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Abstract: Cloud computing facilitates the great potentiality of storing and
managing remote access to services in terms of software as a service (SaaS).
Several organizations have moved towards outsourcing over the cloud to
reduce the burden on local resources. In this context, the metaheuristic opti-
mization method is determined to be highly suitable for selecting appropriate
services that comply with the requirements of the client’s requests, as the
services stored over the cloud are too complex and scalable. To achieve better
service composition, the parameters of Quality of Service (QoS) related to
each service considered to be the best resource need to be selected and
optimized for attaining potential services over the cloud. Thus, the cloud
service composition needs to concentrate on the selection and integration
of services over the cloud to satisfy the client’s requests. In this paper, a
Hybrid Chameleon and Honey Badger Optimization Algorithm (HCHBOA)-
based cloud service composition scheme is presented for achieving efficient
services with satisfying the requirements of QoS over the cloud. This proposed
HCHBOA integrated the merits of the Chameleon Search Algorithm (CSA)
and Honey Badger Optimization Algorithm (HBOA) for balancing the trade-
off between the rate of exploration and exploitation. It specifically used
HBOA for tuning the parameters of CSA automatically so that CSA could
adapt its performance depending on its incorporated tuning factors. The
experimental results of the proposed HCHBOA with experimental datasets
exhibited its predominance by improving the response time by 21.38%, avail-
ability by 20.93% and reliability by 19.31% with a minimized execution time
of 23.18%, compared to the baseline cloud service composition schemes used
for investigation.
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1 Introduction

Large stakeholders in computer technology enterprises and institutional management have
already migrated to cloud computing due to the significance of low-cost access to reliable, high-
performance hardware and software resources and the avoidance of upkeep costs [1,2]. The delivery
of services via the cloud is developing into a model akin to that of conventional utilities like water,
electricity, telephone, and gas [3,4]. Cloud computing encompasses not just the computer hardware and
operating system software found in data centers but also the applications that may be used as services
over the internet [5,6]. Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and SaaS are
the three fundamental categories of cloud services. IaaS enables the deployment and operation of
operating systems and applications by providing “processing, storage, networks, and other crucial
computing resources” [7]. Applications generated using programming languages and tools can be
consumed, created, or bought using PaaS. SaaS refers to applications cloud provider develops, hosts,
and lets customers access online.

In cloud computing, there are primarily two types of individuals who make requests for resources
and services: (1) single service request tasks, which are capable of being finished by utilizing a
centralized data service, and (2) multiservice request tasks, which are capable of being finished by
utilizing several different functions in a predetermined order [8,9]. Choosing the best service is
relatively simple; however, forming a large-scope service with many points and cutoff points can be
significantly more difficult.

Applications for services typically have three components: the “service requester,” the “service
provider,” and the “service registry.” The searches, invoke/bind, and publish processes all contribute
to understanding the relationships between these three main components. To properly fulfill a complex
request, different services are combined to create a composite service [10]. The four stages of the
lifetime of a service composition are “definition, service selection, deployment, and execution.” In the
“specification” part, the “service requester” is the one who details the “service composition limits,”
which are meant to provide “adequate information about the user’s requirements and preferences for
composite service”.

The restrictions are then automatically or semi-automatically dissolved into the abstract model,
which defines a set of operations and information sequences interfacing with them, the exceptional
performances, and QoS limitations [11]. There may be more than one application service that fulfills
the standards, which is feasible and plausible. The best service must therefore be chosen as a result.
After all the necessary web services have been discovered, the newly created composite service is
generated. The composite service is set up after the selection section to enable user creation and
operation.

The execution engine then creates and runs the composite service instance. The application of
service composition as an important topic for service-oriented technology has received extensive study.
In addition, the difficulty of QoS-aware service composition increases when it is assessed in the context
of dynamic service scenarios with changing circumstances. The ever-changing character of service
environments contributes to the emergence of two distinct difficulties. First, service selection and
composition should be made during runtime because dynamic conditions require an instantaneous
response to customer requests, and the availability of services cannot be predicted in advance. This
is a best practice because dynamic conditions require instantaneous responses. As a result, while the
problem’s computational complexity is Non-deterministic Polynomial-time (NP)-hard, the execution
time of service selection algorithms is strictly regulated.
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As a result of these environments’ dynamic nature, the second problem is the volatility of QoS
conditions. During the deployment of the service composition, this problem arises when one or more
of the services that make up the composition is no longer accessible or have their QoS decreased (due
to network disconnections or bad network connectivity) [12]. The composition of various services
from different providers is increasingly complex and difficult, and service providers grow, especially
in a multi-cloud environment [13]. All service providers must measure an enormous amount of data,
which consumes a lot of energy and resources [14].

Typically, a cloud user will interact with a cloud vendor to submit a job to a cloud service provider
that includes functional and non-functional criteria [15]. Based on the parameters specified in the
service level agreement (SLA), the broker selects the most beneficial service for the user’s request [16].
A number of studies have already been done in this field, producing approaches and strong tools for
customers but with drawbacks such as not looking at total energy use or assuming that the desired
services are provided through a single cloud. Finding a composition method with the fewest services
possible is a difficult problem [17].

Since there are so many services available, it is difficult to gauge how trustworthy they are. Service
composition will only be widely accepted when users understand that the solutions they receive are
built from reliable services [18]. One of the biggest problems in cloud computing is creating cloud
services based on trust. Availability, responsibility, success potential, reliability, and agility makeup
trust [19].

We should employ optimization methods to locate almost ideal solutions to NP-hard issues. Using
their domain search space based on the natural structure that the species has, metaheuristic approaches
inspired by nature struggle to obtain the “global optimal solution” [20]. Making clusters using data is
one of the most efficient techniques to minimize distortion, identify related groups in large datasets,
and shorten search times [21–23].

To determine which services can be relied on in the cloud, we proposed a trust assessment-
based service composition approach. We implemented a hybrid optimization algorithm that combines
the HCHBOA to reduce the search space required to find the best possible solution. The following
objectives guide this paper:

• To fulfill users’ demands, the right combination of services must be found.
• Additionally, the computation time required to complete users’ requests must be reduced.
• Composing more trustworthy services is one way to increase users’ trust.

The following summarizes the paper’s organizational structure. Section 2 analyses and evaluates
relevant research and the benefits and drawbacks of earlier approaches. Utilizing a trust-based
HCHBOA optimization algorithm, In Section 3, we propose a strategy for composing cloud-based
services. The outcomes of the simulations are given and discussed, and directions for further study are
suggested in the final section.

2 Related Works

Numerous studies on the composition of cloud services have been conducted. This section refers
to a few publications that analyze the cloud service composition and emphasize the key benefits and
drawbacks.
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2.1 Service Composition
Gao et al. [24] provided a way for employing evolutionary algorithms to assess confidence in a

service composition. The relatively immediate solution may be found using this model’s subjective
probability theory-based trust evaluation model, which also provides an optimal method for finding
subsequent generations to test the correctness of the solution’s optimality. This strategy has the benefit
of being more effective. This technique’s considerably high intricacy results in an extension of the
service composition’s lifetime. This framework, however, increased the complexity.

Naseri et al. [25] have utilized the Particle Swarm Optimization (PSO) algorithm and developed
a cloud service composition based on QoS. By asking the interface agent to determine the QoS con-
straints, the technique ensures service composition. This method’s benefits include reducing waiting
time and overall resource usage. Unfortunately, load balancing is ineffective. But load balancing is
high in this framework.

Every cloud participant in Gutierrez-Garcia et al. [26] self-organizing agent-based service compo-
sition framework is represented by an agent. The following two agent-based methodologies are being
used to assist the recently launched structure: “1st, resources with the agreement network protocol
have been used to adaptively select services associated with service fees; 2nd, acquaintance networks
with a list of common brokers and their capabilities are being used to cope with incomplete data
about the locations of distributed cloud participants.”The effectiveness of the service composition with
insufficient data is the key benefit of this architecture. But this framework increased the probability of
failure.

To solve a challenging biological optimization problem, González-Lvarez et al. [27] developed a
system model of a honey bee mating optimization algorithm using MPI and OpenMP. To address
the aforementioned issue, they, therefore, used multi-objective optimization. Six natural cases of
varying sizes were performed to assess the effectiveness of their proposed strategy. By comparing their
approach against other well-known tools in terms of parallel performance and getting great results
from both angles, the evaluation findings demonstrated the program’s applicability. Additionally,
their research offered a method for parallelizing bio-inspired algorithms using cluster computing
approaches. However, this framework increased the computational overhead.

A hybrid honey bee mating optimization algorithm is presented by Nayak et al. [28]. The
classification issue in data mining has been resolved by fusing these two. According to the outcomes
of experimental trials, the presented scheme offers superior stability, dependability, and accuracy
compared to earlier methods like GA, PSO, and differential evolution. But this framework is not
suitable for a real-time environment.

Additionally, the Ant Colony Optimized (ACO) approach for web service development is
described by Alhadid et al. [29]. Using clustering and ACO methods, the presented framework provides
an effective method for the best composition of semantic web services. It also makes it simple for
customers to locate complementary services. A high joining capability set of online services is found
using an “ant colony optimization” approach. Unfortunately, this framework has ineffective load
balancing. But in this framework, the cloud load is very high, which leads to reduced operational
speed.

An optimization approach based on a fuzzy is presented for cloud composition by Chahal et al.
[30]. The data used to evaluate public opinion and direct trust came from analyzing four factors
(security and performance) of five cloud service providers. Data generated by Nasuni, a cloud storage
provider, was used to evaluate auditor trust. Combining direct trust, public scrutiny, and auditor trust
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yields an estimate of the system’s total reliability. Although the designed scheme is scalable and reliable,
it does not handle many dynamic QoS factors.

For diagnosing the impact of trust on cloud services, Tang et al. [31] have also presented a method-
ology for selecting cloud services based on trust. The presented technique effectively selected service
selection by combining objective and subjective trust assessments. But due to erroneous assumptions,
dynamics, and dependability based upon those overwhelming ratings of service consumers.

Additionally, Messina et al. [32] have presented a reputation-based framework that can enhance
the cloud service composition by taking into account charges and measurements of QoS. Although it
appears that the technique has this issue, even though the service composition is enhanced by taking
into account users’ general perceptions, the actual improvement as a result of this composition might
not always reflect the analysis of the prior clients’ feedback mechanisms. This framework increased
the computational cost.

2.2 Optimization Techniques
In order to reduce communication costs and financial fees, Al-Anazi et al. [33] have created a

service composition algorithm. By ensuring that the cloud with the greatest range of services is always
chosen before other clouds, the combinatorial optimization algorithm increases the likelihood that
service requests may be fulfilled with the least overhead. The collected findings indicate that the
combinatorial optimization technique keeps a small number of merged clouds while maintaining the
number of services under examination, significantly affecting completion time. The findings are based
on the observation that when a cloud’s number of services offered is higher, there is a greater likelihood
of identifying all the functions within that cloud. This framework requires additional resources to
maintain the same performance.

There have been many studies done on the evaluation of trust levels in service composition.
Haddad et al.’s suggested method focuses on QoS parameters instead of the customer feedback used
in the previously discussed methods, which leads to unrealistic results. Additionally, the effectiveness
of the suggested approach is improved by employing clustering based on trust assessments [34].

In addition, a Discrete Gbestguided Artificial Bee Colony (DGABC) algorithm for service
composition is suggested by Huo et al. [35]. The suggested approach is expanded to include a time
attenuation function, and service composition is defined as one of the nonlinear optimization issues.
The suggested paradigm offers high-quality solutions and is more effective. But this framework
increased the complexity. For the traveling salesman problem, a modified artificial bee colony
approach is discussed by Choong et al. [36]. In this framework, the neighbourhood search heuristic
utilized by the worker and watcher bees is chosen using the modified choice function. The Lin-
Kernighan (LK) local search technique is merged with the suggested model to enhance efficiency.
During various phases of the search process, the suggested model can adaptively control the weights
of its intensification components. However, this framework leads to more memory consumption.

A self-adaptive ABC algorithm is developed by Xue et al. [37]. A new stochastic strategy was
employed in the offered method to enhance the exploration ability of the spectator bee stage and to
modify the working bee segment for optimal global capability. To avoid local minima, they also altered
the startup phase. To begin the community, for example, the algorithm employs chaotic frameworks.
It is possible to optimize the algorithm quite effectively. But this framework leads to more delay.

An adaptive multi-population differential artificial bee colony algorithm for many-objective
service composition in cloud manufacturing has been proposed by Zhou et al. [38]. The algorithm
provided a differential evolution mutation to modify the operator control parameters of the honey



398 CSSE, 2023, vol.47, no.1

bee for healthy progeny reproduction. The presented scheme is more adaptable to solving problems
with various features thanks to the help of these strategies. However, this framework requires more
energy.

For the bee colony optimization technique, a dynamic fuzzy-based dance mechanism is developed
by Choong et al. [39]. This framework’s dynamically regulated parameters outweigh the bee colony
optimization linear technique’s manual parameter tweaking restrictions. In terms of rewarding dance
instances close to the inflection point, the provided dynamic fuzzy-based dance made a positive impact
on the bee colony optimization linear algorithm. As a result, it works well for controlling the length
of waggle dances. This framework, however, increased routing overhead.

A more advanced honey bee mating optimization system was reported by Solgi et al. [40]. The
updated approach has been used to address problems involving many reservoirs, the optimization of
natural resources, and numerous unrestricted and constrained arithmetic calculations. In comparison
to other techniques, the one that is being provided is more effective and achieves an improved result
with a smaller coefficient of assessment differentiation. This framework increased the probability of
failure. The works mentioned in Table 1 are included with their advantages and disadvantages.

Table 1: Comparative analysis

Author’s name Methodology Advantages Disadvantages

Lakshmanna et al. [41] Improved
metaheuristic-driven
energy-aware
cluster-based routing

High packet delivery
ratio (PDR)

Less throughput

Sundas et al. [42] Modified bat algorithm
with overloaded
optimal virtual machine

Cost-effective
framework

Increased energy
consumption

Anuradha et al. [43] The chaotic
search-and-rescue-
optimization-based
multi-hop data
transmission protocol

High PDR Increased routing
overhead

Alotaibi [44] Tabu search algorithm Enhanced searching
process

Leads to
computational
overhead.

Rajendran et al. [45] Optimal deep belief
network

Reduced delay High computational
complexity

Jayapradha et al. [46] Heap bucketization-
anonymity
model

High privacy with less
utility loss

Increased routing
overhead

Alotaibi [47] Secured database
management system
architecture using
intrusion detection
systems

Very small FN and FP
rates.

Require more
resources to main
stable performance

(Continued)
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Table 1: Continued
Author’s name Methodology Advantages Disadvantages

Alsufyani et al. [48] Intelligent data
management framework
for a cyber-physical
system

Less complexity Increased delay

Yan et al. [49] Truncated singular
value decomposition
model for QoS

High efficiency, high
accuracy.

Increased time
complexity

Qi et al. [50] Correlation
graph-based approach

Compatible framework Increased delay

Nitu et al. [51] Machine learning-based
travel recommendation
system

High accuracy High cost

Zhang et al. [52] User recruitment
algorithm

Improves the quality of
sensed data

Increased routing
delay

3 Proposed Methodology

We outline the cloud model that is used to compose services in this section. The problem
specification is then provided, some definitions of the essential concepts and a clustering approach. In
the next section, a clustering technique based on trust level is suggested for cloud service composition.
The paradigm for cloud service composition is shown in Fig. 1. Loop, switch sequence, and flow are
the composition paradigms for service composition that are used most frequently. They are illustrated
by ∗, ⊗, →, and ⊕ symbols [53]. The service composition framework is presented in Fig. 2. It is
illustrated with numerical symbolization as [[A1 → A3] ⊕ A2] → [A4 ⊗ A5] → A6. The proposed
methodology for service composition utilizing the HCHBOA technique and trust-based clustering
is presented in this section. The proposed technique’s initial step involves measuring trustworthiness
using QoS criteria.

A1 A3

A2 A5

A4

A6

Figure 1: Service composition framework

3.1 Evaluation of Trust Degree
To determine the level of service trust, several parameters are calculated, which are presented as

follows:
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A1

A2 A3

A3

A5 A6

A7

A8 A9

Clouds 
combiner

Composition
Planner

Composition 
problem

Composition 
Domain

Start A1 A2

A3AN

Clustering

Optimization

Service composition 
request

Composition 
Convertor

Service Requester 
Interface 1,2,3,…,n

Figure 2: Illustration of a basic_service_composition framework

3.1.1 Availability

When a cloud service is available and usable when required, this is indicated by its availability
degree. The service operates for the total time required or calculable to function. In Eq. (1), availability
is determined qualitatively as follows:

Availability (AVl) = B
C

(1)

where, l → cloud resources = 1, 2, . . . , m, → C no. of jobs submitted to cloud resources, and B →
No. of a job accepted by the resource l.

3.1.2 Responsibility

The ability of the service to carry out its key activities by the preset conditions throughout the
predefined amount of time is known as responsibility. Eq. (2) is used to determine responsibility, as
seen below:

Responsibility RSl = D
E

(2)
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For each l = 1, 2, 3, . . . m, D → no. of jobs succumbed to l in the specified time (ms) and E →
number of requests present.

3.1.3 Reliability

The foundational component of determining trust is reliability. Software or hardware can do a
given job within a certain amount of time by the specified requirements. Eq. (3) can be used to compute
the ratio of error messages to total messages as follows:

Reliability RELl = J
C

(3)

For each l = 1, 2, 3, . . . m, C → no. of jobs acknowledged by the cloud l & J → no. of jobs
completed by cloud.

3.1.4 Trust Evaluation

In this section, the trust value is determined using the results of measured equations. Eq. (4)
measured the trust value, which was presented as follows:

Trust (T) = ZAV ∗ AVl + ZRS ∗ RSl + ZREL ∗ RELl (4)

where ZAV , ZRS, ZREL → trust parameter’s positive weights that ZAV+, ZRS + ZREL = 1. According to
their importance, the weights of these trust factors are shown. For example, if ZAV = 0.2, ZRS = 0.3,
and ZREL = 0.5. The final trust measure should range from 0 to 1 because reliability is important. In
the next phases of the suggested technique, the trust value is employed as fitness.

3.2 Clustering
Making clusters from heterogeneous data is one of the most efficient techniques to reduce

distortion, identify comparable groupings within the data, and shorten search times. Given a collection
of n data points, the mean squared distance between each and its greatest center should be reduced.
Eq. (5) is used to calculate distance based on Euclidean distance as follows:

d =
√√√√ m∑

j=1

(qawx − qswx)
2 (5)

where “qs → the rate of the lth attribute for the xth service, qa → the value of the wth attribute for the xth

cluster center”. The total within-cluster variance is known as the “Mean Square quantization Error”
(MSE). Assessing the quality of the k-clustering using this method is one of the most dependable and
effective ways to do it. It is defined in Eq. (6) as follows:

Perf (X , C) =
∑N

j=1
Min{||Xi − Cl||2 l = 1, . . . .k} (6)

The first step of the K-means algorithm is to randomly select K cluster centers and assign the
points to the clusters. After calculating each new cluster center and assessing whether the requirements
were satisfied, the cycle ends; however, if the conditions are not met, the cycle continues by giving fresh
points to the clusters.

3.2.1 Qualitative Attribute Normalization

In this section, the qualitative characteristics of services are discussed. The data set used for the
simulation phase reveals several ranges for subjective service qualities, such as reaction time, which
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ranges from 0 to 10,000 ms for each service, and dependability level, which ranges from 0 to 100. To
standardize all the qualities into a period between 0 and 1, apply Eqs. (7) and (8).
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Eq. (7) is being used to maximize the requirements for positive QoS traits like availability and
reliability, whereas the negative criteria (cost and time) standards are reduced using Eq. (8). In Eqs. (7)
and (8), ql

swx
lth attribute of the xth service from the xth service, Max ql

swx
, and Min ql

sx
→ Max. And Min.

values of the lth attribute for the xth service.

3.3 Proposed Hybrid Optimized Solution for QoS-Based Cloud Service Composition Problem
This section presents a quick overview of the CSA and HBA.

3.3.1 Chameleon Swarm Algorithm (CSA)

Chameleons, known for their ability to change color to adapt to their surroundings, are effective
hunters. Because of this quality, chameleons are excellent explorers. The developers of the CSA point
out that chameleon have a unique capacity to explore, which allows them to locate their prey using this
investigative function [54]. Chameleons are distinguished in that each of their two eyes may move in a
manner that is independent of the other. They can keep track of their prey even when moving quickly
because of their wide-angle vision. Chameleons have the ability to move their tongues extremely swiftly,
which helps them in the hunt. Because of these capabilities, it is possible to assert that it is an effective
hunter. One may draw parallels between fast convergence and the capacity to utilize one’s tongue
swiftly. Because their eyes can move in any direction and see 360 degrees, they can effectively explore
the search area. There are two categories of exploratory abilities and four categories of hunting skills
that are discussed in this algorithm. Desert exploration and tree exploration are two of its talents
when it comes to exploring. One of their primary hunting skills is the ability to swiftly move their
heads around and focus on a single target without drawing the attention of the target animal. The
second talent it has is the capacity to visually lead its prey by turning its eye to the right. Because of
its long tongue, it can stalk its prey from a distance without having to go too near it, which is its third
talent. It can hunt by approaching its victim, the fourth talent it has. This algorithm contributes to
hunting with its exploration power since it searches the whole space. The chameleon swiftly converges
on its prey and has a fast convergence curve even though it dominates the whole space. Sixty-seven
non-comparison tests, such as the CSA in the EC-2015 and CEC-2017 test suites, are used to evaluate
the proposed system and provide a comparison.

The following Eq. (9) is used to determine the CSA’s exploration:

Y i,j
t+1 =

{
Y i,j

t + p1

(
Pi,j

t − Gj
t

)
r2 + p2

(
Gj

t − Y i,j
t

)
r1, ri ≥ Pp

Y i,j
t + μ

(
(uj − lj) r3 + lj

b

)
sgn (rand − 0.5) , ri ≤ Pp

(9)

The letter i designates the chameleon order. t stands for the total number of iterations, while j
indicates the magnitude of the task being tackled by the current iteration. The position that will be in
the following iteration is denoted by Y i

t+1, while the position that is now held by Y i
t , is denoted by the

notation. Pi
t, the chameleon, is now at the most advantageous position in the t. iteration G j

t, t identifies
the position that has been in the best position during all previous iterations up to the t. iteration. The
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numbers p1 and p2 are the ones that are used to govern who has the capacity to do reconnaissance. r1,
r2, and r3 are three random integers between 0 and 1 that were chosen at random. The letter Pp denotes
the chance that the chameleon will chase its prey. The power to seek and find information is controlled
by the value (rand − 0.5), which is found in the range [−1, 1]. The parameter denoted by the symbol μ
is specified in the number of iterations. Fig. 3 provides a visual representation of the CSA’s operational
mechanism.

Define parameter (u), the inertia weight (w), 
acceleration rate (a)

Yes

Initialize the particles at random

Calculate fitness of each particle

If ytbetter than Assign yttopt

Yes

If 
iteration<maxiteration

Stop

No

No
ri>pp

Start

Initialize the chameleons at random 

Yes

Figure 3: Flowchart of CSA

3.3.2 HBA Algorithm

The HBA [55] was introduced to computer science after its creators were motivated to create a new
algorithm by observing the hunting and foraging habits of a wild animal known as the honey badger.
The honey badger is a kind of animal found in areas of Africa’s deserts and rainforests. It is also a
species of animal found in southwest Asia and India. It is famous for its fearlessness in the natural
world. It has a search method that enables it to discover and hunt 67 species, including some that are
very deadly. Honey is one of the things that the honey badger enjoys eating the most. This animal can
find honey using a variety of instruments. Honey badgers engage in two distinct forms of hunting and
foraging in the wild. The initial part of the process is known as the digging phase. In the digging part
of their hunting process, honey badgers locate their prey using their acute sense of smell to look for
the animal. It approaches its prey by burrowing and scavenging in the area. The honey stage is the
second step in the development process. At this point, the honey badger’s sense of smell is insufficient
to seek out honey on its own; therefore, it needs the assistance of a guide. The pilot bird and the honey
badger use a similar search and hunting approach. The honey badger is directed during its quest by a
bird. The honey badger employs this tactic by following after the guided bird. The job of looking for
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birds is taken on by the guide. Who utilizes a distinct search method compared to the honey badger
and successfully locates honey with the assistance of the guided bird. However, the bird is unable to
access the honey. The honey badger’s skill with tools comes into play at this stage, and it ultimately
succeeds in obtaining honey. Because of this, the honey badger is able to make up for its deficiencies
in the search regions where it is inadequate, thanks to the assistance of a guided bird. It is shown in
Reference [55] that the HBA has been used to address a wide variety of engineering challenges, with
successful outcomes in each case. The capacity of the honey badger to seek and use its environment
uniquely may be measured using the following Eqs. (10) and (11).

Divj = 1
N

N∑
i=1

median
(
xj

) − xj
i (10)

Divt = 1
N

N∑
j=1

Divj, t = 1, 2, .., tmax (11)

Honey badgers are classified according to their order, which is denoted by i, and their size, which
is denoted by j. The honey badger solution candidate is indicated by the letter xij. The Divj variety
represents the typical range for dimensions. At the conclusion of each and every cycle, the dimensional
diversity (D) is averaged, and that is what Divt represents. After calculating the variety, the next step is
to apply the following Eqs. (12) and (13) to get the proportion of both exploitation and exploration:

Exploration% = Divt

max(Div)
× 100 (12)

Exploitation% = Divt − max(Div)
max(Div)

× 100 (13)

tmax → max (Div) diversity in maximum iteration. Each kind of food or prey that may be found in
the HBA ecology is a potential answer to the QoS issue. In this scenario, the location of each piece of
food or prey is comparable to the ideal position for LAA components. The quantity of food available
at each place is intended to simulate selecting clusters. When there is a greater quantity of food or prey,
a better clustering solution may be found. Fig. 4 presents the HBA flowchart in its entirety.

3.3.3 Proposed HCHBOA Algorithm

The conventional Firefly and CSA algorithms have a severe flaw that causes them to become
stuck in local minima, called the trapping mechanism. As a result, in order to tackle the trapping
concerns, we present a new hybrid model that we term HCHBOA. This model is a fusion of CSA and
HBA. In this instance, we have chosen to use the HCHBOA as the primary engine for the construction
of cloud services. The primary operator of HCHBOA is a hybrid operator, which includes elements
of both CSA and HBA in its operation. We have considered the cloud composition as the multi-
objective optimization function in which the two objective functions exist. One of these objective
functions is reduced complexity, and the other is high performance in terms of availability, reliability,
and responsibility. For the best performance, we have considered the cloud composition as the multi-
objective optimization function. The initial solutions are sorted based on their fitness function, which
is determined by the trust assessment, and the fitness of each cloud is compared to that of the best
solution to determine which solution is the best. The whole technique for hybrid optimization will be
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carried out once more until the final conditions are satisfied. Therefore, the fitness function for each
iteration is presented in the following Eq. (14).

Fitness Function P = μα (A) + β

(
S
N

)
(14)

where μα (A)is the function of maximum performance in terms of availability, reliability, and respon-
sibility. S is cloud services, and N is cloud resources. μ is the main function that denotes the accuracy
classification and trust degree.

No
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Start

Initialize tmax, N, B, C

Initialize population 

Fitness evaluation of HBA at xi

Find the best position xpand assign fitness tofprey

Update the positions xp

fnew<fi 

Assign xi=xnew and fprey=fnew

If it<max it

Stop

Yes

No

Figure 4: Flowchart of HBA

The Working Mechanism of the Proposed Hybrid Optimization Algorithm

The suggested HCHBOA algorithm’s operation is described in the following manner: Sets of
solutions for the initialization portion are produced randomly. The assessment will take place after
creating new solutions that meet the limits of service composition. This step involves calculating and
comparing the trust value of fresh, workable solutions to those offered previously. If the new number
is higher, the old queen is replaced by the new one. The level of trust is higher in option 4. As a result,
it gets chosen as the next queen. Fig. 5 shows the nine steps of the suggested method.

Step 1: Defining the settings for the model’s input data and method (i.e., input data = QWS, 6
clusters, trust request = 0.106, n = tag, m = service)

Step 2: Trust level-based clustering services.

Step 3: Receiving the client’s request (i.e., request = 1, 2, 2, 5, 4)
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Step 4: The starting solutions are generated at random.

Step 5: Based on the fitness function Arranging the initial entities (i.e., solutions 1 & 2 have fitness
functions of 0.3886, 0.3873, 0.3242, and 0.2485, respectively).

Step 6: Make the best one the best option.

Step 7: for each trial, determine the fitness and contrast it to the best available option.

Step 8: If the new solution has a higher fitness function, replace the existing one with the best one.

Step 9: If the conditions are met, stop the calculation; in any case, reject all previous preliminary
arrangements and make new ones, then return to stage 7 and continue until the cycle is completed (the
final result will be the best help service succession based on the most noteworthy trust in the proposed
strategy).

No change in previous 
solution

Start

Trust based clustering services

User request Processing

Random solutions generation

Positioning initial entities using Fitness 
Function based on trust evaluation

Making the best on as solution

Comparison on best present solution

Greater Fitness 
Function

Updating the new best 
solution

Stop criteriaEnd

Yes
No

Generating new solutions by 
rejecting previous trial solutions

NoYes

Figure 5: Flow chart of the proposed hybrid optimization

The flowchart is shown in Fig. 5 above. To select the best solution, the cloud’s fitness function is
compared with the best solution in every iteration. It will go through the entire evolutionary process
again until it meets the final requirements. The pseudo-code for the proposed model is as follows.
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Pseudo-Code of HCHBOA

1 Initialization

2 Get user request

3 Define all the requested services

4 Read all the services

5 Filter the clustering services based on the trust degree

6 Xbest_Value is the global best solution

7 Calculate the fitness function using Eq. (14)

7 If (Xbest_Value = fitness function)

8 Fix as the best solution

9 Elseif (Xbest_Value < fitness function)

11 No change in the previous solution

12 Elseif (Xbest_Value > fitness function)

13 Update the new solution as the best solution

14 End

15 End

16 End

The above hybrid operator (see Line number 22) eradicates the trapping problems. According
to the proposed algorithm, HCHBOA optimization has a very simple structure. It is important to
mention that the only difference between hybrid HCHBOA and other traditional algorithms, such
as CSA and HBA algorithms, is that the CSA property is integrated into HBA algorithms. The
computational complexity and computation time have been greatly reduced when compared with other
algorithms.

To maintain security, the QoS parameters included in the proposed service compositions are
means for the system to learn about the workload in terms of response time, reliability, and availability.
This considerably minimizes the chance of being unable to react to client requests or exceed the service
composition’s maximum capacity. When the proposed framework gets the maximum service requests,
it may deliver an acceptable SLA response time. Because of the combination of CSA and HBA, it has
less computational and time complexity.

4 Experimental Results

The quality web service (QWS) data set assesses the suggested algorithm’s effectiveness. It is
a public data set [56,57] created to provide a foundation for cloud computing developers. There
are 2507 real-world web services in the large dataset. Each of them has a set of nine QWS QoS
criteria, including throughput, response time, success ability, availability, reliability, latency, etc. 500
000 randomly produced web services with five random boundaries (time, service URL, accessibility
service name, and response time) are created in order to test the suggested algorithm in a huge situation.
In this part, we contrast our approach with the DGABC [58], PSO [59], and GA [60] algorithms. We
also test the responsiveness, dependability, and demand for cloud services.
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Fig. 6 shows the proposed framework’s performance in terms of availability. It shows that as
the number of iterations increases, the proposed HCHBOA algorithms maintain performance in
the range of 99.23% to 99.98%. In contrast, the other algorithms, such as DGABC, PSO, and
GA, gradually lose performance. Fig. 7 shows the proposed framework’s performance in terms of
responsibility, responsibility, and reliability. It shows that as the number of iterations increases, the
proposed HCHBOA algorithms maintain performance from 99.75% to 99.98%. In contrast, the
other algorithms, such as DGABC, PSO, and GA, gradually lose performance. Fig. 8 shows the
proposed framework’s performance in terms of responsibility. The figure shows that as the number
of iterations increases, the proposed HCHBOA algorithm maintains performance from 80.97% to
99.98%, whereas the other algorithms, such as DGABC, PSO, and GA, gradually lose performance.
Based on the performance analyses, the proposed HCHBOA algorithm exhibited dominance by
improving availability by 20.93%, reliability by 19.31%, and response time by 29.98% compared to
the baseline cloud service composition schemes used for investigation.
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Figure 6: Availability analysis of the proposed hybrid HCHBOA algorithm with other existing
frameworks
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Figure 8: Responsibility analysis of the proposed hybrid HCHBOA algorithm with other existing
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5 Conclusion

The reduction of expenses, which includes execution time and other pertinent factors, poses
significant difficulties for cloud frameworks to satisfy users. Because of the increasing relevance of
service trust issues and their selection with better and more trustworthy cloud services, we created
an HCHBOA algorithm with trust-based clustering. The clustering of web services that are based
on trust is where this method’s procedure begins. We choose services and merge the services by the
specified goals using the suggested HCHBOA optimization algorithm. The findings showed that
the suggested solution operates effectively in terms of computing time and comprises higher-trusted
services; however, it is ineffective for huge data sets. Future research on the following topics could be
conducted to improve the method that was suggested in this study:

• Optimizing the calculation of the ideal service under the current restrictions
• Enhancing the services’ filtration in large-scale services.
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