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Abstract: Statistical distributions are used to model wind speed, and the two-
parameters Weibull distribution has proven its effectiveness at characterizing
wind speed. Accurate estimation of Weibull parameters, the scale (c) and
shape (k), is crucial in describing the actual wind speed data and evaluating
the wind energy potential. Therefore, this study compares the most common
conventional numerical (CN) estimation methods and the recent intelligent
optimization algorithms (IOA) to show how precise estimation of c and k
affects the wind energy resource assessments. In addition, this study conducts
technical and economic feasibility studies for five sites in the northern part
of Saudi Arabia, namely Aljouf, Rafha, Tabuk, Turaif, and Yanbo. Results
exhibit that IOAs have better performance in attaining optimal Weibull
parameters and provided an adequate description of the observed wind speed
data. Also, with six wind turbine technologies rating between 1 and 3 MW,
the technical and economic assessment results reveal that the CN methods
tend to overestimate the energy output and underestimate the cost of energy
($/kWh) compared to the assessments by IOAs. The energy cost analyses show
that Turaif is the windiest site, with an electricity cost of $0.016906/kWh. The
highest wind energy output is obtained with the wind turbine having a rated
power of 2.5 MW at all considered sites with electricity costs not exceeding
$0.02739/kWh. Finally, the outcomes of this study exhibit the potential of
wind energy in Saudi Arabia, and its environmental goals can be acquired
by harvesting wind energy.

Keywords: Weibull distribution; conventional numerical methods; intelligent
optimization algorithms; wind resource exploration and exploitation; cost of
energy ($/kWh)

1 Introduction

The rising demand for sustainable energy sources, such as solar and wind, has accelerated the
pace of integrating renewable resources into power grids. Power extraction from wind is inexhaustible,
and many countries started to embrace this technology. However, the uncertain nature of wind leads
to variations in wind power generation, which causes severe obstacles to the power system operators
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attempting to maximize its penetration levels. For instance, wind power variability influences power
systems’ reliability, stability, operation, design, and cost of power systems [1,2]. Therefore, to reduce
the risk of ambiguity and to better analyze the potential of wind energy at any location, it is essential to
have accurate assessments of wind energy and an understanding of the distribution of wind speeds [3].

The frequency distribution of the wind speed is required to be thoroughly comprehended to
provide an accurate assessment of the wind energy potential. Different Probability Density Functions
(PDF) have been used in the literature to model wind speed, such as three parameters Weibull [4],
Rayleigh [5], Lognormal [6,7], Gamma [6,8,9], Inverse Weibull [10], Generalized Gamma [11], Kappa
[11], Burr [7], Logistic [6,12], inverse Gaussian [7], Beta [5], etc. The two parameters Weibull PDF is
the most famous distribution worldwide to describe wind speed frequencies and assess the wind speed
potential. The Weibull distribution is adaptable, has just two parameters, simple to estimate, and has
a closed-form formulation [5,13]. Therefore, Weibull distribution is in use in this paper.

Weibull distribution is defined by its two parameters: scale (c) and shape (k). Therefore, attaining
the optimal combination of c and k is essential for successful fitting accuracy and evaluating wind
energy. Several methods have been used to estimate these parameters, such as the Conventional
Numerical (CN) methods, including the Maximum Likelihood Method (MLM) [9,14,15], Method
of Moment (MOM) [6,9,14], Energy Patter Method (EPM) [14,15], Power Density Method (PDM)
[16,17], Empirical Method (EM) [14,15], and Graphical Method (GM) [18]. Recently, Intelligent
Optimization Algorithms (IOA) have been applied by researchers to evaluate their performance in
tuning Weibull parameters and assess the wind energy potential. Such methods include Particle Swarm
Optimization (PSO) [9,14,16], Genetic Algorithms (GA) [11,16,19], Cuckoo Optimization Algorithm
(COA) [6,9], Differential Evolution (DE) [12,16], and Batt Algorithm (BA) [9].

1.1 Related Work
For instance, the study in [20] conducts a technical assessment in two sites in Galati county,

Romania. The wind speed data are characterized using Weibull and Rayleigh distributions, where the
MOM is used to estimate their parameters. Study results reveal that the Weibull distribution best fits
the wind speed in the two sites, while the Rayleigh distribution generates significant fitting errors.
Bidaoui et al. [21] employ Weibull and Rayleigh distributions to evaluate the potential of wind energy
in five remote areas in Northern Morocco, namely Larach, Tangier, Tetuan, Al-Hocima, and Nador.
The Weibull distribution shows the superiority in accurately fitting the observed wind speed data at
all the considered sites with low Root Mean Square Error (RMSE) values ranging between 0.0022
to 0.0004 m/s. The authors in [22] utilize Weibull distribution to analyze the wind speed in the Al-
Salman site, Iraq. The shape and scale parameters of the Weibull PDF are estimated using the MLM.
Results show that c and k values varied from 1.8 to 3.2 and from 5.93 to 8.3 m/s over various periods,
respectively. On the other hand, results indicate that the average wind speed at 50 m above ground level
(AGL) is 5.93 m/s.

Weibull distribution has been utilized in the techno-economic feasibility analysis of wind energy
generation to evaluate the wind temporal and spatial variability and justify wind energy projects. The
technical analyses use Weibull distribution to determine the best wind turbine technology for a specific
location, wind power density, yearly energy output, and capacity factor (CF). In addition, Weibull
distribution helps the economic assessments in determining the energy cost and the payback period
of wind projects. For instance, the authors in [23] utilize EM, MLM, MLMLM, EPM, and GM to
estimate Weibull parameters. These parameters are employed to determine the energy cost, CF, yearly
energy yield, and wind power density for Hawke’s Bay in China. Statistical analysis shows that at
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30, 60, and 80 m AGL, the yearly wind speeds are 5.04, 5.84, and 6.05 m/s, respectively, while the
average power densities are 184.0, 231.5, and 307.5 W/m2. The lowest energy cost based on 2.3 MW
wind turbine generators (WTG) is 0.056 US$/kWh. In [24], the authors also evaluate the potential
of wind power generation in the central region of Thailand. Weibull distribution is used to carry out
techno-economic assessments and accurate feed-in-tariff of a 15 MW wind farm. Results exhibit that
the annual wind speed at the study location is 5.8 m/s at 120 m AGL, while annual energy production
(AEP) and CF for the 15 MW power plant are speculated to be 41 GWh/year and 30%, respectively.
Finally, the Levelized Cost of Energy (LCOE) is determined at 0.093 US$/kWh.

In addition, wind energy for electricity is assessed in the Republic of Djibouti by authors in [25].
Wind speed data were collected at five meteorological stations from 2015 to 2019. Weibull distribution
is used to evaluate the economic and technical feasibility of five wind farms with a capacity of 450 MW.
The mean wind speed is between 5.52 and 9.01 m/s for the selected five locations. The estimated
annual electrical energy output from the proposed wind farms is 1739 GWh, with LCOE varying
from 6.94 to 13.30 US cents/kWh. Adnan et al. [26] use GM, EM, EPF, and MLM to obtain the two
parameters of Weibull distribution in the Umerkot and Sujawal districts of Pakistan. Results show
low statistical errors with EM, EPF, and MLM. Accordingly, the optimal combination of the shape
and scale parameters are used to analyze the energy production of various wind turbine technology
with rated power ranging between 600 to 2500 kW. Regarding the wind turbines, Nordes N90/2500
produces the most wind energy in Umerkot and Sujawal, with associated energy costs of 0.074 and
0.056 $/kWh, respectively. From the above studies, however, the literature lacks a study that compares
the performance of CN and IOA to assess the technical and economic feasibility of wind energy
production. Younis et al. [27] examine the efficacy of various WTG when used in various Sultanate
of Oman locations. The authors calculate internal and external factors and show how they influence
small-scale energy WT using a fuzzy analytical hierarchy process technique. According to the research,
the small WTG technology has the potential to be useful for irrigation, homes, schools, and colleges.

Saudi Arabia has roughly 16% of the total world’s oil reserves and is the largest oil producer and
exporter of the total petroleum liquid [28]. On the other hand, Saudi Arabia has the potential for
wind and sun energy. For wind energy, the process of wind data recording and collection in Saudi
Arabia began in 1970 [29]. The first work concerning wind data was done by Ansari et al. [30].
Rehman et al. [29] evaluated the potential of wind energy by assessing the cost of wind power utilizing
three WTG at 20 locations in Saudi Arabia. The results showed that the minimum cost of kWh utilizing
2500, 1300, and 600 kW WTG was 0.0234, 0.0295, and 0.0438 US$/kWh at Yanbo, while the maximum
appeared in Nejran with values of 0.0706, 0.0829, and 0.121 US$/kWh. In addition, Rehmana et al. [31]
studied the potential of wind for pumping water in isolated areas not connected to the main power
grid of Saudi Arabia. Results point out that a wind turbine with a size of 2.5 kW is the most suitable
for powering the water pump at all the selected sites. It is also found that the cost of water pumping at
the three locations is as low as 1.28 US cents/m3.

1.2 Motivation and Contributions
Most wind energy assessments in Saudi studies use CN methods to estimate Weibull parameters

and accordingly evaluate the techno-economic assessments of wind energy production. Nevertheless,
the advent of the IOAs revealed their capacity to obtain optimal Weibull parameters and represent
wind speed data more accurately, thus, more precise wind energy evaluation. Therefore, the main
objective behind this research is to conduct technical and economic feasibility studies for five sites in
northern Saudi Arabia. This study proposes six wind turbine technologies with different wind speed
characteristics and rated powers. The primary contributions of this research work are as follows:
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1. Develop a framework to calculate the characteristics of the Weibull distribution to describe
the wind speed at five different locations in Saudi Arabia: Aljouf, Rafha, Tabuk, Turaif, and
Yanbo.

2. Compare the performance of five CN methods and five IOAs in obtaining Weibull parameters.
The CN methods used in this study are LSM, MLM, MOM, EM, and EPFM, while IOAs are
PSO, GA, Differential Evolution (DE), COA, and Social Spider Optimization (SSO). Results
demonstrate that IOAs outperform CN approaches in determining the best parameters,
providing a trustworthy account of the actual frequency of wind speed.

3. Evaluate the energy output and recommend the optimal wind turbines for the selected sites.
This study analyzes the installation of six wind turbine technologies rated between 1 and 3 MW.

4. Estimate the cost of energy to justify the wind turbines’ economic viability over their life span.
5. Even though this work aims to characterize wind speeds in Saudi Arabia, the established

framework can be used to describe wind speeds in many geographical areas with varied wind
regimes.

The paper is organized as follows: Section 2 explains the framework of the study and wind speed
data source. In Section 3, Weibull PDF is presented together with the estimation approaches: CN and
IOA. Section 4 describes the statistical indicators used to evaluate the accuracy of the study models.
Section 5 discusses the wind power extrapolation at hub height, while Section 6 exhibits the economics
analysis of wind turbines. The discussions and results of the comparison are presented in Section 7.
Finally, the study concludes in Section 8.

2 Methodology

This section provides a complete explanation of the methodology employed in this research. Ini-
tially, the problem description and framework of the proposed methods are described. An introduction
about Weibull distribution and CN and IOA methods are then presented, along with the technical and
economic assessment of the used procedure.

2.1 Problem Description
The main goal of this study is to present a framework for assessing the wind energy potential at five

locations in northern Saudi Arabia, namely Aljouf, Rafha, Tabuk, Turaif, and Yanbo. The proposed
framework evaluates the performance of five CN and IOA estimation methods in obtaining the two
parameters of Weibull distribution. In addition, a comparative analysis is conducted using technical
and economic feasibility studies to assess the wind energy resources at the considered sites. Therefore,
the proposed framework is shown to be accurate, reliable, simple to implement, and can help evaluate
wind energy in different geographic areas.

2.2 Study Framework
This feasibility study conducts a comparative analysis between five CN and five IOA methods to

estimate Weibull distribution parameters. Fig. 1 presents the overall framework adopted. The main
steps of the proposed framework are as follows:
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Step 1: Data collection: the wind speed data are initially collected. Afterward, the data preprocess-
ing techniques are applied to organize the data by looking for missing values, noisy data, and other
abnormalities before running the estimation methods.

Step 2: Statistical characteristics: the main objective of this step is to provide insights into the wind
regimes in each site and approve the performance of the proposed algorithms.

Step 3: Weibull parameters estimation: the CN and IOA methods are applied to estimate c and k
of the Weibull distribution.

Step 4: Building the estimation models: by using the best parameters mentioned in Step 3, ten
models are generated for each considered site.

Step 5: Results comparison: the models generated by CN and IOA methods are evaluated utilizing
RMSE, Coefficient of Determination (R2), and Mean Absolute Error (MAE).

Step 6: Annual energy: based on the comparison in Step 5, the best Weibull PDF function findings
are used to estimate the annual energy produced by wind turbines.

Step 7: Energy cost: the feasible energy cost per kilowatt hour (kWh) for the chosen wind turbine
is then calculated using the annual energy estimate.

The subsections below provide a detailed explanation of each step.

Figure 1: The framework of the study
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2.3 Wind Data Source
The wind data used in this study is obtained from the National Climatic Data Center, USA,

Department of Commerce [32]. In this study, the wind speed regimes of five Saudi areas located in
the northern parts are investigated, namely Aljouf, Rafha, Tabuk, Turaif, and Yanbo. These locations
are chosen for the wind analysis primarily because they are spread out geographically in the northern
parts of Saudi Arabia, where the wind speed is predominant. To accomplish a very accurate assessment
of wind power, avoid uncertainty in the wind, and justify the economic feasibility of wind deployment,
long-term averaged-daily wind speed data are considered in this study covering 40 years (1977–2017).
Table 1 exhibits the geographic information and anemometer height at each site. Fig. 2 displays the
Saudi Arabia wind speed map, while Fig. 3 shows the monthly mean of wind speed data at the five
study locations.

Table 1: Characteristics and geographic features of five sites

City Region Latitude (N) Longitude (E) Elevation (m) Station height (m)

Aljouf North +29.785 +040.100 +0689.2 7
Rafha North +29.626 +043.491 +0449.3 12
Tabuk Northwest +28.365 +036.619 +0777.5 9
Turaif North +31.693 +038.731 +0854.4 8
Yanbo Northwest +24.144 +038.063 +0007.9 10

Figure 2: Map of Saudi selected sites. This map is obtained from Global Wind Atlas. Please visit https://
globalwindatlas.info

https://globalwindatlas.info
https://globalwindatlas.info
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5

Figure 3: Monthly mean of wind speed at the study sites

2.4 Wind Speed Characteristics
Some statistics are calculated at the measurement heights to comprehend and analyze the wind

speed data. Table 2 lists the statistics values, including Mean, Variance, Standard Deviation, Skewness,
Kurtosis, and Maximum wind speed value. The Mean value tells about the central tendency of the wind
speed data. Variance and Standard Deviations (SD) provide information about how observed wind
speed deviate from the central value. In addition, to understand the pattern of the observed frequency
distribution, Skewness and Kurtosis are utilized. The symmetrical characteristic of the wind speed
data is measured by Skewness, while the steep degree of data is described by the Kurtosis value [12].

Table 2: Statistical characteristics of wind speed at study sites

City Aljouf Rafha Tabuk Turaif Yanbo

Mean (m/s) 7.525934 7.387378 5.511694 8.152232 7.393027
Variance (m/s) 11.56876 10.36447 6.249976 10.07062 7.903882
SD (m/s) 3.401289 3.21939 2.499995 3.173425 2.811384
Skewness 0.993003 0.739382 1.012287 0.828774 0.770616
Kurtosis 4.82901 3.636315 5.92581 4.383357 3.859248
Maximum (m/s) 31 25.3 25.2 27.1 23.7

3 Two-Parameters Weibull Model

Weibull PDF showed its popularity worldwide to represent the wind speed frequency distribution.
Weibull distribution proved its efficiency in representing wind data as it provides a good fit for the wind
speed data at the ground surface and upper layers [33]. Weibull distribution is characterized by its PDF,
f (v), and its Cumulative Distribution Function (CDF), F (v), as follows [34]:
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where, v: wind speed (m/s), c: Weibull scale parameter (m/s), and k: Weibull shape parameter.

3.1 Conventional Numerical Estimation Methods
The following subsections explain the CN methods used to estimate the shape k and the scale c

parameters of the Weibull PDF [35–37].

3.1.1 Least Square Method

The wind speed data should be represented in a cumulative frequency distribution arrangement
to use LSM [38]. The logarithmic transformation is fundamental to LSM. Therefore, the linearization
of Weibull distribution, for example, is accomplished by taking the logarithm of its CDF to obtain the
following expression [39]:

ln [−ln (1 − F (v))] = k ln (v) − k ln (c) (3)

This equation represents a straight line as follows: y = ax + b, Where: y = ln [−ln (1 − F (v))],
a = k, x = ln (v) , b = −k ln (c).

By linear regression formula, the least square estimator of Weibull distribution parameters k and
c are as follows:
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3.1.2 Maximum Likelihood Method

The MLM is known as the likelihood function of the wind speed data [35]. The MLM can be solved
by numerical iteration to compute the two Weibull parameters. According to maximum likelihood
estimation theory, the Weibull parameters are calculated from Eqs. (6) and (7) [40]:
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(7)

After determining the value of k in Eq. (6) through a numerical iteration algorithm, such as
Newton Raphson, the value of c can be computed from Eq. (7).
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3.1.3 Method of Moment

The MOM uses the mean of the observed wind speed V and the standard deviation of the wind
data σ to estimate the Weibull parameters [36]. The Weibull parameters k and c are computed by the
following equations [36]:

c = V

�
(
1 + 1

k

) (8)

k =
(

0.9874V
σ

)1.0983

(9)

where: V = ∑n

i=1 (f (vi) . vi), Variance = ∑n

i=1 f (vi) .
(
vi − V

)2
, Standard Deviation: σ = √

Variance,
and n is the number of wind speed bins. � (x) is the Gamma function and for random variable z, it is
defined as � (z) = ∫ ∞

0
vz−1 exp (−v) dv.

3.1.4 Empirical Method

The EM is a special case of the MOM [35]. The Two Weibull parameters are estimated in this
method by using the following equations [41]:
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3.1.5 Energy Pattern Factor Method

The EPFM is generated from the average data of the wind speed and is represented as follows [36]:
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where Epf is the energy pattern factor. As the Epf is determined, the Weibull parameters k and c are
estimated from Eqs. (13) and (14).

k = 1 +
(
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3.2 Intelligent Optimization Algorithms
The metaheuristic optimization algorithms are nature-inspired techniques. The examined algo-

rithms include PSO, GA, DE, COA, and SSO. With these algorithms, this study attempts to minimize
the difference between the measured frequency distribution of the wind speed and theoretical values
generated by the considered PDFs. Hence, the objective function is as follows:

Fitness (vi) = 1
2

n∑
i=0.5

(fm (vi) − fPDF (vi, θi))
2 (15)

where fm (vi) is the measured frequency distribution of wind speed class, fPDF (vi, θi).
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Fig. 4 depicts the process of optimizing the Weibull parameters from the scope of the PSO
algorithm. The c and k are generated, and their values evolve until we obtain the lowest error
values, represented by Eq. (15). The optimization algorithms are compared to estimate the Weibull
parameters. The outcomes of the algorithms are considered after 50 runs, each with 1000 iterations.
The median values of the 50 runs were used to select the final fitness values. Fig. 7 displays the
convergence rates of the algorithms to obtain the optimal set of Weibull parameters in the selected
sites.

Figure 4: The process of optimizing Weibull parameters from the scope of PSO

4 The Goodness of Fit Tests

The accuracy and efficiency of the considered numerical and optimization methods to show how
close the theoretical frequency distribution is to the empirical frequency distribution are evaluated
using some statistical indicators: RMSE, R2, and MAE [42].

RMSE =
√√√√ 1

N

n∑
i=1

(vi − wi)
2 (16)
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where: vi is the actual wind speed data, wi is the estimated data using the study distribution, V is the
mean value of vi, and the n is the number of all wind bin classes. RMSEmeasures the deviation between
actual values and forecasted values [43], and R2 is the proportion of variation of the predicted values
generated by PDF models and the observed wind speed data variation. Finally, MAEdetermines the
average error between empirical and theoretical PDFs considered in this study.

5 Wind Power Extrapolation at Turbines Height

Wind speeds are collected at station height while the wind turbines are functioning and designed
to operate at hub heights (h). That is, the wind speed values increase as height increases from the
anemometer level. Therefore, through employing the power law expression, Eq. (19), the wind behavior
at different heights can be captured and comprehended [44].

v
vo

=
(

h
ho

)α

(19)

where v and vo are the wind speed at the wind turbine hub height and station height (m/s), respectively.
h is the hub height in meters, while ho represents the station height. α represents the surface roughness
coefficient.

The Weibull distribution parameters values kho and cho are calculated at the station’s height (ho)

AGL. To alter kho and cho values to any desired WTG heights (kh and ch), the following relations are
used [44]:
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(
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(21)

The value of α is usually unknown. Yet, by attaining the two parameters of Weibull distribution
at station height, the surface roughness coefficient at station height

(
αho

)
at any desired height (αh) can

be calculated utilizing the following equations [44]:

αho = 0.37 − 0.0881ln (cho) (22)

αh = αho/

[
1 − 0.0881x ln

(
h
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)]
(23)

The performance of Wind turbines is subjected to different criteria that are essential to evaluate
their efficiency. CF is a significant criterion since it refers to the overall performance of the wind
turbine over the desired time interval. The energy output Eout over a period (T) can be expressed as
follows [34]:
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where f (v) is the Weibull PDF, Pr is the rated power of the wind turbine, while vc, vr, and vf are the
cut-in speed, rated speed, and furling speed of the wind turbine, respectively. The capacity factor can
be calculated after integrating Eq. (24) to get the following equation [45]:

CF = Eout
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where Erated = T ∗ Prated , is the rated energy of the wind turbine, and for a lifetime of n years, the rated
energy can be computed as follow:

Erated = (n years) (365 day) (24 h) (Prated) (26)

After determining the capacity factor and the rated power of the wind turbine, the output power
of the WTG over its lifetime can be then calculated from the following equation:

Eout = CF × Erated (27)

6 Economic Analysis of Wind Turbines

The energy cost analysis is vital to justify the economic viability of wind turbines over their
life span. The technical assessment (Maximum capacity factor) is insufficient to select the ideal
wind turbine technologies and site. Hence, the minimum cost of energy ($/kWh) provides a reliable
evaluation of the selection process.

Several factors influence the cost of the WTG, including initial investment cost, location, and
operating conditions where the wind turbines are implemented [45]. Prices of wind turbines are set
by manufacturers depending primarily on the rated power of the wind turbines; see Table 3 [45,46].
Usually, for wind turbines with a size greater than 200 kW, the price is between $1000 to $1600 per kW
[45]. Present Value Cost (PVC) is selected in this study to speculate the cost of wind energy production
in the five Saudi sites. The cost of kWh of energy is computed by dividing the PVC values by Eout of
the wind turbine over its lifetime [18,34,45]. The process of accomplishing the cost of energy has been
done by adhering to the following five assumptions:

� Wind turbines’ lifetime (n) is assumed to be 20 years.
� The interest rate (r) and inflation rate (i) are set to be 8% and 6%, respectively.
� The operation, maintenance, and repair cost (Comr) is 25% of the annual cost of the turbine

(machine price/lifetime).
� Scrap or Salvage value (S) is set to be 10% of the turbine price and civil work.
� Investment (I) includes the turbine price plus 20% additional cost for the civil work and other

connections.

Table 3: Describes the characteristic of wind turbines used in this study

WT1 WT2 WT3 WT4 WT5 WT6

Hub height (m) 70 71 67 80 80 80
Rated power (MW) 1 1.65 2 2.5 2.5 3

(Continued)
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Table 3: Continued
WT1 WT2 WT3 WT4 WT5 WT6

Rotor diameter (m) 62 80 80 88 80 90
Cut-in speed (m/s) 3 3 4 3 3 3
Rated speed (m/s) 15 14 16 15 12.5 21
Cut-off speed (m/s) 25 30 25 25 25 25
Price (US $) 1,600,000 2,640,000 3,200,000 4,000,000 4,000,000 4,800,000

Therefore, under previous assumptions, PVC is calculated for each WTG at each site as follows:

PVC = I + Comr

[
1 + i
r − i

] [
1 −

(
1 + i
1 + r

)n]
− S

[
1 + i
1 + r

]n

(28)

7 Results and Discussion

In this study, a comparative analysis is conducted between the performance of five CN and IOA
methods in the accurate estimation of Weibull parameters and in assessing wind energy resources in
five locations in Saudi Arabia. First, the histograms of the observed wind speed frequency distributions
are initially constructed for the considered sites. Next, the c and k are estimated using CN methods and
IOA. After that, the performance of the theoretical PDFs is examined according to the RMSE, R2,
and MAE. The results of the best estimation approach based on both CN methods and IOA are then
compared in assessing the wind energy potential with six wind turbines in all the selected locations.

7.1 Analysis of Weibull PDF Estimation Methods
Fig. 5 shows the Weibull frequency distribution using CN methods and IOA with the original

wind speed data histogram. Comparing the performance of CN methods and IOAs and according to
Tables 4 and 5, which summarize the goodness of fit tests results of theoretical Weibull distributions,
the IOAs outperformed CN methods in obtaining the optimal two-Weibull parameters and in
describing the frequencies of actual wind data. In Table 4, the results of CN methods indicate that
LSM is the least precise method among other approaches, while the best CN estimation methods for
all five sites are ranked as EM, MOM, MLM, and EPFM, respectively.

In Table 5 and Fig. 7, results revealed that COA is the less accurate and the slowest algorithm to
obtain the Weibull parameters. Yet, it performs better in tuning c and k than all CN methods. PSO,
GA, DE, and SSO algorithms have similar performance in estimating Weibull parameters, resulting
in high fitting accuracy. In Aljouf, for example, the RMSE, R2, and MAEare 0.00565, 0.98453, and
0.00429, respectively. Therefore, for CN methods, the scale and shape parameters of Weibull for all
five areas, Aljouf, Rafha, Tabuk, Turaif, and Yanbo, are determined by EM to carry out the technical
and economic assessments and to compare its results with those obtained by SSO. Table 6 lists the
Weibull parameters and PLC attained from EM and SSO at all Saudi sites. Fig. 6 shows the coefficient
of determination values of the Weibull distribution using different models. The R2 values of Weibull
using LSM, EM, PSO, and COA are 0.916643, 0.961082, 0.980825, and 0.980280. This indicates that
the models generated by IOAs are more accurate than CN methods.
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(a) Aljouf

(b) Rafha

(c) Tabuk

5

(d) Turaif

Figure 5: (Continued)
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(e) Yanbo

Figure 5: Histogram of observed wind speed and Weibull PDF using CN methods (left) and IOA (right)

Table 4: Weibull parameters and goodness of fit results using CN methods

Aljouf

c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC
LSM 7.434099 2.16958 0.007496 0.972775 0.005125 0.193265
MLM 7.923815 2.291896 0.00702 0.976122 0.004919 0.187644
MOM 7.910796 2.293257 0.006927 0.976754 0.004874 0.187789
EM 7.910178 2.308859 0.006916 0.976825 0.004893 0.187796
EPFM 7.912037 2.255381 0.007049 0.975926 0.00483 0.187775

Rafha
c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC

LSM 7.261949 2.081876 0.010132 0.951791 0.007187 0.195329
MLM 7.825857 2.300983 0.006573 0.979707 0.004938 0.18874
MOM 7.817703 2.308492 0.006488 0.980229 0.00491 0.188832
EM 7.817037 2.324068 0.006445 0.980493 0.004918 0.188839
EPFM 7.81901 2.272702 0.006679 0.979051 0.004912 0.188817

Tabuk
c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC

LSM 5.087887 1.737512 0.02478 0.831763 0.01511 0.226673
MLM 5.704691 2.140518 0.009659 0.974438 0.006535 0.216592
MOM 5.712004 2.169808 0.009016 0.977727 0.00623 0.21648
EM 5.711959 2.185594 0.008679 0.979362 0.006058 0.21648
EPFM 5.711776 2.124218 0.01005 0.97233 0.006756 0.216483

Turaif
c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC

LSM 8.169236 2.315956 0.014035 0.916643 0.009388 0.184957
MLM 8.610794 2.631643 0.010052 0.95724 0.007456 0.180319
MOM 8.608632 2.677839 0.009692 0.960248 0.007204 0.180341
EM 8.607054 2.692521 0.00959 0.961082 0.007119 0.180358
EPFM 8.618638 2.579415 0.010602 0.952439 0.007795 0.180239

(Continued)
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Table 4: Continued

Yanbo
c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC

LSM 7.810702 2.616236 0.010941 0.957957 0.007568 0.188807
MLM 7.810499 2.628722 0.010934 0.957875 0.007538 0.188913
MOM 7.800983 2.666878 0.01072 0.959512 0.007503 0.189021
EM 7.799564 2.681593 0.010677 0.959831 0.007533 0.189037
EPFM 7.810413 2.5629 0.011317 0.954874 0.007714 0.188914

Table 5: Weibull parameters and goodness of fit results using IOAs

Aljouf

c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC
PSO 7.597983 2.326921 0.005651 0.984531 0.004293 0.191344
GA 7.597974 2.326931 0.005651 0.984531 0.004293 0.191344
DE 7.597983 2.326921 0.005651 0.984531 0.004293 0.191344
COA 7.689729 2.310271 0.005785 0.983786 0.004365 0.190286
SSO 7.597943 2.32665 0.005651 0.984531 0.004291 0.191344

Rafha
c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC

PSO 7.534124 2.360943 0.005226 0.987171 0.004246 0.192087
GA 7.534136 2.36092 0.005226 0.987171 0.004246 0.192087
DE 7.534124 2.360943 0.005226 0.987171 0.004246 0.192087
COA 7.635116 2.364884 0.005408 0.986263 0.004298 0.190914
SSO 7.534601 2.361162 0.005226 0.987171 0.004247 0.192082

Tabuk
c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC

PSO 5.649419 2.424155 0.005643 0.991276 0.00428 0.21745
GA 5.649408 2.424148 0.005643 0.991276 0.00428 0.21745
DE 5.649419 2.424155 0.005643 0.991276 0.00428 0.21745
COA 5.725484 2.498584 0.006228 0.989372 0.004356 0.216272
SSO 5.649196 2.423693 0.005643 0.991276 0.00428 0.217454

Turaif
c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC

PSO 8.182519 2.868632 0.006732 0.980825 0.005634 0.184814
GA 8.182517 2.868657 0.006732 0.980825 0.005634 0.184814
DE 8.182519 2.868632 0.006732 0.980825 0.005634 0.184814
COA 8.170147 2.923615 0.006827 0.98028 0.005737 0.184947
SSO 8.182494 2.868899 0.006732 0.980825 0.005634 0.184814

(Continued)
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Table 5: Continued

Yanbo
c (m/s) k RMSE (m/s) R2 MAE (m/s) PLC

PSO 7.369306 2.769853 0.007983 0.977544 0.006733 0.194036
GA 7.369318 2.769866 0.007983 0.977544 0.006733 0.194036
DE 7.369306 2.769853 0.007983 0.977544 0.006733 0.194036
COA 7.295453 2.704547 0.008257 0.975976 0.006834 0.194923
SSO 7.368835 2.770077 0.007983 0.977543 0.006733 0.194041

Table 6: Two-Weibull parameters at wind turbine heights using EM and SSO results

Site Turbines Weibull, EM Weibull, SSO
c (m/s) k αh c (m/s) k αh

Aljouf WT1 13.32862 2.873364 0.226599 12.92938 2.895841 0.230879
WT2 13.38212 2.877698 0.226941 12.98226 2.90021 0.231228
WT3 13.16574 2.860061 0.22555 12.76842 2.882435 0.22981
WT4 13.84758 2.91469 0.229858 13.4425 2.937491 0.2342
WT5 13.84758 2.91469 0.229858 13.4425 2.937491 0.2342
WT6 13.84758 2.91469 0.229858 13.4425 2.937491 0.2342

Rafha WT1 11.68321 2.759279 0.227858 11.33847 2.803059 0.231777
WT2 11.7282 2.763442 0.228202 11.38288 2.807287 0.232126
WT3 11.54622 2.746505 0.226803 11.20324 2.790082 0.230704
WT4 12.11927 2.798965 0.231135 11.76907 2.843374 0.23511
WT5 12.11927 2.798965 0.231135 11.76907 2.843374 0.23511
WT6 12.11927 2.798965 0.231135 11.76907 2.843374 0.23511

Tabuk WT1 9.760799 2.661637 0.26121 9.677132 2.952159 0.26238
WT2 9.805008 2.665652 0.261604 9.721159 2.956612 0.262776
WT3 9.626358 2.649315 0.260001 9.543251 2.938492 0.261166
WT4 10.19056 2.699919 0.264967 10.10516 2.994619 0.266154
WT5 10.19056 2.699919 0.264967 10.10516 2.994619 0.266154
WT6 10.19056 2.699919 0.264967 10.10516 2.994619 0.266154

Turaif WT1 13.79931 3.312652 0.217623 13.27258 3.529324 0.223
WT2 13.8519 3.317649 0.217952 13.32441 3.534648 0.223337
WT3 13.63916 3.297316 0.216616 13.11475 3.512985 0.221968
WT4 14.30895 3.360297 0.220753 13.7751 3.580085 0.226208
WT5 14.30895 3.360297 0.220753 13.7751 3.580085 0.226208
WT6 14.30895 3.360297 0.220753 13.7751 3.580085 0.226208

Yanbo WT1 12.1572 3.235669 0.228096 11.62218 3.342165 0.234128
WT2 12.20483 3.24055 0.22844 11.66892 3.347207 0.234481
WT3 12.01219 3.22069 0.22704 11.47991 3.326693 0.233044

(Continued)
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Table 6: Continued
Site Turbines Weibull, EM Weibull, SSO

c (m/s) k αh c (m/s) k αh

WT4 12.61897 3.282207 0.231376 12.07553 3.390235 0.237495
WT5 12.61897 3.282207 0.231376 12.07553 3.390235 0.237495
WT6 12.61897 3.282207 0.231376 12.07553 3.390235 0.237495

Figure 6: The coefficient of determination values of the Weibull distribution using different models

Figure 7: The convergence rate of PSO, GA, DE, COA, and SSO in optimizing Weibull parameters
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7.2 Analysis of Wind Turbine Energy Output
Table 7 exhibits the energy output in MWh and the CF. This Table shows that the range of

CF is between 10.86%–58.21% and 8.77%–56.52% using EM methods and SSO, respectively. For all
Saudi sites, the CF of all six wind turbines examined in this study has higher values in the case of
using Weibull parameters obtained from EM compared to those attained by SSO. That means that
the annual energy output of wind turbines is overestimated with CN approaches than the intelligent
optimization methods. For instance, WT4 output energy in Yanbo is 10228.71 MWh when employing
values calculated from EM, while it is found to be 9140.67 MWh with SSO.

Table 7: Annual energy output and capacity factor using results obtained from EM

Site Wind
turbine

PVC Eout, EM
(MWh/year)

CFEM COEEM
($/kWh)

Eout, SSO
(MWh/year)

CFSSO COESSO
($/kWh)

Aljouf WT1 $2,118,517 4647.211 0.419226 0.022793 4422.417 0.398947 0.023952
WT2 $3,495,554 8559.119 0.467952 0.02042 8196.975 0.448152 0.021322
WT3 $4,237,035 8075.495 0.364246 0.026234 7604.219 0.342989 0.02786
WT4 $5,296,293 12271.16 0.442794 0.02158 11744.18 0.423778 0.022549
WT5 $5,296,293 15279.55 0.551349 0.017331 14875.74 0.536777 0.017802
WT6 $6,355,552 7376.146 0.221801 0.043082 6796.581 0.204374 0.046756

Rafha WT1 $2,118,517 3736.145 0.337039 0.028352 3493.367 0.315137 0.030322
WT2 $3,495,554 7024.072 0.384026 0.024883 6630.756 0.362522 0.026359
WT3 $4,237,035 6291.406 0.283775 0.033673 5811.449 0.262126 0.036454
WT4 $5,296,293 9955.433 0.359233 0.0266 9359.163 0.337717 0.028295
WT5 $5,296,293 13166.47 0.475231 0.020113 12660.65 0.456848 0.020916
WT6 $6,355,552 5486.219 0.164971 0.057923 4948.234 0.148794 0.06422

Tabuk WT1 $2,118,517 2587.803 0.233446 0.040933 2284.627 0.206096 0.046365
WT2 $3,495,554 5020.844 0.274504 0.03481 4554.522 0.249009 0.038375
WT3 $4,237,035 4143.085 0.186874 0.051134 3571.669 0.1611 0.059314
WT4 $5,296,293 7073.655 0.255246 0.037437 6330.055 0.228414 0.041834
WT5 $5,296,293 10151.58 0.366311 0.026086 9668.244 0.348869 0.02739
WT6 $6,355,552 3611.139 0.108587 0.087999 2871.378 0.087658 0.110671

Turaif WT1 $2,118,517 4841.126 0.436719 0.02188 4453.381 0.40174 0.023785
WT2 $3,495,554 8968.14 0.490314 0.019489 8421.666 0.460436 0.020753
WT3 $4,237,035 8340.997 0.376221 0.025399 7469.087 0.336894 0.028364
WT4 $5,296,293 12826.96 0.462849 0.020645 11950.02 0.431205 0.02216
WT5 $5,296,293 16132.66 0.582132 0.016415 15664 0.565221 0.016906
WT6 $6,355,552 6981.881 0.209946 0.045515 5720.058 0.172002 0.055555

Yanbo WT1 $2,118,517 3794.481 0.342301 0.027916 3351.753 0.302362 0.031603
WT2 $3,495,554 7270.107 0.397477 0.024041 6563.434 0.358841 0.026629
WT3 $4,237,035 6270.969 0.282853 0.033783 5404.262 0.243759 0.039201
WT4 $5,296,293 10228.71 0.369094 0.025889 9140.671 0.329832 0.028971
WT5 $5,296,293 13947.93 0.503298 0.018986 13081.5 0.472034 0.020243
WT6 $6,355,552 4876.671 0.146642 0.065163 3989.97 0.119978 0.079644

7.3 Analysis of the Cost of Energy
In addition, Table 7 illustrates that the values of the cost of energy (COE) of all wind turbines

at the five Saudi locations have low $/MWh with the best model obtained by EM compared with the
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best model in IOA. Since SSO results provide high fitting accuracy to the original wind speed data,
the COE prices are better estimated utilizing the evaluation conducted by SSO. Therefore, in terms of
the annual energy output of the four wind turbines, the range is between 4422.42 to 14875.74 MW in
Aljouf, 3493.37 to 12660.65 MW in Rafha, 2284.23 to 9668.24 MW in Tabuk, 4453.38 MW to 15664
in Turaif, and 3351.75 to 13081.5 MW in Yanbo. The highest annual energy output at all Saudi sites
was 15664 MW in Turaif with the WT5 machine model, while the lowest was 2284.23 MW in Tabuk
using WT1. WT5 generates the maximum energy for all Saudi sites compared to all other wind turbine
technologies, making this WTG the optimal one to be installed.

In addition, Table 7 presents the COE at each site using the six wind turbine models. This Table
shows that the lowest cost of electricity was found to be $0.016906/kW in Turaif with WT5, and the
highest price was obtained to be $0.11067/kW in Tabuk with the WT6 model. Furthermore, for the
WT5, the COE was found not to exceed $0.02739/kW for all five considered sites.

8 Conclusion and Future Works

The main goal of this study was to conduct a comparative analysis between conventional
numerical (CN) methods and intelligent optimization algorithms (IOA) in evaluating the potential of
wind energy in five Saudi cities located in the northern part, namely Aljouf, Rafha, Tabuk, Turaif,
and Yanbo. The measured wind speed data at these sites are fitted using Weibull PDF to predict
power density at these locations at different wind turbine hub heights. The two Weibull parameters, the
shape (k) and scale (c), are estimated using five CN methods and five IOA. Moreover, the efficiency
of these approaches is evaluated by the goodness of fit tests using the Root Mean Square Error
(RMSE), Coefficient of Determination (R2), and Mean Absolute Error (MAE). By analyzing the
techno-economic assessments, the main findings of this study are summarized as follows:

1. Results showed that IOAs are better at calculating the optimal combination of Weibull
parameters and providing an adequate description of the frequencies of observed wind data.
Method of Moment appeared to be the best CN method in determining k and c. PSO, GA,
DE, and SSO have almost similar performance to approximate wind speed distribution for all
considered Saudi sites.

2. Comparing the CN methods and IOA in carrying out the technical and economic assessments,
results indicated that CN methods overestimated the energy output and hence underestimated
the cost of energy ($/kWh) of the six wind turbine technologies investigated in this study.
Therefore, since IOAs provide better fitting accuracy, the results based on SSO are considered
to assess wind resources in Saudi Arabia.

3. Based on the electrical output of the WTG using IOA, the capacity factor range was computed
to be between 8.77% and 56.52% in all locations.

4. Furthermore, Turaif was found to be the optimal location for harvesting wind energy, followed
by Aljouf and Yanbo, respectively.

5. Based on the cost of energy analysis, the WT5 model exhibited the most suitable wind turbine
technology to be implemented at all considered sites with an electricity cost of less than
$0.02739/kW.

The economic risk associated with the generation of wind-based electricity is thoroughly examined
in this study. The proposed framework in this study can be applied to any techno-economic analysis
of green wind generation in developing nations. Moreover, it might support improved planning for
wind energy projects by planners and policymakers. Weibull distribution is used in this study to
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characterize wind speed at five Saudi locations. Nevertheless, additional analyses that consider other
probability distribution functions and various numerical and contemporary optimization techniques
could be investigated. Finally, this study is carried out based on daily averaged wind speed due to
data availability. However, a more detailed examination would be possible with a shorter temporal
resolution, such as hourly wind speed data.
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