will make it difficult to achieve good results.
Few studies have used appropriate data-enhancement methods when using Small FMA for MGC.
Data augmentation for Small FMA is detailed later in this paper.

3 Proposed Data Augmentation Methods

Among the studies listed in Table 1, only [14,18] used data augmentation in their study. Pitch
shifting was used for data augmentation in [14,18]. The data augmentation methods used in this study
include adding noise, creating echoes, and changing the pitch. Among these methods, changing the
pitch proved to be less effective than the other two methods, as seen in the experimental section. The
following is a description of the data augmentation methods implemented in this study.

e For noise addition, Librosa [26] was used.

The amplitude of the white noise is taken as 0.03 of the signal’s peak amplitude, and then this noise
is added to the signal. The signal-to-noise ratio (SNR) was calculated using the following formula:

P
SNR(dB) = IOlong—S where Ps is the signal power and P, is the added noise power with the

assumption that the bévckground noise that exists in the original sound files can be ignored. From
there, the average SNR of 8000 sound files was approximately 19.38 dB. According to the International
Computer Science Institute (ICSI) [27], an SNR of 30 dB was considered a clean signal. Thus, the
addition of noise degrades the quality of the signal, but not significantly in this case. Fig. 1 shows an
example of calculating a file’s SNR and its average.

e Creating echo

The echo effect causes a sound to repeat with a delay and diminishing volume, simulating the real
effect of an echo. In this study, the sound signal was delayed by 250 ms and repeated thrice. For each
iteration, the delay amplitude was multiplied by a factor of 0.25. Fig. 2 illustrates the echo generated
at the end of the sound file.

e Changing pitch

Pitch change is achieved by pitch-shifting by a semitone or a tone. The librosa.effects.pitch_shift
from Librosa was used for this purpose. To illustrate pitch shifting, Fig. 3 shows the upward shift of
the A5 note. The A5 note has a frequency of 880 Hz. After shifting to a semitone, there is an A5 with
a frequency of 933.88 Hz. The A5 note became a BS note after shifting up one note, with a frequency
of 987.77 Hz.



CSSE, 2023, vol.47, no.1

0.5

0.0

Amplitude

0.5

Ll b Mgl jil. .
| I |

0 5 10 15 2 % 30
Time in seconds

Excerpt from noise

il

=
=
"9

Amplitude
[=]
e

0.00 T T T 1
0.00 0.02 0.04 0.06 0.08 0.10
Time in seconds
Variation of SNR and Average of SNR (22.66 dB)
30 i = 2 1 T
22.66
= 20
=
o
G 10
0 T T T 1
0 5 10 15 20 25 30

Time in seconds

Figure 1: An example of calculating the SNR and its average for a file

Example_ECHO_150062_16kHz_Winwav, Fs = 16000 Hz

661

1 ||.||u

LT — S ———

Time in ms.
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Figure 3: Illustration of shifting up a semitone and a tone

4 Proposed Models for Our Experiments

In this study, the MGC problem becomes an image recognition problem by transforming the
sound files into corresponding Mel spectrograms. The Mel spectrograms of the sound files are the input
images for the proposed recognition models. A spectrogram is a visual representation of signals in three
dimensions: time, frequency, and amplitude. A Mel spectrogram is a spectrogram that is converted to
a Mel scale. The human auditory system perceives frequencies on a logarithmic scale rather than a
linear scale [28]. Fig. 4 shows an example of a Mel spectrogram for a wave file.

The models used to perform the experiments include DenseNet, CNN, and GRU (Gated Recur-
rent Units). Three variants of DenseNet were used: DenseNet121, DenseNet169, and DenseNet201
[29]. The DenseNet model is briefly described as follows:

DenseNet is one of the seven best models for image classification using Keras [30]. In a traditional
CNN, the input image is passed through the network to extract feature mappings in turn. Finally,
labels on the output are predicted in a way where the forward pass is straightforward. Except for
the first convolutional layer, whose input is the image to be recognized, each layer uses the output of
the previous layer to create a feature map in the output. This feature map is then passed to the next
convolutional layer. If the CNN network has L layers, there will be L connections between one layer
and the next. Fig. 5 shows an illustration of the DenseNet architecture.
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DenseNet [31]introduced Densely Connected Neural Networks to obtain deeper insights, efficient
and accurate training, and outputs. For DenseNet, in addition to the connection between layers, such
as the connection in a CNN, there is another special type of connection. In DenseNet architecture,
each layer is connected to every other layer. If DenseNet has L layers, then there will be L(L + 1)/2
direct connections. The input of a layer inside DenseNet is the concatenation of feature maps from the

previous layers.

The architecture of DenseNet contains dense blocks, where the dimensions of the feature maps
remain constant within a block but the number of filters changes between them. Transition Layers
were used to connect the dense blocks.

As shown in Table | from [31], DenseNet121 has (6, 12, 24, 16) layers in four dense blocks. The
number 121 is calculated as 5 + (6 + 12 + 24 + 16) x 2 = 121, where 5 represents (convolution,
pooling) + 3 transition layers + classification layers. Multiplying by two is necessary because each
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dense block has two layers (1 x 1 convolution and 3 x 3 convolution). The same can be inferred for
DenseNet169 and DenseNet201.

The CNN model in this study inherits the CNN model used and presented in [1]. The same applies
to the GRU model used and presented in [1]. In this study, the input image sizes for the CNN and GRU
models are (230 x 230).

5 Results and Discussions

Section 5 presents the results of the experiments as follows. First, DenseNet169 is used for
MGC with data augmented four times and for two sampling frequencies of sound files, 44100 and
16000 Hz. The results of this experiment show that a sampling frequency of 16000 Hz gives better
classification accuracy than a sampling frequency of 44100 Hz. Therefore, all subsequent experiments
on DenseNet121, DenseNetl169, DenseNet201, CNN, and GRU were performed using data with a
sampling frequency of 16000 Hz. Next, to better observe the effectiveness of data augmentation, the
experiments were performed with data augmented three times, twice, and without data augmentation.
Finally, experimental results with data augmented by pitch shifting are presented.

5.1 Data with Sampling Frequency fs = 44100 Hz and fs = 16000 Hz

The data sets used in this study are listed in Table 2. First, the DenseNet169 model is used for
Small FMA with two data sets, S4fH and S4fL. These two data sets both contain 4-fold enhanced
data and differ only in sampling frequency, as shown in Table 2. A total of 32,000 files from each data
set were divided into 10 parts for cross-validation. One of the 10 parts was segregated and used for
testing. The remaining nine were used for training and validation with a training:validation ratio of
8:1. Thus, there were nine folds for training and validation.

Table 2: Data sets used for experiments

No Data set Size in file number  Explanation

1 S1 8000 8000 original files, fs = 16000 Hz

2 S2 16,000 8000 original files 4+ 8000 noise-added original
files, fs = 16000 Hz

3 S3e 24,000 S2 + 8000 echoed original files, fs = 16000 Hz

4 S3s 24,000 S2 + 8000 original files pitch shifted up by a
semitone, fs = 16000 Hz

5 S4fL 32,000 S3e + 8000 echoed and noise-added original
files, fs = 16000 Hz

6 S4fH 32,000 S3e + 8000 echoed and noise-added original
files, fs = 44100 Hz

7 S5s 40,000 S4 + 8000 original files pitch-shifted up by a
semitone, fs = 16000 Hz

8 S5t 40,000 S4 + 8000 original files pitch-shifted up by a

tone, fs = 16000 Hz

If the sampling frequency was 44100 Hz and the duration of each file was 30 s, the number of
samples in each file was 30 x 4410 = 1,323,000 samples. If the frame width used to calculate the FFT
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for the Mel spectrum is 4028 samples and the frameshift is 2014 samples, the corresponding number of
frames for a sound file is 646. Thus, each audio file was converted into an image file of size 646 (number
of Mel coefficients) x 646 (number of frames). In this study, the input shape for use with DenseNet
networks had a target of (224, 224, 3). (224, 224): image size; (3): three images (R, G, and B). The
quantities such as accuracy, precision, recall, and f1-score in this study are calculated according to
[32]. Table 3 is the average values (%) for nine folds of precision, recall, fl-score, accuracy, and Area
Under the Receiver Operating Characteristics (AUC) [33,34] for Densenet169 with the data set S4fH.

Table 3: DenseNet169, data set S4fH, average values (%) for nine folds of precision, recall f1-score,
accuracy, and AUC

Elec.  Exp. Folk HH Instr.  Intl. Pop Rock  Accuracy 86.87

Precision 87.04 79.86  90.01 92 87.22 92.01 79.15 88.32
Recall 88.13 8545 8&7.1 92.32 84.26 9231 7841 86.92
fl-score  87.56  82.55 8851 92.15 85.7 92.15 78.73  87.6

Note: (Elec.: Electronic, Exp.: Experimental, HH: Hip-hop, Instr.: Instrumental, Intl.: International).

AUC 0.9251

Table 3 shows that precision achieved the highest value (in bold) of 92.01% for the international
genre but recall and f1-score had the highest value for the same genre of hip-hop. Precision, recall, and
f1-score had the same lowest value (in red) for the pop genre.

If the sampling frequency is reduced to 16000 Hz, the number of samples in each file is 30 x 16000
= 480,000. If the frame width and the frameshift remain the same, then the corresponding number of
frames for a sound file will be approximately 234. To prevent the number of samples from possibly
exceeding the size of the sound file, the number of frames was 230. Thus, each sound file was converted
to an image file of size 230 (number of Mel coefficients) by 230 (number of frames). The input shape
for use with DenseNet networks remains the same (224, 224, 3). The average values (%) of accuracy,
AUC, precision, recall, and f1-score for nine folds are presented in Table 4.

Table 4: DenseNet169, data set S4fL, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec.  Exp. Folk HH Instr.  Intl. Pop Rock  Accuracy 98.95

Precision 99.01 98.46 99.02 99.16 98.87 99.05 9891 99.15
Recall 98.59  98.9 98.9 99.48 98.26 99.38 9896 99.12
fl-score  98.8 98.68  98.96 99.32 98.56 99.22 9894 99.13

AUC 0.994

From Table 4, the precision, recall, and f1-score all have the same highest value (in bold) for the
hip-hop genre. The lowest values (in red) are for precision and f1-score of the experimental genre and
recall of the instrumental genre. It can be observed that reducing the sampling frequency to 16000 Hz
leads to a reduction in image size and a significant increase in recognition accuracy. Therefore, the
experiments in this study were performed with a sampling frequency of 16000 Hz.

Table 5 displays the results of DenseNet121 with image size (230 x 230) and data set S4fL.

The precision, recall, and f1-score from Table 5 had the highest value for the same hip-hop genre.
The lowest values were for precision and f1-score in the experimental genre and recall in the pop genre.
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Table 5: DenseNetl121, data set S4fL, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec.  Exp. Folk HH Instr.  Intl. Pop Rock  Accuracy 98.97

Precision 99.13  97.97 98.86 9942 9884 99.23 99.2 99.15
Recall 98.99 99.18 99.22 9953 98.34 9933 98.17 99
fl-score  99.06  98.57 99.04 99.48 98.59 99.28 98.68 99.07

AUC 0.9943

Table 6 shows the results for DenseNet201 with image size (230 x 230) and data set S4fL.

Table 6: DenseNet201, data set S4fL, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec.  Exp. Folk HH Instr.  Intl. Pop Rock  Accuracy 98.85

Precision 98.68 97.73  98.99 99.39 99.06 99.44 98.72 98.77
Recall 99.04 98.87 98.98 99.62 98.03 9936 97.85 99.03
fl-score  98.86 9829 98.98 99.51 98.55 99.39 98.27 989

AUC 0.9934

For DenseNet201 with data set S4fL, as shown in Table 6, it can be seen that recall and f1-score
have the highest value for the hip-hop genre, while precision has the highest value for the international
genre. The lowest values are for precision with the experimental genre, recall with the instrumental
genre, and f1-score with the pop genre.

Table 7 displays the results for the CNN model with image size (230 x 230) and data set S4fL.
The highest values were for precision and fl-score in the international genre and recall in the folk
genre. The lowest values were for precision and fl-score in the experimental genre and recall in the
international genre.

Table 7: CNN, data set S4fL, average values (%) for nine folds of precision, recall, f1-score, accuracy,
and AUC

Elec.  Exp. Folk HH Instr.  Intl. Pop Rock  Accuracy 76.35
Precision 91.62 8343 84.64 91.24 90.28 97.85 90.68 90.36

Recall 74.61  75.67 8144 7656 7597 7436 7136 7481 AUC 0.9634
fl-score  79.61 74.53  78.69 80.69 79.98 84.5 81 79.24

The following Table 8 shows the results for the GRU model with image size (230 x 230) and data
set S4fL.

For the GRU model, as shown in Table 8, precision and fl-score had the highest value for the
electronic genre, while recall had the highest value for the folk genre. Precision and f1-score had the
lowest value for the same folk genre, while recall had the lowest value for the experimental genre.

A summary of the accuracies of DenseNet169, DenseNet121, DenseNet201, CNN, and GRU is
depicted in Fig. 6.
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Thus, DenseNet121 gives the highest accuracy of 98.97% with the data set S4fL, and this accuracy
is superior to most of the studies given in Table 1, exception for [4]. Fig. 7 is an illustrative quote for
the classification results of DenseNet121 with the data set S4fL, including the variation of training
loss and validation loss according to epoch, the confusion matrix, and ROC curves for Fold 6. Note
that the closer the AUC is to 1, the better [35].

From Fig. 7a it can be seen that the variations in the training losses according to the epoch match
variations in the validation losses. The same is true for the variations in the training accuracy and
validation accuracy by epoch. This demonstrates that overfitting did not occur [35].

Table 8: GRU, data set S4fL, average values (%) for nine folds of precision, recall, f1-score, accuracy,
and AUC

Elec. Exp. Folk HH Instr.  Intl.  Pop  Rock Accuracy 75.69

Precision 98.45 95.72  63.08 90.76  96.3 9143 83 98.02
Recall 71.83 6853 88.89 76.14 72.08 76.72 80 71.31
fl-score  83.06 79.87 67.17 80.26 82.44 8091 77.16 82.55

AUC 0.9619

Accuracy (%)

-
76.35 75.69 '

DenseNet121 DenseNet169 DenseNet201 CNN GRU

Figure 6: Summary of the accuracy of models with the data set S4fL

5.2 Effect of Data Augmentation

To better understand the effect of data augmentation, the experiments were performed with three
data sets, S3e, S2, and S1, for DenseNet169. Table 9 displays the results for DenseNet169 with image
size (230 x 230) and data set S3e. These results show that the average values of accuracy, AUC,
precision, recall, and f1-score were all lower than those of data set S4fL.

The results for DenseNet169 with data set S2 are presented in Table 10. The average values of
accuracy, AUC, precision, recall, and f1-score, in this case, were all lower than those of DenseNet169
with data set S3e.

In the absence of data augmentation, the results for DenseNet169 with data set S1 and image size
(230x230) are given in Table 11. In this case, the average values of accuracy, AUC, precision, recall,
and f1-score were the lowest compared to the above data augmentation cases.
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Table 9: DenseNet169, data set S3e, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec. Exp. Folk HH Instr. Intl.  Pop Rock  Accuracy 95.85

Precision 96.57 9238 96.23 97.51 9541 9722 9537 9592
Recall 95.02 9534 96.73 97.7 95.71 96.42 9292 96.79
fl-score  95.78 93.82 96.47 97.6 95.56 96.81 94.11 96.34

AUC 0.9762

Table 10: DenseNet169, data set S2, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec. Exp. Folk HH Instr.  Intl. Pop Rock  Accuracy 84.08

Precision 83.16 7447 87.68 94.4 82.25 87.29 7557 87.32
Recall 8346 80.31 83.02 9273 84.23 87.31 74.05 85.48
fl-score  83.3 77.25 8526 93.55 832 87.27 747716 86.36

AUC 0.9078

Table 11: DenseNet169, data set S1, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec.  Exp. Folk HH Instr.  Intl. Pop Rock  Accuracy 61.56

Precision 57.36  60.14  72.7 72.85 5527 6798 43.13  66.7
Recall 70.41 5421 60.27 73.66 65.73 66.01 3556 69.34
fl-score  63.06 5691 6575 7321 59.83 66.9 38.89  67.89

AUC 0.782

The MGC accuracy of the DenseNet169 model according to augmented data size is shown in
Fig. 8.

As shown in Fig. 8, the MCG accuracy increased as the data size increased from two to four times.
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Figure 8: The MGC accuracy of the DenseNet169 model depends on the data size

5.3 Data Augmentation with Pitch Shifting

As shown above, for data set S3e, the data were increased by three times by adding noise and
creating an echo. To compare the method of data augmentation by echoing with pitch shifting, an
experiment was carried out with the data size increased three times by adding noise and pitch shifting.
First, the original data were shifted up using a semitone. Therefore, the data set was S3s. The results
from Table 12 show that the classification accuracy for the data set S3s is increased in comparison with
S2, but not so much. On the other hand, the classification accuracy for data set S3s is lower than that
for S3e. Thus, it can be said that in this case, the data augmented by pitch shifting is less efficient than
that augmented by echo generation.

Table 12: DenseNet169, data set S3s, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec. Exp. Folk HH Instr. Intl.  Pop Rock  Accuracy 84.37

Precision 86 74.32 8691 9332 822 90.41 75.54 85.36
Recall 86.75 79.45 86.27 92.02 8246 89.71 7283 84.13
fl-score  86.35 76.78 86.58 92.66 82.3 90.04 74.14 84.73

AUC 0.9099

Finally, an experiment was conducted by increasing the data size by five times. By pitch shifting,
the data size was increased by five times, with a total of 40000 files. The pitch was raised by a semitone
for data set S5s and a tone for data set S5t.

Table 13 shows the results for DenseNet169 with image size (230 x 230) and data set S5s. These
results show that increasing the data by a fifth time by shifting up a semitone did not improve the
accuracy when compared to only increasing the data four times.

The above comment is also true for Denset121 with the data set S5s, where the results are given
in Table 14.

The final experiment we would like to present here is for the data set S5t. Table 15 shows the results
in this case for DenseNet121.

With two data sets, S5s and S5t, some observations can be made as follows: For DenseNet169, the
accuracy of 95.27% with data set S5s was higher than the accuracy of 94.67% for DenseNet121. For
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DenseNet121, the accuracy of 94.35% with data set S5t is lower than the accuracy of 94.67% with data
set S5s. Thus, data augmentation by pitch-shifted up by one tone did not lead to a better classification
accuracy than pitch-shifted up by a semitone. This is also consistent with the comments in [18], which
stated that “with a small change of pitch of a song, its classification still works,” and [18&] only used
shifting the pitch of songs by half a tone.

Table 13: DenseNet169, data set S5s, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec. Exp. Folk HH Instr.  Intl.  Pop Rock  Accuracy 95.27

Precision 96.16  91.56 95.16 98.14 9458 98.1 94.79  94.04
Recall 95.74 9481 95.18 97.33 9475 97.05 92.19 953
fl-score 9595 93.14 9517 97.73 94.66 97.57 9347 94.65

AUC 0.973

Table 14: DenseNet121, data set S5s, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec. Exp. Folk HH Instr. Intl.  Pop Rock  Accuracy 94.67

Precision 95.83 90.83 94.71 97.51 93.9 97.7 9293  94.37
Recall 95.7 93.61 9438 96.88 93.66 9637 92.19 94.75
fl-score  95.76  92.19 9454 97.19 93.77 97.03 92.56 94.56

AUC 0.9695

Table 15: DenseNet121, data set S5t, average values (%) for nine folds of precision, recall, f1-score,
accuracy, and AUC

Elec. Exp. Folk HH Instr.  Intl. Pop Rock  Accuracy 94.35

Precision 95.36  89.31 9494 9748 9386 9742 934 93.53
Recall 95.44 93.63 93.64 9698 9339 9632 O91.1 94.46
fl-score  95.4 9141 9427 9723 93.61 96.87 9223 9399

AUC 0.9678

There have been studies on the computational cost of deep learning models [36], the model
complexity of deep learning [37,3€], and the methods to reduce the computational complexity of deep
learning [39,40]. A full analysis of the time complexity of the entire algorithm of the models such as
DenseNet121, DenseNet169, and DenseNet201 is beyond the scope of this work. On the other hand,
in this study, there is no algorithmic change in the aforementioned models. In this study, the size of
the data used for training was increased. This increases the training time. Therefore, this paper only
compares the training time for two cases: augmented and unaugmented data.

The hardware configuration for this study was as follows: Intel Core 17-8700K @3.2 GHz, 12
threads of processing power, 32 GB of RAM, 2 TB of storage, and NVIDIA GeForce RTX 2080 Ti
with 11 GB of RAM. The following software versions were used: Ubuntu 19.10, Python 3.8, Keras
2.4.3, Tensorflow 2.3.0, Tensorflow-GPU 2.3.0, and Librosa 0.7.2. Table 16 gives the average time to
train an epoch and the time for the loss function to converge with two data sets, S4fL. and S1. For the
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model DenseNet169 and data set S1, the average training time for one epoch is 0.79 min. If the data
are increased by four times (the data set S4fL), this time is 3.07 min. Therefore, increasing the data
by four times resulted in an increased training time of approximately 3.07/0.79 ~ 3.89 times for one
epoch. The time required for each model for the loss function to converge depends on the size of the
data and fold. For the model DenseNet169, the maximum values of this time are 485.06 and 11.06 min
with the data sets S4fLL and S1, respectively. Also, with the model DenseNet169, the maximum time
for the loss function to converge is increased by about 485.06/11.06 ~ 43.86 times if the size of the
data is increased by 4 times. On average, in this case, the DenseNet121 model’s computational speed
was the fastest, and that of the DenseNet201 model was the slowest.

Table 16: Average time to train an epoch and time for the loss function to converge

Models Data set Average Time for the loss function to

Time/Epoch converge in minutes

) minut

in minutes Min Max
DenseNet121 S4fL 2.48 84.32 310
DenseNet169 S4fL 3.07 46.05 485.06
DenseNet201 S4fL 4.25 72.25 769.25
DenseNet169 S1 0.79 5.53 11.06

To conclude Section 5, the following is a discussion of the addition of white noise to enhance the
data and the reduction of the sampling frequency of the data to 16000 Hz that was performed in this
study. One assumption made clear in this study is that the background noise that exists in the original
sound files can be ignored. Therefore, what will happen if this background noise has a large value?
This study used a white noise addition method to enhance the data. If the background noise in the
original sound files is too large, adding noise increases the risk of reducing the quality of the audio
files. This significantly distorts the image quality of the data-enhanced audio file compared to the
image quality of the original file. This adversely affects the training and testing processes, making it
difficult to achieve a high classification accuracy. The experimental results showed that this was not the
case. By adding white noise with an appropriate amplitude, the classification accuracy was increased
compared with the case where the data were not enhanced by noise addition. The drawback of data
augmentation is that it increases the training time.

This study reduced the sampling frequency of the data from 44100 to 16000 Hz. Under what
assumptions would one be able to do so while maintaining high classification accuracy? The sampling
frequency of the original audio file is 44100 Hz. According to the Nyquist-Shannon sampling theorem
[41], the peak frequency of the audio signal, in this case, is fs/2 = 22050 Hz. This peak frequency is
close to the maximum frequency that the human cognitive system can perceive. The problem posed in
this study was MGC. To recognize musical genres, the human auditory system does not need to absorb
all the details of the information contained in the sound but usually only requires general information.
Therefore, in this case, the MGC still achieved good results. However, if the problem is to identify the
singer’s voice, more detailed information will be required in the signal spectrum. In this case, if the
sampling frequency is reduced too low, the detailed information contained in the signal spectrum will
be lost. As a result, singer voice recognition will be inconvenient, and it may be difficult to achieve
high accuracy.
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The source code for this research and user guide are available at the following link: https://drive.
google.com/drive/folders/1UR _X8fq8U0aiNW VobTzNCZeWe4dlae3ti?usp=sharing.

6 Conclusions

The research results presented in this paper demonstrate that appropriately defining the deep
learning model in conjunction with an efficient data augmentation method enables MGC accuracy
to outperform the majority of the available studies on the same Small FMA data set. The music genre
classification problem in this research becomes an image recognition problem in which each musical
work is characterized by the corresponding Mel spectrogram. Reducing the sampling frequency of
the original sound files from 44100 to 16000 Hz allows for a reduction in the size of the image to
be recognized and increases the recognition accuracy. DenseNet121 provided the highest recognition
accuracy with 4-fold enhanced data among the deep learning models. The experiments also show that
data augmentation by echoing is more effective than pitch shifting in increasing classification accuracy.
However, pitch-shifting up by one tone does not improve classification accuracy compared to pitch-
shifting up by a semitone. Our future work will involve exploiting other sources of music data and
finding ways to improve the accuracy of music genre classification. In addition to data enhancement
methods, studies will be conducted to reduce the computational complexity of deep learning models.
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