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Abstract: Recently, various mobile apps have included more features to
improve user convenience. Mobile operating systems load as many apps
into memory for faster app launching and execution. The least recently
used (LRU)-based termination of cached apps is a widely adopted approach
when free space of the main memory is running low. However, the LRU-
based cached app termination does not distinguish between frequently
or infrequently used apps. The app launch performance degrades if LRU
terminates frequently used apps. Recent studies have suggested the potential
of using users’ app usage patterns to predict the next app launch and address
the limitations of the current least recently used (LRU) approach. However,
existing methods only focus on predicting the probability of the next launch
and do not consider how soon the app will launch again. In this paper, we
present a new approach for predicting future app launches by utilizing the
relaunch distance. We define the relaunch distance as the interval between two
consecutive launches of an app and propose a memory management based on
app relaunch prediction (M2ARP). M2ARP utilizes past app usage patterns
to predict the relaunch distance. It uses the predicted relaunch distance to
determine which apps are least likely to be launched soon and terminate them
to improve the efficiency of the main memory.

Keywords: Mobile operating systems; memory management; background app
caching; relaunch distance; neural networks

1 Introduction

With the widespread use of smartphones, various mobile apps are being developed. The number of
smartphone users has exceeded 6 billion as of 2022, continuously increasing. Following this trend, the
number of mobile apps registered in the Android App Store is steadily increasing, and currently, there
are about 3 million [1]. Smartphone users usually install and use dozens to hundreds of apps, and more
features have been loaded into smartphone apps to improve user convenience. Therefore, requirements
such as main memory or processing power are increasing. The increasing main memory demand can
be addressed by hardware or software approaches. The hardware approach is to increase the main
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memory of the smartphone, whereas the software approach is to use the main memory through a
software management policy efficiently. In addition to the memory management policy, the software
approach includes the enlargement of the main memory capacity using page swap techniques.

Android or iOS adopts app life cycle management [2] to release some of the app’s memory
according to the running state of the app in order to keep as many apps as possible in the main
memory with its limited capacity. These apps cached in the main memory can be quickly brought
to the front of the screen when switching or relaunching the apps. Mobile operating systems terminate
the cached apps they determined not frequently used when the available main memory is insufficient to
prevent the user from perceiving system performance degradation. Furthermore, to efficiently utilize
the main memory of the smartphone, a swapping technique [3] that utilizes secondary storage as the
main memory space was considered. However, in smartphones, the NAND flash-based secondary
storage is hard to be used as a swap space due to wear-out problems. Therefore, zram [4], which
compresses a fixed portion of main memory and uses it as swap space, or zswap [5], which uses it
as a swap cache, is mainly deployed to smartphone operating systems.

The existing smartphone operating systems widely adopt the LRU (Least Recently Used) [6]-based
app termination and main memory reclaim technique. They terminate the least recently used apps
to reclaim their memory in a low-memory situation. The LRU-based approach considers that the
most recently launched app has a higher probability of being relaunched compared to other apps.
However, the LRU-based approach should be aware of frequently and infrequently launched apps.
When infrequently used apps launch at some point, the LRU-based approach can firstly terminate
frequently launched apps even if they are likely to be relaunched soon as the frequent apps are in
the least recently used position than the infrequent ones. They need to be loaded back into memory
upon relaunch incurring overall degradation of user-perceived performance. Recently, studies have
been conducted to analyze the user’s app usage pattern and predict the app to be launched next [7–15].
These studies suggested the possibility of addressing the limitations of the LRU-based approach by
analyzing the user’s app usage pattern. Even though existing methods focus primarily on predicting
the probability of the next launch, they do not consider the timing of when the app will launch again.
Therefore, it is important to note that simply adopting the state-of-the-art approach of the next app
prediction for selecting the termination app is not sufficient.

In this paper, we address this limitation by proposing memory management based on app relaunch
prediction (M2ARP), which uses relaunch distance to manage main memory by terminating apps
according to the predicted relaunch distance. We define the relaunch distance of an app, which is a
metric for how much later the app will launch. Further, we propose a machine learning technique
based on the user’s usage patterns to predict the relaunch distance. This method utilizes past app
usage patterns to predict the relaunch distance, which it uses to determine which apps are least likely
to be launched soon. It terminates the least likely one to improve the efficiency of the main memory. In
addition, we consider a way to adopt both app usage prediction and the existing LRU-based approach
for the actual usage case scenario in which apps with rich historical usage data and scarce data are
combined. To this end, we propose to adopt the existing LRU-based app termination as a fallback
method using relaunch distance when we meet such apps that are difficult to predict usage patterns.
The main contributions of this paper are as follows:

• We define app relaunch distance, a measure of when an app launch again.
• We designed a mechanism to compare the relaunch distance between apps in a low-memory

situation to terminate the least likely to be launched in the future.
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• We exploited app usage patterns and relationships for time-series prediction of app relaunch
distance with long short-term memory.

• We designed an LRU fallback mechanism for difficult-to-predict apps.

The rest of the paper is structured as follows. The existing studies in predicting the user’s app
usage patterns and managing the memory of mobile devices by predicting user usage patterns are
introduced in Section 2. The M2ARP, a memory management system that can adopt both app usage
prediction and existing LRU, is proposed in Section 3. In Section 4, we compare and analyze the
existing LRU-based method and the proposed M2ARP by performing a benchmark with a real-world
usage history on a smartphone device. Finally, we make a conclusion and discuss future research
directions in Section 5.

2 Related Work

A PC-based operating system allocates system resources fairly to all running apps and services,
whereas a mobile operating system prioritizes allocating system resources to foreground apps and
related services. When the user launches an app and launches another app thereafter, Android caches
the app that is not in the foreground [16]. This is to provide maximum responsiveness to the user with
limited system resources. Since Android keeps apps cached in memory, the user relaunch of the cached
app improves the launch speed and user responsiveness. The cached apps are maintained as an LRU
list [17], and the apps in the LRU position are terminated in a low-memory situation. However, LRU-
based memory management is less efficient as the number of apps used increases because frequently
used apps are more likely to be terminated by various kinds of apps. If apps likely to be launched near
future can be determined accurately, memory management efficiency will increase accordingly.

Mobile devices such as smartphones and tablets are a more convenient platform for analyzing
usage patterns due to the characteristics that users alone carry and use most of the time. Therefore,
studies such as next app prediction [9–12], next app prediction and prelaunch [7,8], next app prediction
and kill [14, 15] that predict the next app to be launched next by analyzing the user’s app usage history
have been conducted.

Next app prediction is a study that predicts the next app to be launched. In a study that predicted
users’ app usage based on k-nearest neighbor (kNN), information about apps switching from one to
another and each app usage time were modeled as graphs [9]. In a study to model and predict app
usage, the probability of the next app being launched was estimated by combining a string prediction
and a Markov-based model [10]. However, the Markov-based probabilistic model assumes that the
app to be launched next is related only to the app just used, which is a limit to analyzing various
usage patterns. In the actual app usage pattern, the app that the user launches is related to several
previously launched apps [11]. In order to analyze the correlation between a series of app launches, long
short-term memory (LSTM)-based app launch prediction was studied. However, hyperparameters of
the LSTM model were not considered, but only fixed time windows of usage data were considered.
Accordingly, the proposed LSTM model is not able to learn how long the model should analyze the
usage history of inputs. WhatsNextApp [18] proposed a bidirectional LSTM model that analyzes
variable time windows at the minute, hour, and day levels in order to learn long-term app launch
records. AppUsage2Vec [12] analyzes and predicts app usage history by applying Doc2Vec [19], which
is originally proposed for natural language processing. AppUsage2Vec viewed each app as a single
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word in a document and the entire app usage history of a user as a single document. However, the
AppUsage2Vec model only takes the fixed-size recent usage history and shows the highest prediction
performance for four historical usage records given, which is a limitation for long-term usage data
analysis. CoSEM [20] predicts the probability of the app that will be launched next using app launch
records and semantic information. Like Appusage2Vec, it performs embedding of app launch records,
but it also performs embedding of semantic information, such as search records, location, and time,
to improve prediction performance.

Next app prediction and prelaunch is a study that predicts the app to be launched next and load
into the main memory before the user launches it to improve the perceived launch performance of
the user. FALCON [7] tried to predict apps that are likely to be launched soon by analyzing app
usage and smartphone sensor information. It was shown that the app launch time could be improved
by prelaunching with the app usage prediction, but the correlation between launched apps was not
considered. In the prelaunch study based on the LSTM model, the apps with the highest estimated
launch probability are loaded into the main memory [8]. The study showed high prediction accuracy
of the next app to be launched; however, there is a limitation in long-term usage analysis owing to the
model’s fixed size historical usage data input. Furthermore, if the predicted app is launched during
the foreground app execution, the currently running app may be degraded on account of the use of
the system resource consumption for launching the app.

Next App Prediction and Kill is a study that predicts the apps’ probability of launching next and
terminating the apps with the lowest launch probability in low-memory situations. In a study to apply
reinforcement learning to improve Android’s app termination behavior in low-memory situations, an
app termination method considering the launch probability and launch time of an app was proposed
[14]. The agent of reinforcement learning terminates apps that have not been used for a long time, with
its memory footprint being large and relaunch probability being low. However, the simple statistical
probability analysis based on unused duration limits the accuracy of predicting the next app. Unlike
previous neural network-based app launch prediction studies, AMMS [15] is a memory management
system that adopts the LSTM model for analyzing users’ long and short-term app usage relationships.
AMMS predicts the least likely to be launched apps next, then terminates them in low-memory
situations.

Table 1 is the result of a comparison and analysis of existing studies. Long-term analysis refers to
whether or not the study was conducted on the relationship between two or more app launch records
when predicting a single app launch. Next app prediction is whether or not the probability of what app
will be launched next is predicted when an app is launched. Long-term prediction indicates whether
or not the likelihood of an app to be launched in the near future, beyond the next app to be launched,
is predicted. As shown in Table 1, there are no existing studies that consider both long-term analysis
and long-term prediction. However, as explained in the LRU case, in order to effectively utilize the
main memory space in a mobile operating system, it is necessary to accurately predict which apps will
be launched in the near future and which will not. Most existing studies are only able to predict the
probability that the next app will be launched. They are unable to predict the likelihood that an app
will be launched in the near future. If an app has a high probability of launching in the near future,
keeping it in the main memory can lower the overall launch time of apps, even if it is unlikely to be
launched right next time.
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Table 1: Comparison of existing app prediction approaches

Category Citation Long-term analysis Next app prediction Long-term prediction

NAP

[9] No Yes No
[10] No Yes No
[12] Yes Yes No
[18] Yes Yes No
[20] Yes Yes No

NAPP
[7] No Yes Yes
[8] Yes Yes No

NAPK
[14] No Yes No
[15] Yes Yes No

3 M2ARP: Memory Management Based on App Relaunch Prediction

3.1 Proposed Method
In order to address the problems stated in Section 2, we propose memory management based on

app relaunch prediction (M2ARP), a method that addresses the problem of selecting apps to terminate
in low-memory situations by designing a relaunch distance metric for an app, which is a measure of
how far in the future an app will be launched again. We further propose to predict the relaunch distance
by analyzing users’ previous app usage records in order to improve the overall app launch speed.

The overall prediction and utilization of relaunch distances are shown in Fig. 1. In the example,
the apps a2, a1, a3, and a1 are launched at time i = 1, i = 2, i = 3, i = 4, respectively. The relaunch
distance of an app is defined as the number of different types of apps launched between the current
launch and the relaunch of an app in the future. In the figure, the relaunch distance of app a1 at time
i = 4 is 3, and the relaunch distance of app a2 at time i = 1 is 2. As different apps launched at time
i = 2 and i = 3 after a2 at time i = 1, the relaunch distance of a2 decreases to 0 at the time i = 3.
Similarly, the relaunch distance of app a3 decreases to 1 as app a1 is launched at i = 4. Therefore,
app a3 is the first to be killed by M2ARP in the low-memory situation. M2ARP employs time series
prediction to accurately estimate the relaunch distance of an app. The prediction model predicts the
relaunch distance of an app that has launched each time. By combining the use of relaunch distance
and prediction, M2ARP can terminate the least likely to-be-launched app in the near future.

time app relaunch 
distance

currently
in-use

a1 3 Y
a2 0 N
a3 1 N
a4 N

Time-series prediction of relaunch distance 

a2 a1 a3 a1

future launches

a2 a3 a4 a1a2 a1 a3 a1

predicted distance:3

a1 a3 a2

kill a3 first in caseof a low-memorysituation

cached app list

Figure 1: Proposed method to predict and utilize relaunch distance
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3.2 Memory Management Based on App Relaunch Distance
Existing app prediction studies estimate the probability of the app being launched next; thus, it

is not suitable as a metric for selecting an app to be terminated in a low-memory situation. This is
because the app that is least likely to be launched next may be an app the user will launch again soon.
Hence, it may be more beneficial to keep these apps cached in the main memory to enhance the overall
launch performance of the system. We address this problem by predicting the relaunch distance of
apps by analyzing users’ previous app usage records. M2ARP predicts the relaunch distance of an app
and terminates the apps with the longest relaunch distance in a low-memory situation. In addition to
prediction-based memory management, we propose a method that can provide the same behavior of
LRU for apps with few training samples or low prediction accuracy. The symbols for the prediction
of app relaunch distance are defined as Table 2.

Table 2: Definition of parameters for relaunch distance

Symbol Definition

A Set of apps that the user can launch on the system
B Set of apps cached in the background by the system
a Apps in set A
ai i-th app of set A
L History of all app launches by user
lt App corresponding to the t-th record in the set L
I(lt) Set of relaunch interval in lt

d(lt) Relaunch interval of lt

d ′(lt) The predicted value of d(lt)
A′ Set of lt ∈ A from which d ′(lt) can be obtained

The relaunch distance of an app indicates how many different types of apps are launched between
the current launch and the relaunch in the future. The app relaunch interval and relaunch distance can
be defined based on the study [21] that modeled the page cache reuse behavior, given that the behavior
of an app being cached in the background is similar to the behavior of pages in memory being cached.
First, the relaunch interval set I(lt) is the set of all app launch records in the relaunch interval of the
user’s app launch record lt and is defined as Eq. (1).

I (lt) = {
(lj, j)

∣∣ t < j < k ∧ lt = lk ∧ lt �= lj} (1)

I(lt) is the set of all app launch records between the launch and the relaunch of the app lt. Therefore,
the relaunch interval includes duplicate launch records of the same app. However, it is difficult to
reflect the behavior of running out of free space with only I(lt) when caching more apps into the main
memory. This is because the size of the set |I(lt)| can become large even if a small number of apps are
run alternately. In order to model the behavior correctly, the types of all launched apps belonging to
I(lt) are defined as the relaunch distance d(lt). d(lt) is defined as Eq. (2).

d (lt) =
{∣∣{lj

∣∣(lj, j) ∈ I (lt)}
∣∣ , if ∃k(t < k ∧ lt = lk)

−1, otherwise
(2)
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For example, assuming the set L = {a3, a1, a4, a1, a2, a4, a3, a1, a2}. The set of relaunch interval
I(l1) of the app launch record l1 = a3 is {(a1,2), (a4,3), (a1,4), (a2,5), (a4,6)}. The |I(l1)| equals 5. On
the other hand, the relaunch distance d(l1) of l1 = a3 is |{a1, a4, a2}|, which equals to 3.

By accurately estimating the app’s relaunch distance, the least likely to-be-launched app near
future can be terminated in a low-memory situation. To this end, each launched app’s relaunch distance
is reset to the predicted distance. The predicted relaunch distance means that the app is likely to be
relaunched after that distance. The relaunch distance of the app is subsequently decreased by the
launch of other apps. Therefore, terminating the app with the largest relaunch distance is equivalent to
terminating an app that is not likely to be launched in the future. The overall app launch speed can be
improved by keeping the apps that are likely to be launched in the near future. However, it is difficult
to make accurate predictions when the app is launched for the first time, or the app has insufficient
launch records for training. This can lead to improperly terminating the app, which negatively affects
the app launch speed.

Algorithm 1: Executed when an app is launched
1: procedure onAppLaunch(lt)
2: if lt ∈ A′ then
3: Compute d (lt) with launch context of lt

4: else
5: Set d (lt) as 0
6: end if
7: Relaunch distance of lt ← d (lt)

8: for each a ∈ {a|a ∈ B, a �= lt} do
9: Decrement the relaunch distance of a by 1
10: end for
11: end procedure

M2ARP manages the relaunch distance for apps that are difficult to predict so that the manage-
ment behavior is the same as LRU. The initial relaunch distance of those apps is set to 0. Subsequently,
the relaunch distance is decreased by one each time a different type of app is launched. This is
equivalent to updating the relaunch distance according to Eq. (2). If the predicted relaunch distance
of all apps in the system is set to 0, then it works the same as LRU.

Algorithm 1 describes how M2ARP uses the relaunch distance to terminate apps with a low
likelihood of being launched in the near future and perform main memory management. Additionally,
Algorithm 1 describes a method that can provide prediction performance similar to the LRU method
in cases where the currently launched app has insufficient launch history to achieve a high prediction
accuracy. The algorithm is executed on each app launch. The set A′ of Algorithm 1 is defined as Eq. (3).

A′ = {a|a = lj ∧ d
(
lj

) ≥ 0} (3)

As in line 2, it is checked whether lt is included in A′. If it is included, d ′(lt) is calculated through
the prediction method, as in line 3. Otherwise, d ′(lt) is set to 0 by the LRU fallback mechanism, as in
line 5. As in lines 8–10, each relaunch distance is decreased by one for apps cached in the background.
In such a manner, the apps with the largest absolute relaunch distance are terminated in the case of
a low-memory situation. M2ARP can efficiently perform memory management by considering both
predictable and non-predictable apps altogether.
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3.3 Prediction of App Relaunch Distance
M2ARP adopts the long short-term memory (LSTM) [22] model to analyze the user’s app usage

pattern and predict the app’s relaunch distance. Our proposed M2ARP’s LSTM model differs from the
LSTM model proposed in the next app prediction studies in that our proposed LSTM is a nonlinear
regression analysis that predicts the relaunch distance of the currently launched app, while previous
studies are multiclass classification analyses that predict the probability of the next app to be launched.
The parameters for the LSTM model are defined in Table 3. Some of the parameters are from the
previous design [15]. LSTM was originally proposed to address the vanishing gradient problem of
recurrent neural networks. Through its memory or forget gate structures, the LSTM can learn the
long short-term patterns of data better than the existing neural networks.

Table 3: Definition of parameters related to long short-term memory

Symbol Definition

t Time at which an input vector is fed to an LSTM
xt Input vector to an LSTM at time t
vapp (lt) Vector to represent an app
ht Output vector of LSTM at time t
σ Sigmoid activation function
tanh Tangent hyperbolic activation function
ft Forget gate function at time t to control the amount of discarded stored data
ct Memory cell to store data in LSTM at time t
gt Input gate function at time t to generate data to be stored in ct

it Input gate function at time t to generate data to be stored in ct

ot Output gate function at time t to generate data to be stored in ct

wxf
, wxg , wxi , wxo Vector weighted to xt in functions ft, gt, it, ot, respectively

whf
, whg , whi , who Vector weighted to ht in functions ft, gt, it, ot, respectively

whl
Vector weighted to ht in function lstm(xt)

bf , bg, bi, bo Bias constant for functions ft, gt, it, ot, respectively
bh Bias constant for function lstm(xt)

The goal of the LSTM model adopted in M2ARP is to minimize the difference between d(lt) and
d ′(lt) for L, the actual relaunch distance, and the predicted relaunch distance by the model, respectively.
d ′ (lt) is determined as the output of the LSTM model. However, if the relaunch distance cannot be
determined by the model, e.g., no previous usage data for an app, it should be prevented from being
reflected in the training phase of the model. Therefore, we propose a loss function called selective
mean squared error (SMSE) as in Eq. (4).

SMSE = 1
|L|

∑|L|

t=1
(d ′ (lt) − d (lt))

2 , where d ′ (lt) =
{

lstm (xt) , if lt ∈ A′

d (lt) , otherwise
(4)
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The input vector xt is composed of vapp (lt), which is the one-hot encoded vector for each launched
app lt. The vector for the launched app is defined as Eq. (5).

vapp (lt) = {
vt0

, vt1
, . . . , vtj , . . . , vtm−1

}
, where vtj =

{
1, if lt ∈ aj

0, otherwise
(5)

The output layer of the LSTM model consists of a dense layer for generating d ′(lt) from the outputs
of LSTM layers. The dense layer generates a weighted sum of the output vectors ht from all LSTM
neurons in the previous layer, which is represented as Eq. (6). The output value ht of the i-th LSTM
neuron is hti .

lstm (xt) =
∑n−1

i=0
whi , hti + bh (6)

The input layer and hidden layer of the LSTM model have a fully connected structure of n LSTM
neurons. As in (7)–(12), each LSTM neuron consists of forget gate f t, input gate gt and it, memory cell
ct, output gate ot, and each neuron’s output ht.

ft = σ
(

xtwxf
+ ht−1whf

+ bf

)
(7)

gt = tanh
(
xtwxg + ht−1whg + bg

)
(8)

it = σ
(
xtwxi + ht−1whi + bi

)
(9)

ct = ft ◦ ct−1 + it ◦ gt (10)

ot = σ
(
xtwxo + ht−1who + bo

)
(11)

ht = ot ◦ tanh (ct) (12)

When training the LSTM model, the BPTT algorithm [23] is used to create a feed-forward network
by unfolding the LSTM model as much as the length of the data to be learned at one time, and then the
algorithm updates the network parameters using the backpropagation algorithm. The LSTM model is
trained to minimize Eq. (4). Therefore, the model can predict the relaunch distance, enabling efficient
app termination in a low-memory situation.

4 Performance Evaluation

4.1 Dataset Preparation
In order to evaluate the performance of the M2ARP proposed in this paper, we used the Tsinghua

app usage dataset [24] from real-world app usage tracking records. The dataset is collected for about
seven days of app usage records from 1000 users. The user ID, app launch timestamp, and app ID
were extracted for performance evaluation. The relaunch distance is calculated through Eq. (2) in
preparation for training the LSTM model of M2ARP. As a data preprocessing, algorithm 2 describes
the process of calculating the relaunch distance from the dataset. The relaunch distance can be
calculated from the app launch history dataset. This is done by searching through the history after
each app launch record. If there are no further relaunches after a given launch record, the record is
marked separately to prevent the prediction model from learning.

The list of relaunch distances to add to the dataset is initialized, as shown in line 2. The relaunch
distance for each user in the dataset is calculated as shown in line 3. The app launch records for each
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user are extracted as in line 4, and the relaunch distance for each app launch record is calculated
thereafter, as in lines 5–12. The list of future launched apps is generated as in line 6. If the app is
relaunched in the future, as in lines 7–8, the distance is added to the relaunch distance list; otherwise,
−1 is added to the list, as in line 10. Finally, the list of relaunch distances in the dataset is updated, as
shown in line 14. The dataset is used for smartphone-based benchmarks.

Algorithm 2: Relaunch distance generation
1: procedure compute Relaunch Distance (dataset)
2: relaunch_dist_list ← ∅

3: for each user in users from dataset do
4: L ←app usage sequence of user from dataset
5: for t ← 0 to |L| − 1 do
6: future_usage ← {lk|k > t}
7: if found lt in future_usagethen
8: append relaunch distance to relaunch_dist_list
9: else
10: append −1 to relaunch_dist_list
11: end if
12: end for
13: end for
14: insert relaunch_dist_list to dataset
15: return dataset
16: end procedure

4.2 Model Preparation
The M2ARP’s model is implemented to predict the relaunch distance of an app that just launched.

The LSTM model operates by first generating a one-hot encoded vector of an app when it launches.
This vector is fed to the model’s first layer, which serves as the input for the model. The input vector
then goes through one or more LSTM layers. These LSTM layers analyze the sequence of app launches
and extract relevant information. The last LSTM layer passes the output to a fully connected layer.
It generates abstract information from the previous layers by reducing the number of neurons by half
of the previous layer. We place the last layer composed of a single neuron which takes the abstracted
information from the previous layer. Additionally, we place a dropout layer with a ratio of 0.2 between
each layer to prevent overfitting. Finally, we use the SMSE loss function in Eq. (4) to train the model
and the Adam optimizer as an optimizer.

To decide which parameters for the model to use, we measure the prediction performance by
varying the number of neurons in the LSTM neural network. We implement the LSTM model using
Tensorflow [25] and Keras [26]. We trained the model with the number of neurons in the first layer
varying from 32, 64, 96, and 128 and the number of LSTM layers varying from 2 to 3. We set the
maximum training epoch to 600 and the batch size to 1. Every LSTM layer for the model is set to
stateful, with input timestep to 1. After evaluating the performance of different configurations, we set
to use 2 layers and 128 neurons as the first layer.

The performance impact of the LSTM model is also considered when selecting the model
parameters in addition to the model losses. We measured the execution time of the LSTM model on the
Android OS-based mobile device shown in Table 4 [27]. The model was converted to a Tensorflow Lite
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[28] model and deployed into the Android open-source project (AOSP) [29] framework. The number
of LSTM neurons varied in the range 32, 64, 128, 256, and 512, and the time taken to perform the
prediction was measured. The LSTM model’s average prediction time is shown in Table 5.

Table 4: Target device specification

Symbol Definition

Model Google Pixel 3
Processor Qualcomm snapdragon 845
Memory 4GB LPDDR4X SDRAM
OS Android open-source project 9 Pie

Table 5: LSTM model execution time

Neurons 32 64 128 256 512

Time 1 ms 1.5 ms 2 ms 4 ms 6 ms

According to the execution results, it tends to increase as the number of neurons in the network
increases. However, considering that the app launch time varies from hundreds of milliseconds to
thousands of milliseconds, the relaunch prediction overhead of the model is negligible, with the time
difference between the lowest and highest number of neurons being only 5 ms.

4.3 Smartphone-Based Benchmark
In order to compare the performance of the proposed M2ARP and the existing method in real

devices. We used the LRU method as a baseline, and we used the device in Table 4 and the Tsinghua
app dataset as the performance evaluation environment. Due to the excessive evaluation time on a
real device, we chose a dataset from a randomly selected user. The user id 8, which we used for the
benchmark, contains 2601 usage records among 93 different apps. Since the dataset does not provide
any information on which application the user actually used, the application ID and its app category
data were used to match the Google play store apps. The app usage count and the Google play
store’s app popularity by category were investigated to match the apps in order. We compared the
performance of M2ARP with LRU and an optimal method. The optimal method uses the actual
relaunch distance that was computed from the dataset. We evaluated the average launch time and the
hit ratio for each method. The hit ratio is computed as the hit count divided by the total number of
launches. The hit count increases when the launched app is in the cached app list.

The average launch time of the apps according to the real-world usage history is shown in Fig. 2.
The existing LRU method and the proposed M2ARP method, and the optimal method was measured.
The performance measurement results show that the LRU method has an average app launch time of
957.6 ms, and the M2ARP method shows an average launch time of 910.9 ms, resulting in a reduction
of 4.9% in average app launch time. The optimal method achieves the best performance with an average
launch time of 893.1 ms, resulting in a reduction of 6.7% compared to the LRU method.

As the next step, we measured the hit ratio of apps that were launched from the cached app list
of the Android frameworks. The existing LRU method and the proposed M2ARP method, and the
optimal method were measured. The hit ratio of each method is shown in Fig. 3. The result shows
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that the hit ratio of the cached app launches is 59.5%, 60.6%, and 61.6% for the LRU, M2ARP, and
Optimal methods, respectively. In other words, the M2ARP method shows an improvement on an
average hit ratio of 1.9% and the Optimal method of 3.6%. The results in Figs. 2 and 3 support the
hypothesis that the use of relaunch distance can contribute to the increased hit ratio of the cached app
launches, thus resulting in faster app launches.

Figure 2: Comparison of average launch time

Figure 3: Comparison of hit ratio of the cached app list

4.4 Simulation-Based Benchmark
To further investigate the impact of the relaunch distance, we conducted a simulation-based

benchmark. We designed a simulation that mimics the behavior of apps cached in the main memory
under a smartphone-based environment. The purpose of this benchmark is to analyze how the
relaunch distance contributes to the improvement in the hit ratio that apps launch from the cached app
list. Unlike the smartphone-based benchmark as in Section 4.3, the simulation assumes that all apps
have the same main memory footprint as it is difficult to extract the exact footprint from the runtime
environment. We conducted the benchmark for the three methods which are used in the smartphone-
based benchmark. We measured the hit ratio of apps launched from the cached list for each method
by varying the number of apps m that can reside in the main memory. This allowed us to isolate the
impact of relaunch distance on the launch hit ratio from the various system factors that can potentially
affect the hit ratio of app launches.

As shown in Table 6, the simulation-based benchmark shows that the use of the relaunch distance
(M2ARP and Optimal) exhibits superiority over the LRU method of all cases for m. The hit ratio
improves as the available main memory space increases. The optimal method shows the highest hit
ratio for all cases of m, with the hit ratio reaching up to 0.88 when the main memory can cache up
to 15 apps. This indicates that we can improve the app launch hit ratio if we approximate the actual
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relaunch distance. The hit ratio of the LRU and M2ARP methods also supports this observation.
The M2ARP approximates the relaunch distance of an app with LSTM model by analyzing past
app launch patterns. As we mentioned in Section 3.2, the M2ARP method with all the relaunch
distances of an app set to 0 is equivalent to the LRU method. Therefore, we can safely say that the
LRU method is the farthest approximation of the relaunch distance among the three we compared.
Fig. 4 illustrates the comparison of app launch hit ratio in varying m. According to the figure, the
performance difference between the three gets significant when the value of m gets smaller. These
results show that the relaunch distance can be more effective in environments with more significant
physical main memory constraints.

Table 6: App launch hit ratio@m for all methods

m LRU M2ARP Optimal

5 0.50 0.60 0.67
6 0.58 0.66 0.73
7 0.66 0.72 0.77
8 0.71 0.75 0.80
9 0.74 0.77 0.81
10 0.76 0.79 0.83
11 0.78 0.81 0.84
12 0.80 0.82 0.85
13 0.81 0.83 0.86
14 0.82 0.84 0.87
15 0.83 0.85 0.88

Figure 4: Comparison of app launch hit ratio@m

In conclusion, the simulation-based benchmark conducted demonstrates that the relaunch dis-
tance can have a significant impact on the improvement in hit ratio for app launches from the cached
app list. By combining the results in Sections 4.3 and 4.4, the M2ARP contributed to the enhancement
of the overall launch performance of apps in smartphones.
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5 Conclusion

The increasing demand for main memory space on smartphones due to more resource-intensive
apps calls for efficient software-based memory management techniques. The commonly used LRU-
based app termination to free up memory space does not take into account the frequency of app usage
and can negatively impact the user experience by terminating frequently used apps. There are studies
that aim to analyze the smartphone app usage patterns of users in order to predict the next app to be
launched. However, most existing studies only consider the probability of the next app being launched.
They are unable to predict the likelihood of an app being launched in the near future or to analyze the
correlation between app launch records.

In this paper, we proposed M2ARP to predict applications’ relaunch distances and utilize them
for app termination of memory management. Relaunch distance is a measure of the likelihood that
an app will be launched in the near future, so if it is accurately predicted, then OS can keep apps with
a high likelihood of being launched in main memory to improve overall app launch speed. M2ARP
analyzes the user’s app usage history and predicts the app’s relaunch distance. In addition, unlike the
existing studies that had to make predictions despite the insufficient data for specific apps, M2ARP
combines both prediction and LRU behavior such that it includes an LRU fallback mechanism on
apps with insufficient training samples or inaccurate launch prediction. As a result of performance
evaluation on the smartphone-based benchmark, the proposed system showed that the overall app
launch time was reduced compared to the existing LRU method.

M2ARP showed promising results that the user’s perceived app launch performance can be
improved by the use of relaunch distance. However, it was assumed that the user patterns in the
past usage records and the future usage are the same. In real-world scenarios, user patterns may
vary, and this could impact the model’s prediction performance. Additionally, this study differs from
previous studies in that it collects learning data from a single user, which limits the data that can be
learned. There are several general models for the next app prediction works in the literature that can
learn general patterns from various user data. In the future, we plan to improve the performance of
predicting relaunch distance by studying a model that extracts universal patterns from the usage data
of multiple users. This will allow for a more generalizable model that can better train and predict
relaunch distances from a much larger scale user dataset.
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