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Abstract: COVID-19 has significantly impacted the growth prediction of
a pandemic, and it is critical in determining how to battle and track the
disease progression. In this case, COVID-19 data is a time-series dataset
that can be projected using different methodologies. Thus, this work aims
to gauge the spread of the outbreak severity over time. Furthermore, data
analytics and Machine Learning (ML) techniques are employed to gain a
broader understanding of virus infections. We have simulated, adjusted, and
fitted several statistical time-series forecasting models, linear ML models, and
nonlinear ML models. Examples of these models are Logistic Regression,
Lasso, Ridge, ElasticNet, Huber Regressor, Lasso Lars, Passive Aggressive
Regressor, K-Neighbors Regressor, Decision Tree Regressor, Extra Trees
Regressor, Support Vector Regressions (SVR), AdaBoost Regressor, Random
Forest Regressor, Bagging Regressor , AuoRegression, MovingAverage, Gra-
dient Boosting Regressor, Autoregressive Moving Average (ARMA), Auto-
Regressive Integrated Moving Averages (ARIMA), SimpleExpSmoothing,
Exponential Smoothing, Holt-Winters, Simple Moving Average, Weighted
Moving Average, Croston, and naive Bayes. Furthermore, our suggested
methodology includes the development and evaluation of ensemble models
built on top of the best-performing statistical and ML-based prediction
methods. A third stage in the proposed system is to examine three different
implementations to determine which model delivers the best performance.
Then, this best method is used for future forecasts, and consequently, we can
collect the most accurate and dependable predictions.
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1 Introduction

Infectious diseases are the leading cause of human mortality around the world. The occurrences
of infectious diseases can be traced back to the Middle Ages. COVID-19, an unusual coronavirus,
was discovered in Wuhan, China, in December 2019. The newly identified virus has been linked to
470 million confirmed infections [1]. Vaccinations for SARS-CoV-2 and antiviral measures such as
wearing masks and avoiding large crowds are critical in preventing viral spread. Many vaccines have
shown the efficacy of more than 95% in preventing SARS-CoV-2 symptoms. Approximately 80 M
COVID-19 infections and 1 M coronavirus-related fatalities have been reported in the USA alone
[1]. Diverse mathematical epidemic surveillance models [2–4] have been given in the literature [2].
Biological and disease mechanisms that use epidemiological methodologies are important in most
modeling approaches to predict the progression of outbreaks and pandemics.

An effective method of accomplishing this is accurately predicting the number of active cases at
any time. Time-series data include confirmed daily COVID-19 cases, recoveries, and deaths, to name
a few instances. Time-series data are a series of numeric values measured at intervals equal in length
(e.g., per minute, hour, or day) [3]. To anticipate the future dynamics of influenza, malaria tuberculosis,
and other infectious diseases [4,5], different time series models were utilized to forecast COVID-19 in
the United States, Italy, India, and other countries [6].

Despite this, no general concept for selecting models for projecting the spread of COVID-19 has
been established. It is also recommended that multiple models can be used to forecast the spread of
the epidemic in different states and under different conditions of the pandemic propagation. Deep
learning models, for example, were demonstrated in [7] to have the lowest rates of forecast errors while
tracking the dynamics of infection cases in the four nations under consideration [7,8]. The following
are the main significant advantages of ARIMA:

(1) Dealing with tiny data.
(2) Being simple to implement with no parameter adjusting.
(3) Being easier to handle multivariate data.
(4) Being quick to run.

In addition, the following are some of the characteristics of deep learning models:

(1) There are no pre-requisites (stationarity, no level shifts).
(2) Neural networks can model nonlinear functions.
(3) Requires a large amount of data (Big Data).
(4) Time-series models are considered more appropriate for dealing with COVID-19 data because

they can deal with small amounts of data.

In this paper, the proposed methodology uses various data published across the globe for the
active cases of patients identified with coronavirus infection (in this example), the total number of
deaths recorded due to the virus impact, and the total number of cases that have been recovered. To
ensure the precision of the Artificial Intelligence (AI) models, epidemiological time series are employed
to monitor and manage the spread of infection and its containment. In addition, this work intends to
investigate various ways to forecast an outbreak and identify abnormalities in historical data. This
may be used without compromising the data accuracy, or periodicity, assisting management of the
regions to combat the spread of infection.

As a result, data analytics and ML techniques may be used to develop a more comprehensive
understanding of viruses. A comparative review of COVID-19 forecasting models, including ML



CSSE, 2023, vol.47, no.1 351

techniques, is presented in this paper, along with examining the distribution and transmission of
COVID-19 in various nations. Thus, this research has examined the empirical performance of several
classical univariate time series models, as well as ML-based regression algorithms such as Logistic
Regression, Lasso, Ridge, ElasticNet, Huber Regressor, Lasso Lars, K-Neighbors Regressor, Passive
Aggressive Regressor, Random Forest Regressor, Extra Trees Regressor, SVR, AdaBoost Regressor,
Bagging Regressor, Decision Tree Regressor, Gradient Boost, Croston, and NaiveBayes.

The following sections are organized as follows. First, a literature survey for some of the recently
published related studies is introduced. The next section includes data description materials and
methods. Subsequently, the discussion of modeling and forecasting outcomes are presented. The final
section provides the recommendations, conclusions, and future works.

2 Related Work

The purpose of time series forecasting as an asset is to ease the forecasting process and to create
a convenient and easy-to-use application/tool for any kind of situation dealing with the need to have
a futuristic visualization of the trend of the data involved in the planning of any domain.

COVID-19 scatter forecasting, or simply future impact projection, provides essential inputs
for government, public health agencies, corporations, and citizens to schedule, organize, and
manage an outbreak. As a result, most outbreak models used in the tracking and forecasting of
COVID-19 are based on epidemiological patterns, such as susceptible, infected, and eliminated
individuals [8]. The Susceptible-Exposed-Infected-Removed (SEIR), Susceptible-Exposed–Infected–
Recovered–Dead (SEIRD), and extended Susceptible–Infected–Removed (SIR) [9] models incor-
porate variable-time quarantine procedures such as macro-isolation rules at the federal level and
standard isolation policies. To forecast infection, several AI-based models have been published in
the literature. These models include an interior searching algorithm and a multi-layer Artificial
Neural Network (ANN) feedforward. Several trends in this field include the following models [10]: (1)
modified stacks for transmission dynamics, (2) nonlinear hybrids for predicting affected, (3) recovered
and lethal molecules, (4) agent-based AI simulation platform (EnerPol) for predicting growth and
containment strategy, (5) multi-input deep convolutional neural network (CNN) for predicting the
cumulative number of confirmed cases, (6) topological autoencoder for generating a similarity map
of transmission dynamics, and (7) SEIR.

The work in [11] explores the contemporary pattern or trend of COVID-19 transmission in
any highly impacted country like India and the regression analysis of other data (like different
information for Indian data). In their work, five models were used in this study: Linear Regression
(LR), Exponential Smoothing (ES), K-Nearest Neighbors (KNN), Random Forest (RF), and Support
Vector Machines (SVM). Each model contains two types of predictions: (1) a newly positive number
of eases verified and (2) several people killed.

In research conducted by author in [12], the authors have developed a new nonlinear deterministic
model based on ordinary differential equations with six compartments, quarantine, and isolation.
The model has a positive invariant area, while the balance points are investigated concerning the
simple reproductive number in terms of its local stability. Furthermore, a new mathematical model
for predicting the spreading of epidemics in Egypt has been suggested in [13]. In the proposed model,
the number of cases was raised significantly after two months, concluded from exploring the data.
Consequently, a series of proliferation prevention initiatives had to be adopted, such as implementing
systematic prohibition, isolation, and social divergence policies over a specific timeframe.
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Many researchers have attempted to forecast the outbreak of COVID-19 by using diverse
mathematics methods like the classic SIR model and its derivatives [14–20]. This analysis simulated
the outbreak from February 14 to April 11 in Isfahan Province of Iran and predicted the remaining
direction with three different socially distinguishing scenarios. To anticipate the pandemic, further
advanced models and a detailed understanding of the epidemic biomedical and epidemiological
dimensions were needed [14].

In summary, the pandemic characteristics of COVID-19 are inconsistent with the SIR modeling
system. For most of which quantitative evidence is not yet available, the mechanisms of this epidemic
were subject to different parameters. The new approach suggested produced improved outcomes
and showed the value of social distance [15]. Their research proposed ML and deep learning (DL)
algorithms such as Long Short-Term Memory (LSTM), eXtreme Gradient Boost, and polynomial
regression in forecasting to estimate COVID-19 count in advance and enhance precision [16].

To find out the forecast for the upcoming months, the whole data should be used to check for the
pattern and stationarity of the data. The outliers can be treated using either Mean-Standard Deviation
(MSD) or Median Absolute Deviation (MAD) [17]. According to [18], not much research was done
on this particular application (to have thorough research on all the time series, ML, and deep learning
models for the forecasting problem) using the different ML techniques. Once implemented, this
algorithm could be used in any domain such as heart rate measurement, climate changes, forecasting
of foods, sales of retail industries, etc. [19]. The researchers presented some of the well-known models
used widely for forecasting demand, and an extensive comparison of their performances is made, and
inferences are drawn [20–25]. Many different models are available in the research fields that vary from
the statistical time series algorithms and regression-based ML algorithms rather than deep learning-
based algorithms like the LSTM [21].

The methods used to determine and compare the results of Canadian Foundries’ orders are NN,
RNN, and SVM [22]. In [23], many statistical approaches like the ARIMA are used along with the
Artificial Neural Networks (ANNs) to use the linearity of the ARIMA and nonlinearity of the ANNs
to make a hybrid model. The same was also proven in [24], so the linear and the nonlinearity of the data
can be captured. The hybrid model or the ensemble of several models is standard for better accuracy
since the well-known M-competition [24].

Various studies have been done to understand combining the models to give a better forecast.
In an analysis of the time-series data, which has a powerful trend and seasonality, a comparative
study is done with the ANN and other traditional methods, including the Winters Exponential
Smoothing, Box-Jenkins ARIMA model, and multivariate regression [25]. In [26], the authors focused
on the extensive work on analyzing the time series, ML-based regression models, and deep learning
to combine in ensemble methods. A lot of algorithms such as Auto-Regressive time series models,
also known as AR models, Simple Moving Average (SMA), Simple Exponential Smoothing (SES),
Weighted Moving Average (WMA), and Holts-Winter Exponential Smoothing (HWES) models [27]
are used. Some naïve forecasting techniques also impact forecast generation through the time series
models. The ML models can be classified into linear and nonlinear models. Some of the algorithms
that are used in the linear ML regression models are Linear (LR), Lasso, Ridge, Elastic Net (EN),
Huber, Lasso Lars (LLARS), Passive-Aggressive (PA), and regression models. Also, in the case of the
nonlinear ML regression models, K-Neighbors, Decision Tree, Extra Tree, SVR, AdaBoost, Bagging,
Random Forest, Extra Trees, and Gradient Boosting regressor models are used. In addition, deep
learning models such as LSTMs and Multilayer Perceptron (MLP) [28,29] are used.
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3 Methodology

The goal of implementing the time series forecasting algorithm is to create genericity of the
modeling, which gives better accuracy and presents a highly stable prediction model that generates
reliable forecasts for any relevant data type. In this work, we concentrate on assembling with a weighted
average as the second level learner.

3.1 Basic Steps of Time Series Forecasting
3.1.1 Data Input

The model will automatically grasp weekly, monthly, quarterly, and annual data based on the
type of input data with information in the time domain. As a result, the model will produce the
output. The outcome might be made based on the requirements of the research fields. During the input
data procedure, the data, which is time-constrained country-wise monthly data, is used to evaluate
the model performance. The features or current information in the coronavirus-based country-wise
monthly dataset are the various routes via which the virus impact is to be studied and traced.
Additional information that can be used to report the overall virus impact includes the Region, City,
State, Country, and the general Continent and Global Level. Various steps are taken to put the data
in the appropriate shape to carry out the forecasting task. According to the Data Sharing Agreement
(DSA) [21], the data should be profiled to cluster out the original dataset to the specific cluster in
which a better algorithm can make the forecast.

3.1.2 Data Pre-Processing

• Imputation of Null values: This will be done through nearest points imputation. In contrast to
traditional imputation techniques that take into account imputing with the mean, maximum,
median, and so on, a different approach is used here.

• Removal of Outliers: The global impacted data is very susceptible to outliers because of the
introduction of many government measures that affect the real amount. As a result, these
values must be processed before being entered into the model. Some of the strategies include
determining the seasonality pattern or employing basic mean-standard deviation or median
absolute deviation deductions [30].

• Formulation of Datasets: Because the data consists of single column values, it must be trans-
formed into a dataset before being fed into ML regression-based models. A tree-based approach
considers delays. The p-value is used as an input for the lags generation in the ARIMA model,
which has different hyper-parameters. Finally, the supervised learning dataset is created for the
ML regression models.

• Check for Stationarity: The dataset can be made stationary using the dickey-fullers test [28].
• Data Scaling: The process of causing a dataset to fall into a specific interval for ML models to

perform properly.

3.1.3 Forecast Generation

The processed dataset is fed into time series, ML, and deep learning forecasting algorithms to
generate trained models that understand the fluctuation in the training dataset history sample set.

Sub-Step 1: Creating Validation Samples: Training and testing sets are constructed to evaluate
the model performance. The Hold-Out strategies of 60%–40%, 70%–30%, or 80%–20% of the total
dataset are employed for the sample sets. Root Mean Squared Error (RMSE) is used for tuning and
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error minimization. The error is then checked in the validation or testing sets to ensure that the model
behavior and stability are correct.

Many statistical and ML-based time series forecasting models are considered in our proposed
methodology, such as ARIMA, ARMA, moving average (MA), Weighted Moving Average (WMA),
Holts-Winters, Croston, Linear Trend, Naive Forecast, as statistical time series algorithms and Linear
Regression, Decision Tree Regression, SVR, Passive Regression as ML-based algorithms amongst
many others. The best model produces the least amount of error when verifying the sample set
generated above.

Sub-Step 2: Collection of the above algorithms: The errors produced from the statistical time series
and ML-based regression models, developed in the previous steps, create the respective weights for the
separate algorithms.

3.1.4 Ensemble Weights Assignments

The best of each of the models is then input into the ensemble model to find the best results. The
weights that are assigned to each of the models (wts, wml, wdl) are calculated as follows [31].
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3.1.5 Final Forecast Generation

The next step is to consider the forecast generation for future periods. Throughout this method-
ology, we will consider the following factors: improve forecasting or forecast accuracy, detect future
patterns, and forecast models’ forecast stability. The model stability means that “if Model 1 is selected,”
the same model should continually perform well without fluctuating accuracy. This scenario will
consider three historical data points for a five-month rolling projection.

3.2 Statistical and AI-Based Forecasting Models
3.2.1 Logistic Regression Algorithm

Logistic regression is a linear model (which seeks to linearly fit the hyperplane) that attempts to
predict the likelihood of an event occurring. A binary dependent variable is modeled using a sigmoid
or logit function. In this situation, it optimizes the cost function (error curve in the bowl-shaped plane),
which is the Mean Squared Error (MSE) or the model accuracy of the predictions, to minimize error
and achieve optimal weights [25].

3.2.2 Random Forest Classifier

It is a classification algorithm made up of numerous decision trees. Building each individual tree
employs bagging and feature randomness to produce an uncorrelated forest of trees [14].

3.2.3 AdaBoost Classifier

It utilizes an iterative approach to learn from the errors of weak classifiers and transform them
into strong ones [32].
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3.2.4 Naïve Bayes Classifier

It is a probabilistic classifier that depends on the Bayes theorem. The theorem states the likelihood
of an occurrence is based on the previous or future information taken into account to characterize the
event.

3.2.5 KNN Classifier

The KNN algorithm is a data categorization approach that estimates the likelihood that a data
point will belong to one of two groups based on which data points are closest [23].

3.2.6 Decision Tree Classifier

Decision trees employ various techniques to determine whether to split a node into two or more
sub-nodes [19].

3.3 Time Series Algorithms
3.3.1 Autoregressive Integrated Moving Average (ARIMA) Model

The following is a breakdown of the various parts of an ARIMA model:

• It is an autoregressive (AR) model in which a variable lag or regresses prior values.
• When the raw observations are differentiated, this is what is meant by “integrated” (I).
• In ARIMA, each element serves as a parameter denoted by a common notation. For ARIMA

models, the usual notation would be ARIMA with the parameters replaced by integer values
(p, d, and q). The following are the parameters: (p) Lag order, (d) Degree of difference, and (q)
Moving average window size.

• These parameters can be determined by:
• Autocorrelation Function (ACF) [31]: A correlation measurement between the time series and

lagged time series version. The optimum amount of q words can be determined by using
the ACF.

• Partial Autocorrelation Function (PACF) [27]: After excluding the differences which are already
clarified by the intermediate contrast. This tests the similarity between the time series and a
lagged time series version.

3.3.2 Exponential Smoothing

A time series forecasting method for univariate data that does not have a trend or seasonality is
known as Single Exponential Smoothing (SES) [31]. This method depends on a single parameter, α,
which is sometimes referred to as the smoothing factor or coefficient [31].

3.4 Analysis and Evaluation Criteria
Since many regression-based algorithms are employed, some evaluation metrics are selected to

measure their performance. The metrics are Mean Absolute Percentage Error (MAPE), Mean Squared
Error (MSE), and Forecast Accuracy and Confidence in Forecasting (FACC) [26].

3.5 Proposed Framework Design
The proposed methodology for time series forecasting includes a comparison of statistical vs. ML-

based prediction algorithms, as shown in Fig. 1.
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Figure 1: Proposed framework

In this regard, we have simulated, adjusted, and fitted several statistical time series forecasting
models, linear ML models, and nonlinear ML models such as Logistic Regression, Lasso, Ridge, Elas-
ticNet, Huber Regressor, Lasso Lars, Passive Aggressive Regressor, KNeighbors Regressor, Decision
Tree Regressor, Extra Trees Regressor, SVR, AdaBoost Regressor, Random Forest Regressor, Bagging
Regressor , AR, Gradient Boosting Regressor, ARMA, ARIMA, SES, Exponential Smoothing, Holt-
Winters, Simple Moving Average, Weighted Moving Average, Croston, NaïveBayes. Furthermore,
our proposed methodology includes implementing and evaluating ensemble models built on top
of the best-performing statistical and ML-based prediction algorithms. A final step is added to
the framework that evaluates all three implementations to determine which one provides the best
performance to use the best algorithm for future forecasts. This is done to ensure that we can obtain
the most accurate and reliable predictions, which could then be published on the research portal for
everyone benefit.

3.6 Dataset
Our experiments focused on different COVID-19 cases which are recovered and deaths cases in five

different countries of various geographical areas (United States of America, Canada, India, Australia,
and United Kingdom. Each time series is divided into validation group (20%), training group (70%),
and testing group (10%) [19].

4 Results and Discussion

Numerical experiments on numerous datasets from various nations have been conducted to
evaluate the suggested method and demonstrate the generalizability of the designed scheme. As
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clarified in Fig. 2, the confirmed dataset of the monthly mean resample is depicted in green, and
the original data is displayed in blue. As a result, we need to determine whether or not the dataset
is stationary at this point, as clarified in Fig. 3.

Figure 2: Confirmed cases (weekly and monthly average), Australia

Figure 3: Decomposition of confirmed cases, Australia

When the statistical characteristics of a dataset, such as the mean, variance, and autocorrelation,
remain constant across time, the dataset is said to be stable. According to Fig. 4, the augmented
Dickey-Fuller test is applied to verify whether the dataset is stationary or not. Detrending, differ-
encing, or a combination of the two is used to complete the rationalization of our dataset, as indicated
in the accompanying Figs. 5–7.
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Figure 4: Mean & variance of confirmed instances

Figure 5: Mean & variance of detrended instances

Figure 6: Mean & variance of differenced instances

The same analysis is performed for all of the five countries under examination to get the best
stationary data inputs that will help increase the accuracy of the predictions, as shown in Figs. 8
and 9. We only choose to present confirmed case modeling and forecasting results to keep our
research as abbreviated as possible. We found that SES, Holt, Holt-Winters, and ARIMA perform
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best. Amongst many ML-based forecasting models, we found that RegressionTrees, ExtraTrees, and
K-Nearest Neighbor give the best forecasts.

Figure 7: Mean & variance of detrended and differenced instances

Figure 8: USA (original vs. stationary time series), mean & variance of detrended and differenced
instances
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Figure 9: UK (original vs. stationary time series), mean & variance of detrended and differenced
instances

Below is a graphical representation of the best-fitted model for each country. Training and
validation datasets observed actuals against forecasted are visualized in Figs. 10, 14, 18, 22, 26
for Australia, Canada, India, UK, and US, respectively. From these figures, it is obvious that the
COVID-19 epidemic has propagated differently for each geolocation. This could be a result of
differentiated weather and population demographics.

Figs. 11, 15, 19, 23, and 27 depict the five days forecasts for confirmed cases using the best
performing ML/TS algorithms mentioned above for Australia, Canada, India, UK, and US, respec-
tively. The graphs show a comparison between the actual observations of the confirmed case count
in the period from 18th December to 23rd December and the different forecasts resulting from
the best performing ML and statistical time series models, along with the forecasts obtained upon
the implementation of ensemble and the weighted ensemble of these outperforming models. The
corresponding RMSE for the best-performing forecasting models mentioned above is depicted in
Figs. 12, 16, 20, 24, and 28 for Australia, Canada, India, UK, and US, respectively. In addition to
the RMSE measure, the results from diagnostics utilizing the plot diagnostics technique are utilized to
guarantee that none of the model assumptions are broken and that no out-of-the-ordinary behavior
occurs.
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Figure 10: Training and validation datasets best fitting (best performing algorithm for Australia),
HUBER ML algorithm

Figure 11: Five days forecast for Australia’s confirmed cases using the best performing ML/TS
algorithms

This technique results in the four visual outputs depicted in Figs. 13, 17, 21, 25, 27, and 29
for Australia, Canada, India, UK, and US, respectively. The autocorrelation graph on the bottom
right shows that the time series residuals are weakly correlated with their lag-adjusted counterparts.
However, by proving all four of the arguments stated above, one can conclude that the residuals of this
model are almost normally distributed. This signifies that we have found a well-suited model for our
dataset.
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Figure 12: RMSE of the five-days forecast for Australia’s confirmed cases using best-performing
models

Figure 13: Results diagnostics for the five-days forecast for Australia’s confirmed cases using the
weighted ensemble algorithm
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Figure 14: Training and validation datasets best fitting (best performing algorithm for Canada), KNN
ML algorithm

Figure 15: Five days forecast for Canada’s confirmed cases using the best performing ML/TS
algorithms
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Figure 16: RMSE of the five-days forecast for Canada’s confirmed cases using best-performing models

Figure 17: Results diagnostics for the five-days forecast for Canada’s confirmed cases using the
weighted ensemble algorithm
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Figure 18: Training and validation datasets best fitting (best performing algorithm for India), regres-
sion trees algorithm

Figure 19: Five days forecast for India’s confirmed cases using the best performing ML/TS algorithms
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Figure 20: RMSE of five-days forecast for India’s confirmed cases using best-performing models

Figure 21: Results diagnostics for five-days forecast for India’s confirmed cases using the weighted
ensemble algorithm
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Figure 22: Training and validation datasets best fitting (best performing algorithm for UK), LLARS
trees algorithm

Figure 23: Five days forecast for United Kingdom’s confirmed cases using the best performing ML/TS
algorithms
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Figure 24: RMSE of the five-days forecast for United Kingdom’s confirmed cases using best-
performing models

Figure 25: Results diagnostics for the five-days forecast for United Kingdom’s confirmed cases using
the weighted ensemble algorithm
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Figure 26: Training and validation datasets best fitting (best performing algorithm for USA), extra
trees algorithm

Figure 27: Five days forecast for USA’s confirmed cases using the best performing ML/TS algorithms
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Figure 28: RMSE of the five-days forecast for USA’s confirmed cases using best-performing models

Figure 29: Results diagnostics for the five-days forecast for USA’s confirmed cases using the weighted
ensemble algorithm

Additionally, Table 1 presents an example of the resulting forecasts of each model along with
the RMSE for UK. Also, Table 2 presents the forecasts obtained from the best performing ML and
statistical time series forecasting models in addition to the ensemble and weighted ensemble models.
We can conclude that weighted ensemble models outperform any other model using all of these
illustrations.
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Table 1: Error and forecast report of different models for United Kingdom daily active cases

Country Model name 18–12–2021 19–12–2021 20–12–2021 21–12–2021 22–12–2021 RMSE Model type

United Kingdom Lr 89848.10693 84393.61537 85777.97165 86231.01444 82613.81503 6703.025369 ML
United Kingdom Lasso 89845.42589 84396.44494 85770.50468 86226.26475 82673.1928 6695.564411 ML
United Kingdom Ridge 89848.10622 84393.61532 85777.97099 86231.01447 82613.8156 6703.025571 ML
United Kingdom En 89847.9517 84393.6238 85777.98969 86230.83023 82613.43435 6703.120967 ML
United Kingdom Huber 88807.63168 82352.31554 84260.71681 84208.46002 81160.58107 7860.373348 ML
United Kingdom Llars 89696.33094 85003.98217 86344.8576 87036.05858 102874 3120.191253 ML
United Kingdom Pa 93592.61324 88646.66449 85962.18191 76434.73874 79621.58807 13317.73758 ML
United Kingdom Knn 80001.66667 73982.83333 69837 69359.33333 61022.66667 22808.56736 ML
United Kingdom Cart 67035.83333 69080 75335.11111 79484.75 87845.33333 16094.25524 ML
United Kingdom Extra 87565.00 74505.5 76990 85516.5 81959 13972.45751 ML
United Kingdom Svmr 10650.73871 10668.26524 10688.38443 10708.72057 10730.31864 79659.06794 ML
United Kingdom Ada 60053.36364 73233.67833 75997.06111 85044.9375 81959 16064.85526 ML
United Kingdom Bag 76880.005 80302.5575 80418.845 83027.03 83414.86 10791.93883 ML
United Kingdom Rf 80071.975 80800.2475 79520.78167 80582.72 81257.755 11381.29987 ML
United Kingdom Et 87377.405 83953.8175 83038.08 82910.47 81993.66 8589.075287 ML
United Kingdom Gbm 92730.22375 91409.20408 83796.0351 77657.56622 80875.78565 10992.59499 ML
United Kingdom AR 52844.66667 51249.61111 51837.76543 53878.40741 56118.03704 24491.72091 TS
United Kingdom MA 52844.66667 51249.61111 51837.76543 53878.40741 56118.03704 24491.72091 TS
United Kingdom ARMA 52844.66667 51249.61111 51837.76543 53878.40741 56118.03704 24491.72091 TS
United Kingdom ARIMA 515.065531 790.6413445 531.6389157 564.831015 62703.54865 20198.43506 TS
United Kingdom SES 85444.0000 82689.2251 92821.5289 94654.78458 98214.224 4410.337357 TS
United Kingdom HWES 104347.4015 104347.4015 104347.4015 104347.4015 104347.4015 15335.63095 TS

Table 2: Error and forecast report of best forecasting models for daily active cases reported for all
countries under investigation

Country Model name 18/12/2021 19/12/2021 20/12/2021 21/12/2021 22/12/2021 RMSE Model type Weights

UK Actual 89074 81959 91734 89022 105330 0 — —
UK Llars 89696 85004 86345 87036 102874 3120 ML 0.585652
UK SES 85444 82689 92821 94654 98214 4410 TS 0.414348
UK Ensemble 87570 83846 89583 90845 100544 2709 En —
UK Weighted-

ensemble
88262 84223 88530 89606 101302 2554 En —

US Actual 73793 85196 246058 178450 241051 0 — —
US Extra 42489 73375 227506 224374 203649 31533 ML 0.620336
US ARIMA 70121 82457 135699 210874 245689 51523 TS 0.379664
US Ensemble 56305 77916 181603 217624 224669 35542 En —
US Weighted-

ensemble
47000 74858 212519 222170 210512 30963 En —

Canada Actual 5837 6973 16878 11824 14859 0 — —
Canada Knn 7521 6981 17896 14547 10474 2470 ML 0.558349
Canada HoltWinters 6214 7519 10247 12354 16879 3123 TS 0.441651
Canada Ensemble 6868 7250 14072 13451 13677 1616 — —
Canada Weighted-

ensemble
6997 7197 14831 13668 13041 1568 — —

India Actual 7145 13644 5326 6317 7495 0 — —
India Cart 8040 7976 6768 7829 9916 2938 ML 0.544651

(Continued)
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Table 2: Continued
Country Model name 18/12/2021 19/12/2021 20/12/2021 21/12/2021 22/12/2021 RMSE Model type Weights

India ARIMA 6257 6155 7034 6593 6127 3514 TS 0.455349
India Ensemble 7149 7065 6901 7211 8022 3061 En —
India Weighted-

ensemble
7243 7162 6887 7277 8223 3030 En —

Australia Actual 3862 4031 4492 5531 8357 0 — —
Australia Huber 4067 3885 4078 6988 9452 843 ML 0.645045
Australia ARIMA 5482 5650 6532 7060 8308 1533 TS 0.354955
Australia Ensemble 4775 4767 5305 7024 8880 953 En —
Australia Weighted-

ensemble
4450 4363 4742 7007 9142 814 En —

5 Conclusions and Future Works

In this work, we have highlighted the importance of time series forecasting models for highly
accurate and reliable identification of the spread of infectious diseases. It has been proven that
the forecasting time series models are very important to be utilized in identifying the spread of
infectious diseases. The developed time-series regression modeling introduced in this article succeeded
in collecting historical data rigorously and methodically to develop the most excellent model that can
illustrate the underlying natural structure of the series in question. Thus, when tracking the evolution
of an epidemic, it is vital to identify how many people will be impacted. Consequently, it is critical to
tailor a suitable model to the time series. All suggested time-series models developed for forecasting
infectious diseases prove their good performance when tested on different datasets. In future work, the
presented work can be further well-developed to be adapted to the international society to forecast
COVID-19 cases. Furthermore, we intend to propose a model for any similar pandemic outbreak
forecasting.
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