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Abstract: A country’s economy heavily depends on agricultural development.
However, due to several plant diseases, crop growth rate and quality are
highly suffered. Accurate identification of these diseases via a manual pro-
cedure is very challenging and time-consuming because of the deficiency of
domain experts and low-contrast information. Therefore, the agricultural
management system is searching for an automatic early disease detection
technique. To this end, an efficient and lightweight Deep Learning (DL)-
based framework (E-GreenNet) is proposed to overcome these problems
and precisely classify the various diseases. In the end-to-end architecture, a
MobileNetV3Small model is utilized as a backbone that generates refined, dis-
criminative, and prominent features. Moreover, the proposed model is trained
over the PlantVillage (PV), Data Repository of Leaf Images (DRLI), and a
new Plant Composite (PC) dataset individually, and later on test samples, its
actual performance is evaluated. After extensive experimental analysis, the
proposed model obtained 1.00%, 0.96% and 0.99% accuracies on all three
included datasets. Moreover, the proposed method achieves better inference
speed when compared with other State-Of-The-Art (SOTA) approaches. In
addition, a comparative analysis is conducted where the proposed strategy
shows tremendous discriminative scores as compared to the various pre-
trained models and other Machine Learning (ML) and DL methods.

Keywords: Computer vision; deep learning; embedded vision; agriculture
monitoring; classification; plant disease detection; Internet of Things (IoT)

1 Introduction

Decades ago, agriculture was integral to the domestication of today’s primary food crops and
livestock. A major global challenge is food insecurity, caused by plant diseases [1]. It has been found
that plant diseases cause crop damage and significantly reduce yields, resulting in food shortages [2].
As the food and agriculture organization estimates [3,4], plant insects and illnesses impact up to 40%
of the damage in agricultural productivity around the world. There are serious repercussions that
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might result from this, such as the starving of millions of people and serious damage to the agriculture
industry. Additionally, smallholder farmers, where the primary process of maintenance is dependent
on agriculture, offer more than 80% of the cultivated output in developing nations. A large portion
of the world’s poor, about 50%, live in smallholder households which are particularly susceptible to
interruptions in food supplies caused by pathogens [5]. In addition to increasing food production, new
technologies for detecting plant diseases can result in gains in the form of increased profits.

It is important to monitor large-scale agricultural production closely and limit the spread of
illnesses to undesirable products to efficiently manage it. Diseases in plants are most commonly caused
by pests, microbes, viruses, algae, and fungi. Specific plant diseases have no visible indicators, so
sophisticated analytical techniques are employed [6,7]. A pathologist can identify the illness under an
optical microscope by examining the infected leaves of plants, however, not all infected plants exhibit
symptoms. The ability to diagnose plant diseases accurately requires keen observational skills and
subject-concern knowledge. The process of manually identifying plant diseases takes time and depends
on the accessibility of skilled plant pathologists. In addition, ongoing plant monitoring is necessary
when dealing with large farms, which is quite expensive. Because of the enormous diversity of plants
and changes in warning signs over time caused by climatic changes, even a skilled pathologist may
take a long time to accurately detect certain illnesses. In order to prevent the wasteful expenditure of
resources and money, accurate and early detection of plant diseases is essential.

As a result of technological advancements in recent years, image-based automated process control
systems have provided agronomists with valuable information about diseased plants [8]. The use of
automatic detection systems improves crop quality by allowing farmers to identify diseases earlier,
treat them promptly, and reduce disease incidence. The size and color differences of the affected area
are quantified using an image processing technique. In the beginning, ML models were suggested
as a way to identify and classify plant diseases. There are several techniques that can be employed
to diagnose crop plant diseases early and precisely, including Support Vector Machines (SVMs) [9],
Decision Trees (DTs) [10], Random Forests (RFs) [11], and K-Nearest Neighbors (KNNs). As a
result of extensive preprocessing and dependence on human expertise to extract and select appropriate
features needed to conduct the classification [12], ML-based approaches are easier to implement and
do not require a large amount of training data but are sluggish as a result. Additionally, having a limited
feature set will reduce the identification performance while having a large feature set will increase
processing complexity. Since each method depends on the accuracy and representation of the derived
characteristics, each method is vulnerable to mistakes when dealing with enormous amounts of data.
Therefore, ML approaches for identifying plant diseases are limited in their accuracy.

In agriculture, DL-based technologies are widely used for plant disease classification [13,14].
By automatically synthesizing discriminative features from input samples, these methods eliminate
laborious image preprocessing. An effective DL model for detecting early plant leaf diseases is the
Convolutional Neural Network (CNN). In the latest research, CNN has been extensively utilized in
the diagnosis and classification of crop plants [15–17]. This method has demonstrated encouraging
results in crop-related classification tasks because of its efficient feature representation. Existing plant
disease classification techniques make extensive use of the developed CNN architectures in computer
vision, including AlexNet [18], GoogLeNet [5], VGGNet [19], ResNet [20], and EfficientNet [21,22].
Custom network topologies have been developed in several types of research [23,21] to address real-
world circumstances including occlusion, low light, and various climatic settings. Plant diseases can
now be located and classified using DL-based object identification algorithms [24,25]. When the
natural surroundings are very complicated, these techniques are less effective at pinpointing the
precise location and type of illness. Although recent success has been achieved with DL architectures,
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generalization robustness and identification accuracy of DL architectures for agricultural plant disease
classification still need to be improved to easily run on the edge devices such as Jetson Nano
and smartphone, etc. Therefore, in this article different DL models are investigated, and finally, a
lightweight CNN method for efficient plant disease classification is proposed. The main contributions
of this study are as follows:

• Many plant diseases remain difficult to identify because of their varied sizes, shapes, colors,
and locations. Several small and dense infected spots on a single leaf can also complicate
the identification of plant leaf diseases, due to background noise, intra-class variations, and
several small and dense infected spots present at different stages of development. A variation
in lighting conditions and brightness during the picture acquisition procedure of leaves also
contributes to inadequate detection results of Computer-Aided Design (CAD) solutions. As a
result of this work, E-GreenNet is proposed which can detect crop disease and perform accurate
classification.

• The end-to-end DL model (E-GreenNet) intelligently and efficiently evaluates deep discrimina-
tive features from a given infected plant leaf and classifies them accordingly. A comprehensive
experimental study was conducted on the proposed model to analyze the training time, size, and
computation revealing that it is suitable for resource-constraint devices.

• To validate the performance of the proposed model this study utilized three challenging
datasets including Plant Village (PV), Data Repository of Leaf Images (DRLI), and a new
Plant Composite (PC) dataset and the experimental results outperformed when compared with
SOTA. Despite blurring, noise, and varying colors, sizes, and positions of the infected regions,
the proposed E-GreenNet can effectively classify plant diseases under varying challenging
conditions.

The remainder of this paper is organized as follows. An overview of relevant literature is presented
in Section 2, a description of the methodology is presented in Section 3, and the empirical results are
presented in Section 4. Lastly, Section 5 summarizes the findings and suggests future directions.

2 Literature Review

The purpose of this study is to automatically identify and categorize various plant diseases
comprehensively. ML-based techniques and DL-based strategies are the two main categories of
categorizing infected plant leaf regions in the current literature. Authors in [26] suggested classifying
plant diseases using ML. Local Binary Pattern (LBP), Gray Level Co-Occurrence Matrix (GLCM),
Shift-Invariant Feature Transform (SIFT), and Gabor feature extraction techniques were employed
for the input images. An ML classifier SVM, a KNN, an Artificial Neural Network (ANN), and an
RF are used to succeed in categorizing plant diseases. Based on Gabor features, Kaur’s study achieves
the highest classification accuracy at 90.23%, but performance still requires improvement. According
to [27], a method was developed to identify and categorize various types of plant diseases. By using
the 14 color spaces, the authors extracted the 172 critical points from the suspected samples. Using the
analyzed key points, the SVM was trained. This method [27] shows an enhanced accuracy of 94.68%
when categorizing plant leaf-diseased regions; however, this method is not robust when dealing with
samples that have significant distortions. According to [28], a strategy was presented for locating and
classifying weed-based diseases. Initially, the noise was eliminated from the questionable samples using
the morphological opening and closing operation. To extract the important details from the augmented
image, a bespoke model called k-FLBPCM was introduced: a filtered LBP method with contour masks
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and coefficients. SVM training was performed using the computed key points in order to categorize
the sick leaf regions.

Compared with previous methods, the method [28] achieves 98.63% accuracy in recognizing
plant diseases; however, it is not reliable in the presence of perspective distortions. Using a technique
developed by [29], the damaged areas of various plant leaves could be detected and identified. In the
beginning, Directional Local Quinary Patterns (DLQPs) were used to extract features as input images.
Through the use of the estimated key points, the SVM classifier was trained to categorize agricultural
leaf diseases. According to [29], this method has an accuracy of 96.50%. Further improving detection
performance can be achieved by detecting suspected photos based on color and shape. As a result of
their research, Authors in [30] developed a different method for identifying and categorizing illnesses
in tea plants. The input image was initially divided into a number of blocks using the Simple Linear
Iterative Cluster (SLIC), from which the Harris method was utilized to compute the features. Convex
hulls were used to find fuzzy salient areas, and GLCM was used to calculate the feature vector. As
a final step, the SVM classifier was trained using the key points collected. With an accuracy rate of
98.50%, the framework [30] shows improved crop leaf disease categorization; nonetheless, this method
is economically challenging. Several agricultural diseases can be located and categorized using the
approach given by [31]. First, a sample was used to segment the suspected image using the GrabCut
method. Feature calculations were performed on the segmented image using the Hue, Saturation, and
Value (HSV) transform. The SVM was then trained using the key points retrieved earlier.

Plant leaf-damaged regions are successfully categorized with 95% accuracy by [31], Although,
its detection accuracy declines over noisy samples. Another ML-based method was utilized by [32]
to categorize various crop diseases. Using Histogram Equalization (HE), input samples were first
preprocessed to provide more visual information. Using K-means clustering, the image segmentation
process was carried out next. In order to compute the key points, the GLCM descriptor and the LBP
descriptor were employed. To categorize different crop leaf-damaged regions, the computed features
were then fed into the SVM algorithm. Despite using a dataset with a limited number of samples,
[32] found improved accuracy in crop leaf diseased region classification with 84.6% accuracy. As
presented by [11], a method for classifying crop leaf anomalies has been developed. A Histogram
of Oriented Gradient (HOG) method was used for the key point calculation in the RF classifier
training. With an accuracy of 70.14%, [11] describes an approach to categorize crop leaf diseases more
accurately; however, performance still needs to be improved. The problem of classifying anomalies in
turmeric leaves was solved by [33]. The samples were first preprocessed in order to improve their visual
presentation. After upgrading the samples, the K-means clustering method was used to group them
regionally. In the next step, the GLCM method was used to extract the key points. Using the derived
characteristics, SVM classifiers were used to categorize sick regions.

Method [33] performs poorly for images with significant brightness variations, but it shows
improved classification accuracy of 91%. To identify and classify crop diseases, [21] proposed the
EfficientNet framework. A performance evaluation was conducted using both the original dataset
and the supplemented dataset. Reference [21] developed a method that achieves 99.97% accuracy in
classifying plant diseases, although it requires increased computing power. According to [34], DL can
be used to automate the classification of plant diseases using a Residual Teacher/Student (ResTS)
model. A CNN model was used by the ResTS technique to compute the deep features of an input
sample. A decoder and two classifiers were then used to classify different plant leaf abnormalities.
Despite an F1-score of 99.10% for [34] methods, they were unable to demonstrate strong performance
under extreme lighting conditions. To localize and categorize grape plant diseases, [35] developed
Region-based CNNs (RCNNs). An RCNN classifier was used to classify the deep features after they
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were computed using ResNet18. In spite of the 99.93% accuracy rate achieved, their method performs
poorly in real-world situations.

As part of DL-based frameworks for predicting plant diseases from input data, [36] introduced
VGG, ResNet, and DenseNet. The DenseNet framework achieved the best accuracy of 98.27%. In
their study, [37] proposed using Few-Shot Learning (FSL) to recognize and classify plant leaf damage.
The deep features were computed using the Inception V3 model after the input image had been
preprocessed. The feature calculation was followed by the training of a multiclass SVM classifier. It was
found that the classification of the various plant leaf diseases achieved an accuracy of 91.4%; however,
the results were derived from a modest-size dataset. An alternative CNN-based method for identifying
and categorizing tomato crop diseases has been presented [17]. The authors, categorize and compute
deep features from suspected images by using three Convolution Layers (CLs) and max-pooling layers.
In spite of the model over-fitting issue, this framework has a strong ability to recognize tomato diseases.
It was reported by [20] that several illnesses of maize plants can be identified and located by using a
simple method. Using the ResNet50 method, the characteristics of the samples were computed and
categorized. As a result of the limited power, execution, and space of mobile phones, [20] developed a
low-cost method for categorizing agricultural illnesses with 97% accuracy.

According to [25], transfer learning was used again to classify various tomato diseases. Instead
of using the VGG16 network to compute image features, the Faster-RCNN framework uses a deep
residual model. K-means clustering was also used to group the identified regions. With an mAP
score of 98.54%, the work [25] shows an improved classification of tomato crop leaf disease regions
without requiring heavy processing. Moreover, authors in [38] provided a methodology for locating
and classifying tomato leaf-affected locations. AlexNet was used to compute the deep features in the
input image, which were then used to train the KNN classifier. This study categorizes data with an
accuracy of 76.1%, however, the KNN technique requires a lot of time and effort. Through the concept
of transfer learning, [39] identified the tomato crops affected leaf regions. To extract critical details
from questionable photos, [22] used a ResNet network. Once the typical set of image features had
been extracted, a CNN-based classifier was used to classify the images. In the [39] study, crop leaf
diseased regions were classified with 98% accuracy; however, the method is economically inefficient.
For the classification of crop diseases, [40] developed a DL method. After rescaling the suspected
photos, further processing was performed. A representative set of key points was then extracted from
the photos using the LeNet technique. It provides a computationally efficient method for classifying
tomato crop diseases, although its accuracy is poor for images with noise. The included literature
is summarized and then listed in Table 1. The summary provides the description of the article, the
benchmark or custom dataset used along with the method used. It is evident from the included
literature that previously only one few categories of diseases were targeted while in the proposed
method authors have included three datasets comprising 60 categories of crop diseases.

ML-based and DL-based methods had been used to classify plant leaf diseases. There is however
room for improvement when it comes to processing times and categorizing various sick plant leaf
regions. Currently, either a lot of preprocessing steps are required, or distorted samples have trouble
working well. Furthermore, the strategies perform no better with unseen data because of overfitting
issues. In order to prevent crop damage and to allow farmers to take prompt preventative measures, it
is necessary to correctly identify and categorize plant leaf diseases.
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Table 1: Summary of the included literature, where BD and CD denote Benchmark and Custom
Dataset

Ref No. Description Dataset/Type Architecture

[11] The authors applied HoG as a feature
extractor and RF for the recognition of
healthy and infected leaves from the
custom datasets.

Plant leaves/CD Random forest

[17] The authors utilized a custom CNN
model for the detection of disease in
tomatoes.

PV/BD CNN

[20] The authors proposed a custom CNN
model for the detection of disease in
maize plant leaves.

PV & northern corn leaf
blight/BD

CNN

[21] The authors utilized a fine-tuned variant
of EfficientNet for plant disease
detection.

PV/BD EfficientNet B0–B7

[22] The authors used a fine-tuned version of
EfficientNet and the U-Net model for
tomato disease detection and
segmentation.

PV/BD EfficientNet B0, B4,
B7

[23] The authors proposed a method based
on VGG16 and GANS when there are
insufficient low-resolution target images
for crop disease detection.

PV/BD VGG16 and GANS

[24] The authors proposed a combination of
K-Means Clustering with the F-RCNN
model to detect disease in rice leaves.

Rice blast, bacterial leaf
blight, sheath blight/CD

K-means and faster
RCNN

[25] The authors proposed an improved
F-RCNN method for tomato disease
detection.

AI challenger tomato/BD Faster RCNN

[26] The authors utilized ResNet-18 with
dilated layer method for plant disease
detection.

PV/BD ResNet family

[27] The authors proposed automated rice
plant disease detection via ML.

Rice dataset/BD SVM

[28] The authors proposed a combination of
filtered features extracted by a combined
Local Binary Pattern via SVM.

BCCR-SEGSET/BD SVM

[29] The authors suggested DLQP as a
feature descriptor for plant leaf disease
detection and SVM as a classifier.

PV/BD SVM

(Continued)



CSSE, 2023, vol.47, no.1 521

Table 1: Continued
Ref No. Description Dataset/Type Architecture

[30] The authors proposed SLIC as a feature
descriptor for plant leaf disease
detection and SVM.

Tea plant/CD SVM

[31] The authors utilized LBP for feature
extraction and OCSVM for
classification.

Vine leaves/CD OCSVM

[32] The authors proposed a methodology
for the analysis and detection of plant
leaf diseases via HSV feature extractor
and SVM.

Leaf dataset/CD SVM

[33] The authors proposed plant leaf disease
detection by utilizing the GLCM feature
extractor and SVM classifier.

Turmeric leaves/CD SVM

[34] The authors utilized the ResTS pipeline
for the Xception model to detect plant
diseases.

PV/BD Xception-ResTS

[35] The authors employed FRCNN with a
dual attention mechanism to detect
disease in grape leaves.

PV/BD F-RCNN with dual
attention

[36] The authors employed CNN for grapes
disease detection.

PV/BD DenseNet

[37] The authors employed Few Shots
learning strategy strategies, utilized
InceptionV3 for feature extraction, and
SVM as a classifier.

PV/BD SVM

[38] The authors utilized various ML and
DL methods for feature extraction and
KNN as a classifier.

Tomato leaves/CD KNN

[39] The authors used Residual CNN with an
attention mechanism for tomato disease
detection.

PV/BD Residual CNN +
attention mechanism

[40] The authors proposed a modified
variant of the Lenet model for tomato
disease detection.

PV/BD LeNet

Ours The authors utilized a lightweight and
modified MobileNetV3Small model for
plant disease detection.

PV, DRLI and PC/BD &
CD

MobileNetV3Small

Algorithm 1: Plant disease detection algorithm using E-GreenNet
Input: Video Stream
Output: Return PlantDiseaseDetected

Initialization:
(Continued)
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Algorithm 1: Continued
PDDM ← Load Pre-Trained Plant Disease Detection Model (PDDM)
VS ← Acquire Video Stream
while VS do

Frame ← Read (VS)
RoIS ← PDDM (Frame)
if RoILabel is normal then

select next Frame; /∗ No action processing next frame ∗/
else

if RoILabel = plant disease then
Send an emergency alert; /∗ Call agriculture department ∗/

end
end

end
Return: PlantDiseaseDetected

3 Proposed Methodology

The proposed framework involves three main steps. Initially, the collected plant leaf images
are preprocessed. Next, images of the diverse classes are passed to an efficient CNN model, which
effectively detects and classifies the plant into the respective class. Eventually, the model takes a
decision based on the predicted label for the given input image. Regarding the real-world application
of the developed system, if the predicted label is a disease on a plant, an alert is generated to the nearest
agriculture department to take timely action. A pictorial representation of the proposed framework is
presented in Fig. 1; the step-wise procedure is presented in Algo. 1. In the initialization step of Algo.
1, the model is fed with a Video Stream (VS) and loads a pre-trained Plant Disease Detection Model
(PDDM). When the frame is read, the Regions of Interest (RoIS) are extracted and checked for the
presence of disease. If it is a normal image, the next frame is selected; else, if the disease is detected
in the frame, an alert is generated and sent to the agriculture department and responsible emergency
teams. Furthermore, in the following sections, each step is briefly discussed.

3.1 E-GreenNet Framework
In recent years, CNN networks for mobile devices have developed from 2017 to 2019, there are

three different MobileNet architecture that was continually enhanced. When developing MobileNetV1
[9], the conventional VGG architecture was referred to and depth-wise discrete convolutions were
included. Based on that, MobileNetV2 [10,11] is released a year later and has an inverted residual and
a linear bottleneck. By removing costly layers and switching to the h-swish non-linearity function as a
substitute for ReLU in the middle of 2019, MobileNetV3 is further enhanced with the aid of Network
Architecture Search (NAS) and NetAdapt network searching for architectural optimization, which
increases both its efficiency and relative accuracy.
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Figure 1: Proposed E-GreenNet framework for plant disease detection and classification. Initially,
data is acquired from PV, DRLI and PC datasets, followed by plant disease detection using the
proposed technique, and finally, in case of disease detection, alarm generation to the farm service
agency, agriculture department, among others

Depth-wise Separable Convolution: A novel computing technique called depth-wise separable
convolution is being developed. A lot of similarities can be found against conventional convolution.
In contrast to classic convolutions, the depth-wise separable convolution performs convolutional
calculations for each layer in two stages. The first stage of depth-wise convolution involves a single
convolutional filter for every single input channel. The next stage of depth-wise convolution is to
convolute the output channels into pointwise channels. Despite some compromises in the accuracy,
the depth-wise separable convolution improves calculation speed by minimizing the extent of com-
putation. Convolution with depth-wise separable parameters is a key procedure for several effective
models, including MobileNetV1-V3. A pictorial representation is presented in Fig. 2.
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(a) Standard Convolution (b) Depth-wise Convolution (c) Point-wise Convolution 

Figure 2: A pictorial representation of standard convolution along depth-wise convolution and point-
wise convolution

Linear Bottleneck: The MobileNetV2 proposes linear bottlenecks to decrease the dimensionality
of the input so that features can be extracted from the high-dimensional space without losing
considerable information. The linear bottleneck refers to a CL with the linear activation function
combined with a filter layer. MobileNetV2 inserts linear bottleneck layers0 into convolutional blocks
as a substitute for traditional ReLU function transformations because they include nonlinearity and
potential for information loss. To understand the concept a pictorial representation is depicted in
Fig. 3.

Figure 3: A pictorial representation of separable convolution with linear bottleneck

Inverted Residual: The bottleneck layers substitute the ReLU layers as a better, more effective
method for extracting all data information. As part of the bottleneck block, an expansion layer is also
present. The mobile network is also able to better propagate gradients between layers via shortcuts
directly between bottlenecks, which prevents gradient loss and explosion between layers. Despite
significantly reducing memory costs, inverted residual blocks function almost as well as residual
blocks, to further identify the key difference between residual and inverted residual blocks a pictorial
representation is depicted in Fig. 4.
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Figure 4: A pictorial representation of (a) residual block and (b) inverted residual block

Network Architecture Search (NAS): To establish the optimal architecture for MobileNetV3 on
a constrained hardware platform, reinforcement learning, and Recurrent Neural Network (RNN) is
applied. By using reinforcement learning to search efficiently in multiple hierarchical search spaces,
it approaches the best structure for a neural network model for a specific task. As an example,
MobileNetV3’s expansion layer has been redesigned based on MobileNetV2’s original design.

Swish Function: There is a new and distinct activation function that is employed to replace the
ReLU function in order to achieve higher levels of accuracy named Swish. This function is defined as:

swish (x) = x.σ (x) , (1)

Due to the complex nature of the sigmoid function in the swish formula, it may require a lot of
computational processing power on mobile edge devices. A solution to this issue is MobileNetV3,
which utilizes ReLU6 functions to approximate sigmoid functions in Swish. This is known as h-Swish,
which is defined as:

h − swish [x] = x
ReLU6 (x + 3)

6
. (2)
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4 Experimental Results

This section investigates the assessment measures, evaluation metrics, dataset, and graphical out-
comes. The experimental setup and performance metrics are first described, followed by a discussion
of the datasets, and the evaluation of the results. All the models, including the proposed E-GreenNet,
were trained using a total of 10 epochs with a low learning rate to ensure that the model retained
most of the previously learned knowledge. The pre-trained model progressively updates the learning
parameters for optimum performance on the intended dataset. Based on the results, each model is
retrained with its default input size, with a batch size of 32, the Adam optimizer was equipped with a
learning rate and momentum of 1e-4 and 0.9, respectively. The experiments were conducted on an
NVIDIA RTX 3070 Super Graphical Processing Unit (GPU) with 32 GB of onboard memory, a
Keras DL framework, and TensorFlow for the back end. As shown in the following equations, the
performance of the proposed model was assessed by utilizing multiple evaluation metrics, including
accuracy, precision, recall, and F1-score.

4.1 Evaluation Metrics
In the classification problem, accuracy is defined as the number of correct predictions produced

by the model over all the types of predictions made,

Accuracy =
(

TP + TN
TP + TN + FP + FN

)
, (3)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.

Precision is a metric that indicates the percentage of the dataset labeled as plant disease truly
contains disease. The predicted positives (images predicted to be diseases are TP and FP), and the
photos with a disease scenario are TP.

Precision =
(

TP
TP + FP

)
, (4)

A Recall is a metric that shows the percentage of observations in a dataset that were predicted as
having plant disease by the model. The real positives and plant disease images predicted by the model
are TP.

Recall =
(

TP
TP + FN

)
, (5)

The F1-score measures the precision and recall harmonically.

F1 − score = 2 ×
(

Precision × Recall
Precision + Recall

)
, (6)

Cross-Entropy loss is typically employed after Softmax activation, that is why it is also known as
Softmax loss. It is evident from the literature that for classification tasks, the CE loss converges more
quickly than the Mean Square Error (MSE) loss. As a result, a Softmax and CE loss combination
is frequently employed to separate one class from many classes. The Categorical Cross-Entropy loss
calculates the performance of the model and outputs a probability of 0 and 1.

Cross − Entropy = −
c∑
i

tilog (Si) , (7)
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ti is the ground truth, si is the ith element of the score vector, which is the output of the last layer
of the CNN for each class i,

Softmax = f (s)i = eSi∑C

j eSj
, (8)

Categorial Cross Entropy = −
c∑
i

tilog(f (S)i). (9)

4.2 Datasets
To evaluate the performance of the proposed E-GreenNet model, authors employed two bench-

mark datasets titled PV and the DRLI dataset. Additionally, to further check the robustness of the
proposed model a new dataset called the Plant Composite (PC) dataset was acquired by integrating
both datasets. The overall statistics of the included datasets are provided in Table 2.

Table 2: Overall statistics of the included benchmark datasets i.e., PV, DRLI, and a newly created PC
dataset

S. No Dataset Training Testing Validation Total Images

1 PlantVillage 39100 10861 4344 54305
2 Data repository of leaf images 3241 901 360 4502
3 Plant composite 42341 11762 4704 58807

4.2.1 PlantVillage Dataset

The authors evaluated the accuracy of the proposed method by using the PV dataset [5]. In
a number of historical performance evaluation approaches, the PV dataset has been extensively
investigated for its sizeable, public, and free availability of the data on crop leaf disease classification.
To test the classification accuracy of the proposed strategy, authors performed numerous tests on this
dataset, which includes photos of plants with various types of illnesses. In more detail, the PV dataset
contains 54,303 images from 14 plant species and a total of 38 classes, of which 26 classes were derived
from infected plants and 12 from healthy plants. Tomatoes, Strawberries, Grapes, and Oranges are
all represented using images from the PV dataset. As well as exhibiting various distortions of image
quality, such as noise, blurring, and variations of color, the employed dataset has samples that vary in
size, color, and light. Thus, it presents diverse and challenging data for the detection and categorization
of affected plant leaf regions.

4.2.2 Data Repository of Leaf Images Dataset

A plant’s interaction with its surroundings is intricate. It contributes a variety of substances that
enhances the environment. Plants are also important in controlling greenhouse gases and climate
change. Despite this, authors have exterminated them ruthlessly in the past. In addition to the loss
of many species that once lived there, climate change has had a serious impact on the environment.
Providing plants with time and space to recover and re-clothe the planet, plants are capable of
recovering and re-clothing the planet with plants and species that are recently destroyed. This work
contributes to the identification, detection, and diagnosis of plant diseases as a result. There are
twelve plants chosen for this project: mango, arjun, guava, Alstonia Scholaris, Bael, Jamun, Jatropha,
Pomegranate, Lemon, and Basil. The leaves of these plants have been photographed in healthy
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and infected states and divided into two modules. There have been two main categories in the
entire collection of photographs: the healthy and the infected ones. The obtained photos were first
categorized and tagged concerning the plants, which ranged from P0 to P11. Following this, the
entire dataset was divided into 22 subject groups, numbered from 0000 to 0022. A healthy class is
defined as 0000 to 0011, while an infected class is defined as 0012 to 0022. The dataset contains
approximately 4503 photos totaling 2278 healthy leaves and 2225 sick leaves. Photos were captured
from March through May 2019, the University of Shri Mata Vaishno Devi in Katra gathered all of
the leaf pictures. In this process, photographs were taken in an enclosed space. Wireless technology
was utilized throughout the entire acquisition process. The photos were taken with the Nikon D5300
camera, which is capable of taking a single JPEG photo in 0.58 s per frame, and a RAW + JPEG
photo in 0.63 s per frame. An 18–55 mm lens was used with sRGB color representation, 24-bit depth,
two resolution units, coupling with 1000 ISO, and no flash to take the photographs.

4.2.3 Plant Composite Dataset

To check the robustness of the proposed E-GreenNet model, authors combined the publicly
available datasets i.e., PV and Data Repository of Leaf Images to create a new and more diverse and
challenging dataset. The plant composite contains a total of 58807 images which is 7.6% larger than
PV and 92.3% larger than the data repository of leaf images. Making the new dataset more distinct
and challenging due to the huge variety of plant species, as a result, the model training process is
beyond meticulous. The resultant model generalization ability is enhanced, and reliability is increased
for real-time plant disease detection scenarios. Here are a few examples from the Plant Composite
dataset, shown in Fig. 5.

Figure 5: Sample images from the included benchmark datasets. The first row contains healthy plant
leaves, while the second row has infected plant leaves. Each row includes six instances

4.3 Performance Comparison with SOTA
This article compared the proposed model with different pre-trained CNN-based architectures for

plant disease detection. The models were compared concerning the number of parameters, precision,
recall, F1-score, and accuracy. MobileNetV1, EfficientNetB0, VGG19, and VGG16 almost all models
perform the same, whereas the proposed E-GreenNet model achieves the accuracies of 100%, 96%, and
99%, respectively on all three datasets while having the least number of parameters when compared to
other SOTA models. In addition, a comparison of the proposed E-GreenNet model with MobileNetV1
indicates that although both models are computationally efficient, the proposed E-GreenNet has
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approximately two times a smaller number of parameters and still performs the best on all included
datasets.

A comparison of the proposed model with MobileNetV1 indicates that the results of MobileNetV1
are proximate to those of the proposed model. However, the difference is the heavier weight, where
E-GreenNet has 1.51 million parameters while MobileNetV1 has 3.23 million. An overview of the
comparison of the input size and network training parameters of the proposed E-GreenNet with the
SOTA models is listed in Table 2 while the performance of the pre-trained models is listed in Table 3.
It can be observed that the pre-trained models achieve high performance with a low false-alarm rate.
However, the false prediction rate remains high and needs to be boosted. Therefore, this research
explored a fine-tuned and pre-trained CNN architecture (E-GreenNet) concerning the accuracy and
incorrect prediction. After tuning, E-GreenNet attains the best performance among the other models
with fewer false predictions while having the least number of trainable parameters.

Table 3: Overview of the comparison of the input size and network training parameters of the proposed
E-GreenNet with the SOTA models

Model Input size Batch size Parameters (million)

VGG19 224 × 224 32 200.25
VGG16 224 × 224 32 147.15
EfficientNetB0 224 × 224 32 4.05
MobileNetV1 224 × 224 32 3.23
E-GreenNet 224 × 224 32 1.51

The confusion matrix of the proposed E-GreenNet model trained on various benchmark datasets
is depicted in Fig. 6. The dark green diagonal correlates with TP, whereas the saturation represents
the accurate classification. The proposed E-GreenNet exhibits overall better classification accuracy
compared to the SOTA models, although some of the images in both categories are misclassified.
The training accuracy and training loss graphs are visualized in Fig. 7; the vertical axis represents
the accuracy and loss, whereas the horizontal axis shows the total number of epochs. It is clear
from Fig. 7 that E-GreenNet is effective for plant disease detection. As the number of iterations of
the training and validation processes increases, the training and validation accuracy line graph of
the model change, as depicted in Fig. 7a. The proposed E-GreenNet converges on 8 epochs, and the
training and validation accuracies reach 100%, 96%, and 99% on PV, Data Repo Leaves, and Plant
Composite datasets correspondingly. Likewise, the training and validation loss values change and drop
to 0.0 and 0.09 respectively, as depicted in Fig. 7b. The proposed E-GreenNet is further compared with
other pre-trained models in Table 4, while in Table 5 the proposed is compared against various ML
and DL SOTA studies.

The proposed outperforms other pre-trained models listed in Table 4 and also has superior
performance when compared to other ML and DL studies listed in Table 5. Those methods which have
similar accuracies like E-GreenNet, the proposed outclass such methods by higher FPS and inferencing
speed due to its lightweight architecture and fewer trainable parameters.
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(a) PlantVillage (b) Data Repository of Leaf Images 

(c) Plant Composite 

Figure 6: Confusion matrices of the proposed E-GreenNet utilizing benchmark datasets and a newly
created composite dataset
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Figure 7: Training accuracy and loss against validation accuracy and loss of the proposed E-GreenNet
for PC dataset

Table 4: Evaluation of the proposed model E-GreenNet against the SOTA models utilizing the
benchmark datasets
Model Class PlantVillage Data repository of leaf images Plant composite

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

VGG19 Healthy 1.00 0.95 0.98 0.99 0.96 0.97 0.97 0.97 0.99 0.96 0.97 0.98
Infected 0.98 1.00 0.99 0.97 0.96 0.96 0.98 1.00 0.99

VGG16 Healthy 0.99 0.99 0.99 1.00 0.98 0.94 0.96 0.96 0.99 0.99 0.99 0.99
Infected 1.00 1.00 1.00 0.93 0.98 0.96 0.99 1.00 1.00

Mobile Healthy 1.00 0.99 0.99 1.00 0.97 0.96 0.97 0.97 0.99 0.99 0.99 0.99
NetV1 Infected 1.00 1.00 1.00 0.96 0.97 0.96 1.00 1.00 1.00
Efficient Healthy 1.00 1.00 1.00 1.00 0.99 0.83 0.90 0.89 1.00 0.97 0.98 0.99
NetB0 Infected 1.00 1.00 1.00 0.78 0.98 0.87 0.99 1.00 0.99
E-Green Healthy 1.00 1.00 1.00 1.00 0.93 0.99 0.96 0.96 1.00 0.99 0.99 0.99
Net Infected 1.00 1.00 1.00 0.99 0.93 0.95 0.99 1.00 1.00

Table 5: Comparison of the proposed E-GreenNet with other SOTA ML and DL methods in terms
of datasets, parameters, and accuracy

Method Type Dataset Parameters (million) Accuracy

[41] ML PlantVillage – 0.93
[42] – 0.77
[43] 25.5 0.91
[44] DL 5.44 0.97
[5] 5 0.99
[45] – 0.99
E-GreenNet DL PlantVillage 1.51 1.00

(Continued)
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Table 5: Continued
Method Type Dataset Parameters (million) Accuracy

Data repository of leaf images 0.96
Plant composite 0.99

4.4 Time Complexity Analysis
To assess a deep model’s effectiveness, performance, and deployment potential must be evaluated

in real-time across various devices, including a small edge device such as Nvidia Jetson Nano along
with Central Processing Unit (CPU) and GPU. Nvidia Jetson Nano is equipped with a quad-core
ARM architecture-based CPU i.e., Cortex-A57, and a discrete GPU based on Maxwell architecture
with 128 Nvidia CUDA cores and 4 GB of LPDDR4 onboard memory. The specifications of the CPU
and GPU employed for analyzing the FPS of the proposed E-GreenNet model are listed in Section 4.
The criteria to assess the model performance for real-time application is that the model achieving 30 or
more FPS is considered optimal for real-world scenarios [46–55]. To evaluate the model’s performance,
the authors captured a short video of tree leaves via mobile phone. The FPS for the proposed E-
GreenNet model utilizing Jetson Nano, CPU, and GPU is 8.98, 29.67, and 31.73, respectively. Fig. 8
compares the proposed E-GreenNet model in terms of the FPS with several baseline models.

Figure 8: Comparison of the proposed E-GreenNet with various deep models in terms of FPS

The experimental results show that employing the Jetson Nano, CPU, and GPU, respectively,
the FPS of the VGG19 model is 2.24, 9.53, and 25.19, the VGG16 model is 2.61, 11.27, and
27.64, EfficientNetB0 model is 4.62, 19.74 and 24.41, and MobileNetV1 is 5.05, 22.96 and 30.37. A
comparison of the time complexity of the E-GreenNet model with those of the other baseline models
indicates that the performance of the proposed model is convincing. Thus, the proposed E-GreenNet
model is capable of real-time processing and operation.
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5 Conclusion

In this study, authors proposed a new model for plant disease detection i.e., E-GreenNet inspired
by MobileNetV3Small architecture. The authors fine-tuned the existing model for the specific task of
plant disease detection. The proposed E-GreenNet can accurately identify and classify infected plant
leaves from the PV dataset, the DRLI dataset, and a new dataset called the PC dataset. The research
presented here features a refined and improved version of MobileNetV3Small i.e., E-GreenNet. By
employing E-GreenNet, deep key points are calculated and classified according to their corresponding
classes using an end-to-end training architecture. The new PC dataset that contains images spanning
over multiple classes, and publicly available benchmark datasets such as PV and DRLI were used to
evaluate performance. The highest accuracy was achieved with a precision of 99.5%, a recall of 99.5%,
and an accuracy of 99.99%. The robustness and time-effectiveness of the proposed approach were
found to be superior to other recent approaches. However, the proposed method is not suitable for
such scenarios when the environment is foggy or hazy i.e., visibility is low then the model performance
is affected. Secondly, if the object is far from the vision sensor i.e., in the case of a drone surveillance
scenario the model robustness is influenced adversely. In the future, authors intend to develop a new
model with an attention mechanism and evaluate the proposed method on challenging datasets.
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