
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.039207
Article

Securing Cloud Computing from Flash Crowd Attack Using Ensemble
Intrusion Detection System

Turke Althobaiti1,2, Yousef Sanjalawe3,* and Naeem Ramzan4

1Department of Computer Science, Faculty of Science, Northern Border University (NBU), Arar, 73222, Saudi Arabia
2Remote Sensing Unit, Northern Border University (NBU), Arar, 73222, Saudi Arabia

3Deparment of Cybersecurity, American University of Madaba (AUM), Amman, 11821, Jordan
4School of Engineering and Computing, University of West of Scotland, Paisley, PA1 2BE, UK

*Corresponding Author: Yousef Sanjalawe. Email: y.sanjalawe@aum.edu.jo
Received: 14 January 2023; Accepted: 10 March 2023; Published: 26 May 2023

Abstract: Flash Crowd attacks are a form of Distributed Denial of Service
(DDoS) attack that is becoming increasingly difficult to detect due to its
ability to imitate normal user behavior in Cloud Computing (CC). Botnets
are often used by attackers to perform a wide range of DDoS attacks. With
advancements in technology, bots are now able to simulate DDoS attacks
as flash crowd events, making them difficult to detect. When it comes to
application layer DDoS attacks, the Flash Crowd attack that occurs during
a Flash Event is viewed as the most intricate issue. This is mainly because it
can imitate typical user behavior, leading to a substantial influx of requests
that can overwhelm the server by consuming either its network bandwidth
or resources. Therefore, identifying these types of attacks on web servers
has become crucial, particularly in the CC. In this article, an efficient intru-
sion detection method is proposed based on White Shark Optimizer and
ensemble classifier (Convolutional Neural Network (CNN) and LighGBM).
Experiments were conducted using a CICIDS 2017 dataset to evaluate the
performance of the proposed method in real-life situations. The proposed IDS
achieved superior results, with 95.84% accuracy, 96.15% precision, 95.54%
recall, and 95.84% F1 measure. Flash crowd attacks are challenging to detect,
but the proposed IDS has proven its effectiveness in identifying such attacks
in CC and holds potential for future improvement.

Keywords: Cloud computing; CNN; flash crowd attack; intrusion detection
system; LightGBM; White Shark Optimizer

1 Introduction

Cloud Computing (CC) has enhanced the computational approaches that involve the use of
virtualization. The literature presented various definitions of CC. Specifically, the National Institute
of Standards and Technology (NIST) [1] described CC as “a virtualized pay-as-you-go computing
model to assist the prevalent, efficient, and desired network access to a shared pool of customizable

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.039207
https://www.techscience.com/doi/10.32604/csse.2023.039207
mailto:y.sanjalawe@aum.edu.jo


454 CSSE, 2023, vol.47, no.1

computing resources that could be distributed at a high rate with the lowest management action or
service provider interaction”. Examples of these resources include storage, networks, servers, services,
and applications. Although adversaries are aiming at numerous CC attributes, such as high demand
and flexibility, the cloud environment is vulnerable to a diverse range of security threats [2]. Provided
that the cloud offers on-demand usage to its provided services [3], attackers attempt to begin an
organized Distributed Denial of Service (DDoS) attack on the CC servers that resemble an authorized
flash crowd event, which could affect the availability of cloud services. This action enables the attacker
to succeed in initiating the attack without being caught. The absence of services has a significant impact
on the revenue and business of the service providers, considering the high possibility of transitioning
to other service providers due to dissatisfaction regarding the Quality of Service (QoS) [4].

A flash crowd refers to a significant number of individuals who gather in one location for the same
purpose in a short period. In computer networks, flash crowd denotes the increased website traffic
within a relatively brief time. This situation occurs as a result of unique phenomena, which include
breaking news and the delivery of a popular product. In some cases, a flash event happens when a
well-known site is connected to a smaller site, which leads to a substantial rise in traffic identified as a
flash-dot effect [5].

Flash events and flash-dot impact the server operation of websites and network infrastructure,
considering that overcrowding at the network layer could prevent several user requests from reaching
the server. The requests may arrive at the server after a significant delay due to requests for resending
and packet loss. Certain web server configurations and descriptions are not capable of managing the
number of flash event demands [6]. As a result, the users who attempt to access the website in a flash
event would be dissatisfied due to the long wait or inability of the event to achieve the target. The
severity of the phenomenon increases upon an attacker’s attempt to avoid the defense mechanism
by imitating the traffic pattern of authorized users in a flash event [7]. As illustrated in Fig. 1, these
categories of attacks occurring during flash events are described as flash crowd attacks.

Figure 1: Classes of flash crowd attack

Detecting flash crowd attacks during flash events in CC is a primary challenge for web servers,
as they need to differentiate between legitimate user requests for the event and malicious demands.



CSSE, 2023, vol.47, no.1 455

This differentiation is difficult to achieve using existing methods, which can result in delayed feedback
to authorized users or even the entire web server crashing. To overcome this challenge, this article
proposes a new approach to detect flash crowd attacks with greater accuracy. The contributions of
this approach are:

• Enhancing the current body of literature concerning the detection of flash crowd in CC.
• Proposing an adapted version of the White Shark Optimizer (WSO) for selecting the most

significant feature subset.
• Adaptation version of Principal Component Analysis (PCA) for reducing the dimensionality

of selected features.
• Adaptation of LightGBM and Convolutional Neural Network (CNN) for the detection of flash

crowd attacks with superior performance.

The other sections of this article begin with Section 2, which analyses the existing related works
and highlights the research gaps. Section 3 discusses the approach proposed in this research in detail.
Section 4 presents the findings and their discussion. This article ends with a conclusion in Section 5.

2 Related Works

CC assists the auto-scaling feature in scaling the resources on-demand in a dynamic manner.
However, this attribute causes critical financial losses to customers when attacks take place on their
purchased instances. Among the most critical and most employed attacks on the cloud are the TCP
SYN EDOS attacks [8]. Notable initiatives have been performed in the previous decade as a defense
against these attacks. Several simulation platforms were suggested for the measurement and analysis
of the effect of EDOS attacks on CCE. To identify the traffic anomaly and prevent the emerging
categories of DDoS attacks, various techniques are employed, including the artificial intelligence-
based approach [9–11], statistical anomaly identification [12–14], machine learning-based approach
[15,16], data mining approach [17–21], classifiers-based [22,23], hybrid anomaly detection [24,25], and
signature-based detection [26,27]. Based on the comparative summary of all the methods presented in
Table 1, machine learning anomaly identification is applied in this article.

Table 1: Comparison between ML-based anomaly detection

Approach Efficiency Adaptability Overhead Scalability Overfitting

Statistical based X
AI-based X X X X
Data mining-based X
ML-based X X X
Classifier-based X X X
Signature-based X X X
Hybrid-based X X X

Anomaly detection using statistical methods is a useful technique for identifying unusual traffic
patterns, especially in terms of resource and computation efficiency. This method involves comparing
incoming network traffic statistics to normal network traffic patterns to identify any anomalies. Once
an anomaly is detected, statistical inference tests are utilized to assess the reliability of the patterns [28].
However, this method is not considered “adaptive,” as shown in Table 1. There have been efforts by



456 CSSE, 2023, vol.47, no.1

researchers to develop methods that combine the efficiency of statistical anomaly detection with the
adaptive nature of Software-Defined Networking (SDN). In the context of defending against DDoS
attacks, a popular approach is the use of TCP SYN cookies [29], which can effectively block TCP
SYN flooding attacks on a server. This technique can be implemented on a cloud instance to prevent
such attacks while also reducing the financial cost of the instance due to resource usage. When a TCP
SYN attack with a payload is used, the inbound traffic accepted by the instance may require a large
amount of bandwidth. After accepting a large number of TCP SYN requests, the instance processes
these packets to identify the attack, which may also consume instance resources and result in charges
for resource usage for the client.

Gaurav et al. [30] proposed a method called EDOS-Shield to mitigate E-DoS attacks, which uses a
virtual firewall that maintains lists of client IP addresses as either “whitelisted” or “blacklisted” based
on their classification using a Graphic Turing Test (GTT). Clients who pass the GTT are included in the
whitelist, while those who fail are added to the blacklist. However, this approach has the disadvantage
of creating overhead, causing delays for legitimate users trying to access the CC. Shawahna et al. [31]
proposed a reactive method called EDOS-Attack Defense Shell (ADS), which is designed to block
NAT-based attackers by using the port number and IP address of the attacker device and blocking
requests from that port number. The authors used a trust factor calculation based on the GTT to
determine whether a request was an attack or not. EDOS-ADS can identify clients using their port
number and IP address, and it also effectively handles IP spoofing to allow legitimate users to access
services. However, there are several issues with this approach. One issue is that when the attacker
starts a new request, the NAT router assigns a different port number to the attacker, allowing them to
continue the attack from a different port. Another issue is that the GTT involves a different channel
assignment for every request, causing the server to generate numerous puzzles for a high number of
requests, which could accumulate the attack if the puzzle is not solved in time. The GTT feedback
duration is 13.06 s, allowing illegal users to generate massive volume of requests from one source and
use massive number of channels for the GTT. Additionally, URL redirection adds an overhead of
0.63 s.

Bawa et al. [32] introduced an IDS, called EDOSEMM, to detect EDOS attacks in a CC. The
model consists of three main modules, one of which is the data preparation module, which processes
and organizes the flows of incoming packets, which can create overhead. This module deals with both
UDP and HTTP attack traffic as well as legitimate traffic. The model uses Hellinger distance and
entropy approaches to accurately detect anomalies. A mitigation approach for SYN flooding was
suggested by Mendonça et al. [33], which is based on SDN and is executed on a controller. This
approach involves utilizing a threshold value to identify and prevent TCP SYN attackers. Once the
controller detects that the number of SYN requests from a specific host has exceeded the threshold
value, it automatically blacklists and blocks the host. However, this method is solely dependent on the
threshold value, which may lead to the blocking of legitimate users due to network disturbances or
other related factors.

In [34], a proposal was made to enhance security measures for the Industrial Internet of Things
(IIoT) because of its decentralized architecture. The authors suggested a prediction model that
utilizes Deep Learning (DL) and is based on sparse evolutionary training (SET) to forecast various
types of cybersecurity attacks, including intrusion detection, data type probing, and DoS. The SET-
based model that was proposed achieved high performance within a short timeframe (i.e., 2.29 ms).
Furthermore, in a real scenario of IIoT security, the performance in terms of detection rate was
enhanced by an average of 6.25% in comparison with state-of-the-art models. In addition, [35] explores
the application of SDN in enhancing intelligent machine learning methodologies for IDS. The authors



CSSE, 2023, vol.47, no.1 457

propose a new IDS called HFS-LGBM IDS for SDN that utilizes a hybrid Feature Selection (FS)
algorithm to obtain the optimal subset of network traffic features and a LightGBM algorithm to
detect attacks, aiming to address security concerns associated with SDN. Based on the experimental
outcomes from the NSL-KDD benchmark dataset, the proposed system surpasses current methods in
terms of accuracy, precision, recall, and F-measure. The authors emphasize the importance of having
accurate, high-performing, and real-time systems to tackle the risks linked to SDN.

The paper [36] puts forward a DL-based IDS that can detect diverse kinds of attacks on IoT
devices. According to the proposed IDS, it has demonstrated excellent effectiveness in identifying
various types of attacks, with a detection accuracy of 93.74% for both simulated and real intru-
sions. The overall detection rate of this IDS is 93.21%, which is deemed satisfactory in terms of
enhancing the security of IoT networks. On the other hand, [37] introduces a new FS technique that
improves the performance of Deep Neural Network-based IDS. This approach prunes features based
on their importance, which is derived from a fusion of statistical importance. The performance of this
approach has been evaluated on various datasets and through statistical tests, providing evidence of
its effectiveness. The proposed approach provided important contributions to the field of securing
IoT and a novel technique to enhance performance and improve security against vulnerabilities and
threats.

3 Proposed IDS

After a long while since the first “Full-Scale High-Rate Flooding” (HRF) DDoS attacks against
the Internet, several types of attacks continue to comprise a malicious threat to different Internet-based
environments. Further, the detection of attacks efficiently remains a significant challenging issue. In
this section, an attempt to propose an efficient solution to detect the flash crowd attack in flash events
in a cloud computing environment is discussed, and the detailed design of the corresponding IDS, as
depicted in Fig. 2, is comprehensively presented. The proposed IDS contains six main stages, namely:
(i) data preprocessing, (ii) feature selection, (iii) dimensionality reduction, (iv) hybrid classifier, (v)
flash crowd detection, and (vi) performance evaluation.

3.1 Preprocessing
To develop a precise IDS model, several actions should be conducted before the data is included

to train the model. Notably, pre-processing is crucial for developing an effective IDS method and
reducing the computationally intensive processes. In this study, the following actions were conducted
for data preparation:

3.1.1 Data Normalization

To compare the attributes, which had different ranges, the data was standardized using Z-score
normalization (as shown in Eq. (1)) to transform it onto a different scale. This resulted in the
standardized data having a standard deviation of 1 and a mean value of 0 [38].

n (x) = M(n (x))/σ (n (x)) (1)

where M denotes the mean, and σ is the standard deviation of given values.

Normalization is a process applied to dataset samples in IDS to standardize them, making
them more consistent and easier to analyze. This includes techniques such as scaling, centering,
transforming, and removing outliers and missing data. This article presents both binary and multiclass
categorizations. In the binary experiment, normal strings were given a binary value of 0, while all



458 CSSE, 2023, vol.47, no.1

malicious packet was given a value of 1. Each attack in the multiple class categorization was assigned
a distinct digit value.

Figure 2: Architecture of proposed IDS

3.1.2 Data Reshaping

CNN requires input in the form of an image with 3-D: width, channel, and height. However,
network traffic is in the form of 1-D dimension, which is not compliance with the architecture of CNN.
Therefore, a transformation is necessary to convert the shape of the input packet to the resolution
dimensions required by a CNN. For the subset of 48 attributes, the 48-D vector was converted into
8 × 6 images, while the 9-dimensional vector input was converted into 3 × 3 images. Since this article
only uses grayscale images with a single channel, the channel number was set to 1.

3.2 White Shark Optimizer
The WSO is an algorithm that uses mathematical models based on the characteristics of great

white sharks to solve optimization problems within a fixed search space [39]. It is a meta-heuristic
algorithm that aims to balance the exploration process and exploitation process of the search space,
using the search agents to find the best results. The process and pseudocode of WSO are illustrated
in Figs. 3 and 4 respectively. The key concepts and foundations of WSO are inspired by the hunting
behaviors of great white sharks, such as their highly developed senses of smell and hearing, which they
use to locate and pursue their prey.



CSSE, 2023, vol.47, no.1 459

Figure 3: Stages of SWO

Figure 4: Pseudocode of WSO [39]

Three characteristics of white sharks were adapted to locate their prey (e.g., the optimal food
source). These characteristics are: (1) the movement towards prey based on the wave hesitation that
occurs after the prey moves, which involves the white shark using its senses of smell and hearing to
make an undulating movement towards the prey; (2) scavenging for prey in deep ocean areas, where
the white shark navigates to the prey’s location and gets close to the optimal prey; and (3) detecting the
prey once it is within close-proximity, using fish school behavior to move towards the best white shark
in the vicinity of the optimal prey. If the prey is not found, the location of each white shark would
determine the optimal solution.



460 CSSE, 2023, vol.47, no.1

3.3 Principal Component Analysis
PCA is a technique used to decrease the number of dimensions in a dataset by identifying Principal

Components (PCs), which are the directions that explain the highest variance in the data. It is a linear,
unsupervised transformation technique that creates new features in a new subspace using orthogonal
axes [40]. Fig. 5 demonstrates that the 1st PC has the largest variance, followed by lower variances for
the subsequent PCs. The purpose of PCA is to retain as much information from the initial data as
feasible while reducing its dimensionality.

Figure 5: Pseudocode of PCA

PCA is used to minimize the dimensionality of a given benchmark dataset by transforming
the initial d-dimensional dataset X into a new k-dimensional space Y (where k ≤ d) using a
transformation matrix W [41]. The method used to obtain this transformation matrix is the linear
Eigen-decomposition technique, which involves calculating the Eigenvalues and Eigenvectors (PCs)
of the covariance matrix (X.X T). The Eigenvectors represent the directions of the data, and the
Eigenvalues represent the magnitude of the data. To obtain the columns in the matrix W, each
Eigenvector is assigned to a column, with the Eigenvalues being used to determine their order [42].
The Eigen-decomposition method is defined by breaking down the covariance matrix into three other
matrices:

x∧(T).X → B.D.B∧T (2)

In the definition of Eigen-decomposition, B is a square matrix (d × d) consisting of the
Eigenvectors, and D is a diagonal matrix (d × d) with all elements except for those on the core diagonal
set to zero. These elements represent the specific Eigenvalues, and BT is the transpose of matrix B.

3.4 Ensemble Classifier
3.4.1 CNN

CNN is a neural network architecture used for computer vision tasks, which utilizes a technique
called convolution to efficiently process visual data. As shown in Fig. 6, the CNN architecture has
three core layers: the first is pooling layer, the second is convolution, and the last is fully connected
layers [43]. In the convolution layer, a filter is applied to the input data by multiplying it with a set of
weights, creating a new two-dimensional array called a feature map. The filter is moved over the input
using a step size called the “stride”, which determines the size of the output feature map. This process
is repeated, creating multiple feature maps, which are then processed by the next layers of the CNN,
as illustrated by Eq. (3).

s = θ(x ⊗ w + b) (3)



CSSE, 2023, vol.47, no.1 461

Figure 6: Architecture of CNN

The convolution equation involves various elements, such as θ , representing the non-linear
activation function, x, representing the input data, b, which is the bias term, s, which denotes the feature
map, and w, indicating the weight of the kernel function. In CNN, the Relu function is commonly used
to set all negative values in the feature map to zero, thereby increasing the level of non-linearity in the
convolutional layers. A CNN typically includes multiple convolutional layers, with the initial layer
designed to detect basic features like edges or corners, while the later layers capture more advanced
features. However, multiple convolutional layers may cause the output dimension to become smaller
than the input, resulting in loss of information after a certain number of iterations. To address this
issue, the padding technique can be employed by adding a border around the image. Two types of
padding exist: “same” and “valid.” The “same” padding method involves adding a border around the
image to ensure that the input and output images are the same size. The padding size should satisfy
the following equation to be valid:

ρ = (f − 1)

2
(4)

where f represents the filter size while denotes the padding size.

The valid convolution technique involves the utilization of the original image without incorporat-
ing any zero-pixel padding surrounding the input matrix. In CNN, the pooling layer is responsible for
reducing the spatial size of convolved features. This can be achieved through two methods: max pooling
or average pooling. Max pooling involves selecting the maximum value from a portion of the input
image that corresponds to the kernel filter, whereas average pooling takes the average value instead.
Max pooling is typically preferred because it can effectively reduce dimensionality and remove noise
from the image. Following this step, the output is subjected to a fully connected layer for classification.
Several architectures have been developed to enhance the performance of CNN, such as AlexNet [44],
LeNet [45], GoogLeNet [46], VGGNet [47], ZFNet [48], and ResNet [49].

3.4.2 LightGBM

LightGBM is a machine learning model developed by Microsoft in 2017, based on Gradient
Boosting Decision Trees (GBDT). GBDT involves combining weak learners to create strong learners,
using only regression trees for Decision Trees (DT). Each DT makes predictions and retains residuals



462 CSSE, 2023, vol.47, no.1

from all previous trees. The training process for LightGBM is depicted in Fig. 7, where the residuals
of the target value become the target for the next learning and each tree is trained to predict the
residuals. The final predicted output is a combination of multiple DTs’ outputs. Although GBDT has
shown success in many machine learning tasks, it can experience decreased precision and efficiency
with increasing data volume. To tackle this problem, Microsoft introduced the LightGBM algorithm,
which maintains prediction precision, significantly improves prediction speed, and reduces memory
usage [50].

Figure 7: Generation strategy of LightGBM

The traditional Gradient Boosting Decision Trees (GBDT) algorithms can be sluggish and require
a lot of memory since they sort feature values and enumerate all possible feature points to find
the optimal segmentation point. However, the LightGBM algorithm solves this problem by using a
histogram algorithm. This algorithm divides constant eigenvalues into k intervals and chooses the
division points among these k values. As a result, the LightGBM algorithm trains faster and is more
space efficient than GBDT. Furthermore, the decision trees generated by the histogram algorithm have
regularization effects, which can prevent overfitting.

3.4.3 Ensembling using CNN and LightGBM

A model that combines the LightGBM algorithm and CNN is proposed. The ensemble process
is shown in Fig. 3. The features from the dataset are extracted and refined by passing through the
convolutional layer of CNN. Then, the output of the flattening layer is fed to the LightGBM model for
classification and additional analysis. By combining these two methods, the proposed model achieves
better prediction performance.

The ensemble classifier follows this procedure for categorization:

• The dataset resulting from preprocessing, feature selection, and dimensionality reduction is split
into training and testing sets.

• The training data is fed into a developed CNN model for pre-training and to obtain the
convolutional layer parameters and fully connected layer.

• In CNN, the hyperparameters of the convolutional layers are then frozen and the data resulting
from the flattening layer is used as an input for LightGBM for extra training.

• The test dataset is then classified, a confusion matrix is generated, and performance metrics are
computed.



CSSE, 2023, vol.47, no.1 463

4 Experiments and Discussion

4.1 Dataset
CICIDS 2017 [51] is utilized to determine the performance of the proposed IDS, which comprises

favorable and the most updated regular attacks that have similarities to the true real-world data
(PCAPs). It also presents the outcomes of the network traffic analysis with the use of CICFlowMeter
and labeled flows in line with the source, protocols and attack, timestamp, source and destination
ports, and destination IPs.

4.2 Experimental Environment
The experiment was carried out using Python and the Keras library with Tensorflow. An

experimental setup used to assess the model parameters is shown in Table 2.

Table 2: Specifications of the experimental environment

Item Description

Programming language Python
OS Windows 11
RAM 16 GB
CPU 11th Gen Core™ i7-1195G7
HDD 1 TB

4.3 Evaluation Metrics
As depicted in Table 3, the confusion matrix is used to calculate the evaluation metrics for the

proposed model to ensure its effectiveness. Five common evaluation metrics, including accuracy (AC),
false-positive rates (FP), and false-negative rates (FN), are utilized to determine the effectiveness of
the model. These performance measurements are calculated using the confusion matrix of a 2-class
classifier.

Table 3: Confusion matrix

Predicted

Actual Positive Negative
True Attack presents No attack
False No attack Attack

presents

The equations below are used to demonstrate the performance of the introduced IDS:

AC = TP + TN
TP + TN + FP + FN

(5)

R = TP
TP + FN

(6)

P = TP
TP + FP

(7)



464 CSSE, 2023, vol.47, no.1

FPR = FP
FP + TN

(8)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(9)

where the number of true positives is represented as TP, false negatives as FN, true negatives as TN,
and false positives as FP [38,52,53].

4.4 Analysis and Findings
In this section, a thorough analysis of the findings acquired through the models suggested in this

study is presented. An evaluation was conducted regarding the effectiveness of the suggested models
on a CICIDS 2017 benchmark dataset through a sequence of various experiments. In this section, the
possibility for the suggested models was illustrated to identify the Flash Crowd attacks. Furthermore,
several experiments had been performed, which involved the testing of the suggested learning models
with a new unlabeled category of attack. Meanwhile, the remaining attacks are employed during the
training. In every experiment, a comparison is made between the effectiveness of the proposed model
against state-of-the-art models. The IDSs used in this evaluation comprised: DT-IDS [6], bGWbPS-
IDs [38], RF-IDS [54], RT-AMD IDS [55], and LSTM-IDS [56]. The default setting from Skit-learn
and TensorFlow libraries were employed to implement these IDDs. The performance comparison was
also conducted between the proposed IDS and these state-of-the-art models in terms of accuracy,
precision, and recall F1 measure using the CICIDS 2017 benchmark. The results of this comparison
are presented in Table 4.

Table 4: Comparison results

IDS Proposed LSTM-IDS RT-AMD IDS RF-IDS bGWbPS-IDS DT-IDS

% Accuracy 95.84 91.05 84.34 90.41 85.62 83.38
Precision 96.15 90.62 84.81 93.24 86.66 84
Recall 95.54 91.77 84.27 87.34 83.87 81.81
F1 measure 95.84 91.19 84.54 90.19 85.24 82.89

According to the results presented in Table 4, the performance of the proposed IDS was superior
to that of the majority of state-of-the-art IDSs, and the hybrid models demonstrated even better
performance. The use of a reduced set of features resulted in improved detection model performance.
To ensure fairness, the comparison was conducted on both the training and testing datasets, using the
CICIDS 2017 benchmark dataset. Furthermore, the proposed IDS had lower time consumption than
other IDSs, which was attributed to factors such as the number of features used for training and testing,
the number of hidden layers, and the number of neurons per layer. However, using a CNN could reduce
time consumption by addressing the issue of parameter explosion through shared parameters across
layers. While training a DL model can be challenging and costly, using a Graphics Processing Unit
(GPU) accelerator can significantly improve computational speed, which has increased by more than
10 times in recent years and is expected to continue improving with advancements in GPU architectures
and specialized training chips. The convolutional layer of the CNN is also used for feature extraction
and filtering, and the LightGBM model is applied to the flattening layer output for classification and
information. These steps improve the model’s prediction accuracy.



CSSE, 2023, vol.47, no.1 465

In comparison to other state-of-the-art IDSs, the CNN-LightGBM required a shorter training
duration and testing duration. However, the long training duration does not have a significant effect
on the model function. Determining the ideal set of hyper-parameters may be among the processes
of developing a machine-learning model that requires the longest duration. This condition is in
line with DL. When the correct values are discovered to function properly in the training data and
exhibit high quality in the test data, the manual scheduling of the hyperparameters due to real-time
identification would not be required. Meanwhile, the short detection period denotes the strength of
the hybrid approaches for anomaly identification, particularly in virtual environments including CC.
These environments are vulnerable to setbacks in their specific structure. Therefore, rapid and efficient
identification approaches should be applied to manage the attacks at a fast rate before the brain of the
environment is targeted and critical consequences take place in the entire network.

4.5 Discussion and Limitations
The purpose of this article is to propose an IDS that uses the WSO and ensemble classifier to

address security issues in a CC environment, particularly Flash crowd events. One of the challenges
faced by deep and machine learning models during the training phase is overfitting, which occurs
when the model learns from noisy and biased samples that do not accurately represent the patterns
of interest. Regularization techniques can help to mitigate this issue and improve prediction, but they
do so by focusing on individual weight values rather than the relationships between matrix entries,
which can make small changes in an attribute more significant in the forecast. To overcome these
limitations, the authors used feature engineering which involves selecting and extracting relevant
attributes to improve DL performance for attack identification. The experimental results showed
that the introduced IDS outperformed previous approaches and achieved superior precision for both
binary and multiclass detection. The IDS consists of four phases: preprocessing, feature engineering,
a hybrid ML and DL classifier, and a detection stage.

CNN was applied for the reduction in the number of training parameters, which led to the develop-
ment of a new model that can identify network disruptions intrusions without high computational cost.
Moreover, CNN is capable of reducing the dimension of the input attributes with the use of the pooling
layer. Several DL and ML algorithms were employed for categorization situations to gain accurate
DL outcomes. The suggested IDS was developed to create binary and multiclass categorizations to
differentiate between the types of attacks. However, the following limitations were present in the
suggested model:

• Despite the importance of the precision and assessment metrics for the evaluation of the model
performance, these metrics are not adequate without the actual application of the created model
in the CC environment.

• The assessment of the network performance by considering the resource use, account through-
put, and time delay specifications is highly crucial to perform an intensive test on the capability
of the suggested intrusion identification.

• Henceforward, the suggested IDS would be applied in a real CC environment, followed by a
test on the potential for an intrusion identification to manage the identified attacks in an actual
event.

In sum, using WSO in combination with an ensemble classifier in attack detection offers several
advantages, including:



466 CSSE, 2023, vol.47, no.1

• Optimal Model Selection: WSO can be utilized to identify the most effective individual
classifiers for inclusion in the ensemble, based on their performance on the training data,
resulting in a stronger overall ensemble.

• Rapid Convergence: WSO can facilitate a quicker convergence of the ensemble classifier to the
optimal solution compared to other optimization algorithms, thereby reducing computational
time for attack detection.

• Improved Robustness: The combination of WSO and an ensemble classifier provides enhanced
robustness to inconsistent or noisy data, as the ensemble can counterbalance the impact of
outliers while WSO can help the model rapidly converge to the optimal solution.

• Better Handling of Imbalanced Data: In situations where one class is underrepresented, WSO
can assist in selecting the best individual classifiers to handle such imbalanced data, further
boosting the performance of the ensemble classifier in attack detection.

• Elevated Model Performance: By optimizing the parameters of the individual classifiers and
ensemble using WSO, the overall performance of the model can be enhanced, resulting in more
accurate and dependable attack detection.

5 Conclusion and Future Work

The volume of services and information available on the Internet is extensive, which contributes to
high exchange traffic. This excessive scalability disrupts the network. Flash Crowd attacks, specifically
the DDoS-based attacks that involve authorized HTTP requests to overwhelm the victim resources,
are regarded as the primary disturbing attacks on the providers and users of online services. The
victim is surrounded by service requests created by the attacker through DDoS tools. Furthermore, the
challenge in detecting the Flash Crowd attacks would increase with the presence of the Flash Event.
Following the similarity of the two anomalies (the legitimate Flash Crowd and Flash Crowd attack),
the attack can travel under the identification system. However, the suggested detection method has
proven its effectiveness in identifying Flash Crowd attacks in CC and showing higher performance
than other state-of-the-art methods. This method has also created opportunities for future studies in
the field of application layer attack detection. Some of the future directions of work would include the
hybridization of LightGBM with a deep learning model, the use of ensemble feature selection, and the
utilization of automatic data augmentation and transfer learning to enhance detection performance.

Acknowledgement: I express my gratitude to Northern Border University, Saudi Arabia, for adminis-
trative and technical support.

Funding Statement: The authors gratefully acknowledge the approval and the support of this research
study by grant no. SCIA-2022-11-1551 from the Deanship of Scientific Research at Northern Border
University, Arar, K.S.A.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] V. Kaushik, P. Bhardwaj and K. Lohani, “Game of definitions—Do the NIST definitions of cloud service

models need an update? A remark,” in Futuristic Trends in Networks and Computing Technologies: Select
Proc. of Fourth Int. Conf. on FTNCT 2021, Singapore, Springer Nature Singapore, pp. 653–666, 2022.



CSSE, 2023, vol.47, no.1 467

[2] V. Maheshwari, S. Sahana, S. Das, I. Das and A. Ghosh, “Factors influencing security issues in cloud
computing,” in Advanced Communication and Intelligent Systems: First Int. Conf., ICACIS 2022, Virtual
Event, Cham: Switzerland, Springer Nature Switzerland, pp. 348–358, 2023.

[3] Y. Sanjalawe, M. Anbar, S. Al-E’mari, R. Abdullah, I. Hasbullah et al., “Cloud data center selection using
a modified differential evolution,” CMC-Computers, Materials & Continua, vol. 69, no. 3, pp. 3179–3204,
2021.

[4] M. Sharma, A. Gupta and J. Singh, “Resource discovery in inter-cloud environment: A review,” Interna-
tional Journal of Advanced Intelligence Paradigms, vol. 23, no. 1, pp. 129–145, 2022.

[5] V. Pai, P. Druschel and W. Zwaenepoel, “Flash: An efficient and portable web server,” in USENIX Annual
Technical Conf., General Track, Berkeley, CA, United State, vol. 1, pp. 199–212, 1999.

[6] C. Tinubu, A. Sodiya, O. Ojesanmi, E. Adeleke and A. Adebowale, “DT-model: A classification model
for distributed denial of service attacks and flash events,” International Journal of Information Technology,
vol. 1, no. 1, pp. 1–11, 2022.

[7] A. Da Silva, L. Silva, E. Bezerra, A. Guelfi, C. De Armas et al., “A proposal to distinguish DDoS traffic
in flash crowd environments,” International Journal of Information Security and Privacy (IJISP), vol. 16,
no. 1, pp. 1–16, 2022.

[8] E. Oleg Kupreev and A. Gutnikov, “DoS Attacks in Q4 2019 Report, Kaspersky Lab,” 2020. [Online].
Available: https://securelist.com/ddos-report-q4-2019/96154/

[9] M. Aladaileh, M. Anbar, A. Hintaw, A. Hasbullah, A. Bahashwan et al., “Renyi joint entropy-based
dynamic threshold approach to detect DDoS attacks against SDN controller with various traffic rates,”
Applied Sciences, vol. 12, no. 12, pp. 61–79, 2022.

[10] I. Aziz, I. Abdulqadder and T. Jawad, “Distributed denial of service attacks on cloud computing environ-
ment,” Cihan University-Erbil Scientific Journal, vol. 6, no. 1, pp. 47–52, 2022.

[11] S. Shah, F. Khan and M. Ahmad, “The impact and mitigation of ICMP based economic denial of sustain-
ability attack in cloud computing environment using software defined network,” Computer Networks, vol.
187, no. 1, pp. 107– 119, 2021.

[12] A. Shawahna, M. Abu-Amara, A. Mahmoud and Y. Osais, “EDoS-ADS: An enhanced mitigation tech-
nique against economic denial of sustainability (EDoS) attacks,” IEEE Transactions on Cloud Computing,
vol. 8, no. 3, pp. 790–804, 2018.

[13] Y. Alemami, A. Al-Ghonmein, K. Al-Moghrabi and M. Mohamed, “Cloud data security and various
cryptographic algorithms,” International Journal of Electrical and Computer Engineering, vol. 13, no. 2,
pp. 2–23, 2023.

[14] M. Nguyen and S. Debroy, “Moving target defense-based denial-of-service mitigation in cloud environ-
ments: A survey,” Security and Communication Networks, vol. 1, no. 1, pp. 1–24, 2022.

[15] N. Kathirkamanathan, B. Thevarasa, G. Mahadevan, G. Skandhakumar and N. Kuruwitaarachchi,
“Prevention of DDoS attacks targeting financial services using supervised machine learning and stacked
LSTM,” in 2022 IEEE 7th Int. Conf. for Convergence in Technology (I2CT), Mumbai, India, IEEE, pp.
1–5, 2022.

[16] A. Aljuhani, “Machine learning approaches for combating distributed denial of service attacks in modern
networking environments,” IEEE Access, vol. 9, no. 1, pp. 42236–42264, 2021.

[17] M. Mayuranathan, M. Murugan and V. Dhanakoti, “Best features based intrusion detection system by
RBM model for detecting DDoS in cloud environment,” Journal of Ambient Intelligence and Humanized
Computing, vol. 12, no. 3, pp. 3609–3619, 2021.

[18] J. Gutierrez and K. Lee, “High-rate denial-of-service attack detection system for cloud environment using
Flume and Spark,” Journal of Information Processing Systems, vol. 17, no. 4, pp. 675–689, 2021.

[19] I. Divyasree and K. Selvamani, “DAD: Domain adversarial defense system against ddos attacks in cloud,”
IEEE Transactions on Network and Service Management, vol. 19, no. 1, pp. 554–568, 2021.

https://securelist.com/ddos-report-q4-2019/96154/


468 CSSE, 2023, vol.47, no.1

[20] G. Alam and M. Raj, “An efficient SVM based DEHO classifier to detect DDoS attack in cloud computing
environment,” Computer Networks, vol. 215, no. 1, pp. 109–138, 2022.

[21] A. Nagaraja, U. Boregowda and R. Vangipuram, “Study of detection of DDoS attacks in cloud environ-
ment using regression analysis,” in Int. Conf. on Data Science, E-Learning and Information Systems 2021,
Dubai, UAE, pp. 166–172, 2021.

[22] P. Verma, S. Tapaswi and W. Godfrey, “An adaptive threshold-based attribute selection to classify requests
under DDoS attack in cloud-based systems,” Arabian Journal for Science and Engineering, vol. 45, no. 4,
pp. 2813–2834, 2020.

[23] M. Mayuranathan, M. Murugan and V. Dhanakoti, “Best features based intrusion detection system by
RBM model for detecting DDoS in cloud environment,” Journal of Ambient Intelligence and Humanized
Computing, vol. 12, no. 3, pp. 3609–3619, 2021.

[24] A. Nagaraja, U. Boregowda and R. Vangipuram, “Study of detection of DDoS attacks in cloud environ-
ment using regression analysis,” in Int. Conf. on Data Science, E-Learning and Information Systems 2021,
Petra, Jordan, pp. 166–172, 2021.

[25] G. Kushwah and V. Ranga, “Detecting DDoS attacks in cloud computing using extreme learning machine
and adaptive differential evolution,” Wireless Personal Communications, vol. 1, no. 1, pp. 1–24, 2022.

[26] G. Kushwah and V. Ranga, “Voting extreme learning machine based distributed denial of service attack
detection in cloud computing,” Journal of Information Security and Applications, vol. 53, no. 1, pp. 102–
113, 2020.

[27] M. Dimolianis, A. Pavlidis and V. Maglaris, “Signature-based traffic classification and mitigation for DDoS
attacks using programmable network data planes,” IEEE Access, vol. 9, no. 1, pp. 113061–113076, 2021.

[28] M. Raj and S. Pani, “A meta-analytic review of intelligent intrusion detection techniques in cloud
computing environment,” International Journal of Advanced Computer Science and Applications, vol. 12,
no. 10, pp. 57–72, 2021.

[29] S. Shah, F. Khan and M. Ahmad, “Mitigating TCP SYN flooding based EDOS attack in cloud computing
environment using binomial distribution in SDN,” Computer Communications, vol. 182, no. 1, pp. 198–211,
2022.

[30] A. Gaurav, B. Gupta, C. Hsu, D. Peraković and F. Peñalvo, “Filtering of distributed denial of services
(DDoS) attacks in cloud computing environment,” in 2021 IEEE Int. Conf. on Communications Workshops
(ICC Workshops), NJ, US, IEEE, pp. 1–6, 2021.

[31] A. Shawahna, M. Abu-Amara, A. Mahmoud and Y. Osais, “EDoS-ADS: An enhanced mitigation tech-
nique against economic denial of sustainability (EDoS) attacks,” IEEE Transactions on Cloud Computing,
vol. 8, no. 3, pp. 790–804, 2018.

[32] P. Bawa, S. Rehman and S. Manickam, “Enhanced mechanism to detect and mitigate economic denial
of sustainability (EDoS) attack in cloud computing environments,” International Journal of Advanced
Computer Science and Applications, vol. 8, no. 9, pp. 97–107, 2017.

[33] R. Mendonça, J. Silva, R. Rosa, M. Saadi, D. Rodriguez et al., “A lightweight intelligent intrusion detection
system for industrial internet of things using deep learning algorithms,” Expert Systems, vol. 39, no. 5, pp.
79–94, 2022.

[34] G. Logeswari, S. Bose and T. Anitha, “An intrusion detection system for SDN using machine learning,”
Intelligent Automation & Soft Computing, vol. 35, no. 1, pp. 121–143, 2023.

[35] A. Awajan, “A novel deep learning-based intrusion detection system for IoT networks,” Computers, vol.
12, no. 2, pp. 34–45, 2023.

[36] A. Thakkar and L. Ritika, “Fusion of statistical importance for feature selection in deep neural network-
based intrusion detection system,” Information Fusion, vol. 90, no. 1, pp. 353–363, 2023.

[37] V. Dang, T. Huong, N. Thanh, P. Nam, N. Thanh et al., “SDN-based SYN proxy—A solution to enhance
performance of attack mitigation under TCP SYN flood,” The Computer Journal, vol. 62, no. 4, pp. 518–
534, 2019.



CSSE, 2023, vol.47, no.1 469

[38] Q. Alzubi, M. Anbar, Y. Sanjalawe, M. Al-Betar and R. Abdullah, “Intrusion detection system based on
hybridizing a modified binary grey wolf optimization and particle swarm optimization,” Expert Systems
with Applications, vol. 204, no. 1, pp. 117–135, 2022.

[39] M. Braik, A. Hammouri, J. Atwan, M. Al-Betar and M. Awadallah, “White Shark OptImizer: A novel
bio-inspired meta-heuristic algorithm for global optimization problems,” Knowledge-Based Systems, vol.
243, no. 1, pp. 108457, 2022.

[40] B. Ghojogh, M. Samad, S. Mashhadi, T. Kapoor, W. Ali et al., Feature selection and Feature Extraction in
Pattern Analysis: A Literature Review, 2019. [Online]. Available: https://arxiv.org/abs/1905.02845v1

[41] S. Karamizadeh, S. Abdullah, A. Manaf, M. Zamani and A. Hooman, “An overview of principal
component analysis,” Journal of Signal and Information Processing, vol. 4, no. 1, pp. 111–129, 2020.

[42] H. Abdi, “The eigen-decomposition: Eigenvalues and eigenvectors,” Encyclopedia of Measurement and
Statistics, vol. 1, no. 1, pp. 304–308, 2007.

[43] R. Yamashita, M. Nishio, R. Do and K. Togashi, “Convolutional neural networks: An overview and
application in radiology,” Insights into Imaging, vol. 9, no. 4, pp. 611–629, 2018.

[44] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally et al., SqueezeNet: AlexNet-level Accuracy with
50x Fewer Parameters and <0.5 MB Model Size. 2016. [Online]. Available: https://arxiv.org/abs/1602.07360

[45] Y. LeCun, “LeNet-5, convolutional neural networks,” 2015. [Online]. Available: http://yann.lecun
[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., “Going deeper with convolutions,” in Proc. of the

IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp. 1–9, 2015.
[47] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition,

2014. [Online]. Available: https://arxiv.org/abs/1409.1556
[48] M. Zeiler and R. Fergus, “Visualizing and understanding convolutional network,” in European Conf. on

Computer Vision, Tel Aviv, Israel, Springer, pp. 818–833, 2014.
[49] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, “Aggregated residual transformations for deep neural

networks,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Seattle, WA, USA,
pp. 1492–1500, 2017.

[50] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen et al., “LightGBM: A highly efficient gradient boosting
decision tree,” Advances in Neural Information Processing Systems, vol. 30, no. 1, pp. 3149–3157, 2017.

[51] I. Sharafaldin, A. Lashkari and A. Ghorbani, “Toward generating a new intrusion detection dataset and
intrusion traffic characterization,” in Proc. of the 4th Int. Conf. on Information Systems Security and Privacy
(ICISSP 2018), Funchal, Madeira, Portugal, pp. 108–116, 2017.

[52] A. Thakkar and R. Lohiya, “Fusion of statistical importance for feature selection in deep neural network-
based intrusion detection system,” Information Fusion, vol. 90, no. 1, pp. 353–363, 2023.

[53] S. Al-E’mari, M. Anbar, Y. Sanjalawe, S. Manickam and I. Hasbullah, “Intrusion detection systems using
blockchain technology: A review, issues and challenges,” Computer Systems Science and Engineering, vol.
40, no. 1, pp. 87–112, 2022.

[54] M. Alduailij, Q. Khan, M. Tahir, M. Sardaraz, M. Alduailij et al., “Machine-learning-based DDOS attack
detection using mutual information and random forest feature importance method,” Symmetry, vol. 14,
no. 6, pp. 109–125, 2022.

[55] O. Bamasag, A. Alsaeedi, A. Munshi, D. Alghazzawi, S. Alshehri et al., “Real-time DDoS flood attack
monitoring and detection (RT-AMD) model for cloud computing,” PeerJ Computer Science, vol. 7, no. 1,
pp. 114–129, 2022.

[56] H. Aydın, Z. Orman and M. Aydın, “A long short-term memory (LSTM)-based distributed denial of service
(DDoS) detection and defense system design in public cloud network environment,” Computers & Security,
vol. 118, no. 1, pp. 102–125, 2022.

https://arxiv.org/abs/1905.02845v1
https://arxiv.org/abs/1602.07360
http://yann.lecun
https://arxiv.org/abs/1409.1556

	Securing Cloud Computing from Flash Crowd Attack Using Ensemble Intrusion Detection System
	1 Introduction
	2 Related Works
	3 Proposed IDS
	4 Experiments and Discussion
	5 Conclusion and Future Work
	References


