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Abstract: The accuracy of historical situation values is required for traditional
network security situation prediction (NSSP). There are discrepancies in
the correlation and weighting of the various network security elements. To
solve these problems, a combined prediction model based on the temporal
convolution attention network (TCAN) and bi-directional gate recurrent unit
(BiGRU) network is proposed, which is optimized by singular spectrum
analysis (SSA) and improved quantum particle swarm optimization algorithm
(IQPSO). This model first decomposes and reconstructs network security
situation data into a series of subsequences by SSA to remove the noise from
the data. Furthermore, a prediction model of TCAN-BiGRU is established
respectively for each subsequence. TCAN uses the TCN to extract features
from the network security situation data and the improved channel attention
mechanism (CAM) to extract important feature information from TCN.
BiGRU learns the before-after status of situation data to extract more feature
information from sequences for prediction. Besides, IQPSO is proposed to
optimize the hyperparameters of BiGRU. Finally, the prediction results of the
subsequence are superimposed to obtain the final predicted value. On the one
hand, IQPSO compares with other optimization algorithms in the experiment,
whose performance can find the optimum value of the benchmark function
many times, showing that IQPSO performs better. On the other hand, the
established prediction model compares with the traditional prediction meth-
ods through the simulation experiment, whose coefficient of determination
is up to 0.999 on both sets, indicating that the combined prediction model
established has higher prediction accuracy.

Keywords: Network security; situation prediction; SSA; IQPSO;
TCAN-BiGRU

1 Introduction

As the network environment gets increasingly complicated, network security [1] has been a critical
national concern in the current era. Tasks related to network security situation prediction (NSSP) have
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appeared accordingly. Predicting the future security situation of the network can guide network defense
to reduce the adverse impact of network attacks. The commonly used methods of NSSP include gray
theory [2], Markov Chain [3,4], evidence theory [5,6], and neural networks.

The traditional methods for situation prediction are time-series analysis, gray theory, etc. Time-
Series Analysis is a method that arranges situational data from different periods according to their
chronological order. It can fully explore the potential interdependence law between the situation data
and use it to establish a dynamic model to achieve real-time monitoring and prediction of the situation
data. This method is a quantitative prediction, and the principle is relatively simple. Suppose the
situation has some potential connection with the previous times. In that case, the situation in the
past N periods can be used to predict the situation in the following period. Commonly used models
are Moving average (MA), Auto-Regressive (AR), and hybrid models. Li et al. [7] used the hidden
Markov model to fully explore and analyze the interdependence of network posture before and after
multiple heterogeneous data sources. Then they fused the security posture of all hosts in the network
to quantify the security posture in the following period. Yang et al. [8] combined the least squares
support vector machine, autoregressive model (AR), and RBF network to form a prediction model of
information fusion and experimentally verified that the model outperformed a single prediction model.
Scholars favor the Grey Theory method for its advantages, such as not requiring many samples for
training in situation prediction. The GM(1, 1) model and GM(1, N) model are the representatives of
commonly used methods. Deng et al. [9] screened the situation factors and then used the GM(1, 1)
model to predict the changes in the situation factors, and then used the obtained N change functions
with the GM(1, N) model to predict the network situation. Yu et al. [10] proposed a dynamic equal-
dimensional GM(1, N) model to solve the problem that the traditional GM(1, N) model has a single
prediction trend. The model accomplishes the situation prediction by replacing the earlier situation
data with the predicted real-time situation data. However, the prediction often fails to achieve the
expected results because of traditional methods of NSSP.

In recent years, artificial intelligence has been introduced by all walks of life as the direction
of industry development, without exception for NSSP. The application of neural networks to the
NSSP field has been the current focus of researchers. Compared to conventional approaches, the
neural network efficiently approximates and fits nonlinear time sequence data and produces promising
scenario prediction outcomes. Preethi et al. [11] proposed a deep learning model for network intrusion
prediction that is based on sparse autoencoder-driven support vector regression (SVR). It is a learning
framework for self-study and an unsupervised learning algorithm, reducing dimensions and training
time and effectively improving prediction accuracy. Zhang et al. [12] proposed an algorithm of NSSP
based on a BP neural network optimized by SA-SOA. This algorithm seeks individuals with optimal
fitness by the seeker optimization algorithm (SOA) to obtain the optimal weights and thresholds and
allocate them to the BP neural network. Meanwhile, the simulated annealing algorithm (SA) was
introduced into the SOA to solve the problems of quickly falling into local optimization at the late stage
of search and slow convergence, improving the global search ability of the algorithm. Zhu et al. [13]
proposed a method of NSSP based on the improved WGAN. This method correctly solves the
problems of strenuous training and gradient instability of GAN by using Wasserstein distance as the
loss function and adding a different item to the loss function. Ni et al. [14] proposed an NSSP based
on time-deep learning. This method combines the attention mechanism with the recirculating network
to learn hidden historical time series data features. Afterward, the hidden features are analyzed,
and the network security status is predicted through the prediction layer. Experiments proved the
effectiveness of the model proposed in the NSSP. Xi et al. [15] proposed a cloud model of NSSP
based on a functional evolutionary network. This concept creates an evolutionary functional network
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model by fusing evolutionary algorithms with the functional network. In the meantime, the reliability
matrix of the relation influenced by the uncertainty of security situation elements is established. The
stochastic approximation algorithm processes and understands aspects of the cloud security situation
predicted by a multivariate nonlinear regression algorithm. In a complex cloud network environment,
it successfully resolves the dynamic uncertainty and improves the forecast accuracy of security scenario
prediction.

Based on the above analysis, studying NSSP is significant to information security. As a computer
research branch with a late start of development, many problems still need to be solved.

(1) The existing data are from the natural environment, the data are time series, and there is noise,
while there are correlations and essential differences between network security factors.

(2) A single prediction model, which cannot thoroughly learn the characteristics between the data,
has a poor prediction effect.

(3) The problem of difficult model hyperparameter selection for NSSP using neural networks and
the significant impact of hyperparameter selection on model effectiveness.

To more thoroughly investigate the relationship between different network security components
and situation prediction, a model of NSSP based on the TCAN-BiGRU optimized by SSA and IQPSO
was proposed in this paper. Considering that multi-attribute security indicator data were used as data
support in this paper, the network security situation data sequence was decomposed into a series of
subsequences by SSA. In addition, the IQPSO was adopted based on the TCAN-BiGRU to determine
the network hyper-parameter, further improving the model’s performance. The main contributions
made in this paper are as follows:

(1) The network security situation data sequence was decomposed and reconstructed into a series
of subsequences by SSA to mine the correlation between data to eliminate noise and improve
the prediction accuracy to the maximum extent.

(2) TCAN-BiGRU was established. The improved CAM was combined with the temporal con-
volution network (TCN) to highlight the features significantly influencing the situation value.
BiGRU network can further learn the before and after state of the data. Combined models can
better learn the features of network security situation data and improve prediction accuracy.

(3) The hyperparameter of the network model was optimized via the IQPSO to improve the
model’s prediction accuracy and reduce prediction errors.

Other sections of this paper are as follows: Section 2 details the overall arrangement of this
paper and the methods proposed in each section. Section 3 describes the improvement of quantum
particle swarm optimization and the application of hyper-parameter optimization. Section 4 discusses
experiments and results. Section 5 summarizes the work herein and expectations for future work.

2 The Model of NSSP Based on TCAN-BiGRU Optimized by SSA and IQPSO

For the purpose of better understanding the variations in correlation and significance between
various network security elements, this research suggests a security scenario prediction model based
on TCAN-BiGRU optimized by SSA and IQPSO. The SSA input layer, the TCAN encoder layer, and
the BiGRU network prediction layer comprise most of the network model in this model. Fig. 1 depicts
its precise structure.
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Figure 1: The model of NSSP based on TCAN-BiGRU optimized by SSA and IQPSO

2.1 The SSA Input Layer
In 1978 [16,17], Colebrook first proposed and used SSA in oceanographic research. It is mainly

used to study non-linear time sequence data. It constructs the trajectory matrix from the time
sequence obtained, which is decomposed and reconstructed to extract the long-term trend signal,
periodic signal, noise signal, and other information. It mines the correlation between data and
improves prediction accuracy to the maximum extent. The specific process of SSA includes four steps,
embedding, decomposition, grouping, and reconstruction.

(1) Embedding

The security data from the China National Computer Emergency Response Technology Coor-
dination Center (CNCERT/CC) [18] were selected as experimental data comprising five security
indicators. The situation value was obtained by weekly situation evaluation. Assuming the situation
value of N-weeks is obtained, it was constructed into a time sequence S = SN = [s1, s2, . . . , sN]. The
trajectory matrix was constructed according to Eq. (1).

S = [S1, S2, . . . , SK ] = (
sL,K

i,j=1

) =

⎡
⎢⎢⎣

s1 s2 · · · sK

s2 s3 · · · sK+1

...
...

. . .
...

sL sL+1 · · · sN

⎤
⎥⎥⎦ (1)

where, K = N −L+1, si (1 ≤ i ≤ N) is the situation value of N-weeks. Si = (si, . . . si+L−1)
T
(1 ≤ i ≤ K)

is the vector sequence with a length of L mapped from K-original time sequences. N is the length of
the time sequence. L is the number of dimensions in the embedded space (or window length), generally
L < N/2.

(2) Decomposition

SSA adopts singular-value decomposition (SVD). In the defined matrix X = SST, ST is the
transposed matrix of S. λ1, . . . λL is set to the characteristic value of X . λ1 ≥ · · · ≥ λL ≥ 0 and
U1, . . . , UL are the distinct vectors corresponding to λ1, . . . λL, respectively.
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Let d = rank (S) = max {i, λi > 0} , Vi = STUi/
√

λi (i = 1, . . . , d) , the trajectory matrix S can be
expressed as:

S = S1 + S2 + · · · + Sd (2)

where, Si = √
λiUiV T

i . U and V are the left and right singular vectors of matrix S, respectively.
{√

λi

}
is known as the singular spectrum of S.

(3) Grouping

The subscript set {1, . . . , d} is divided into m disjoint subsets I1, I2, . . . , Im. Let I = {
i1, . . . , ip

}
the

composite matrix corresponding to I is this SI = Si1
+ · · · + Sip . Therefore, the SVD of S of the

trajectory matrix can be expressed as:

S = SI1
+ · · · + SIm (3)

(4) Reconstruction

The reconstruction is mainly performed by the diagonal averaging method, which con-
verts each matrix SIj in Eq. (3) into a decomposition sequence with a length of N.YL×K =(
yij

)
(1 ≤ i ≤ L, 1 ≤ j ≤ K) , L∗ = min (L, K) , K∗ = max (L, K) . If L < K, y∗

ij = yij or y∗
ij = yji.

The decomposition sequence (y1, y2, . . . , yN) is defined as:

yk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
k

k∑
m=1

y∗
m,k−m+1, 1 ≤ k < L∗

1
L∗

L∗∑
m=1

y∗
m,k−m+1, L∗ ≤ k ≤ K∗

1
N − k + 1

N−K∗+1∑
m=k−K∗+1

y∗
m,k−m+1, K∗ < k ≤ N

(4)

The original sequence S can be decomposed into the sum of m time sequences with a length of N.
The specific flow of data processed by SSA is shown in Fig. 2.

Figure 2: SSA flow chart

2.2 The TCAN Encoder Layer
The TCAN encoder layer is the superposition of the three-layer temporal convolution neural

(TCN) network module and the channel attention module. Its structure is shown in Fig. 3. Each layer
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of dilated causal convolution has Fk convolution kernels. The size of each convolution kernel is kd. The
inflation factors of dilated causal convolution in three residual modules are d1, d2 , and d3, respectively.

Figure 3: TCAN structure

Bai et al. [19] proposed TCN in 2018. It is mainly used for the processing of time sequence data.
Compared with ordinary one-dimensional (1D) convolution, the TCN has two additional operations
[20,21]: causal convolutions and dilated convolutions. Different network layers are connected with
residuals to avoid gradient disappearance or explosion phenomena while extracting sequence features.
The structure of its causal convolutions and dilated convolutions are shown in Fig. 4a. The residual
module is shown in Fig. 4b.

This paper introduced TCN into NSSP. When its causal convolutions are used, it may successfully
guarantee that information about the current situation is not “leaked” from the future to the
past, maintaining the accuracy of the data. Using dilated convolutions can enable TCN to receive
more comprehensive historical data with fewer layers and a more extensive receptive area. Network
overfitting may be successfully stopped using the ReLU activation function, Dropout, and identity
mapping network. Specifically, assuming that for a 1D sequence with an input of x ∈ Rn and a
convolution kernel f : {0, . . . , k − 1} → R, the dilated convolution operation F for the element s
in the sequence is defined as:

F (s) = (x · d f ) (s) =
k−1∑
i=0

f (i) · xs−d·i (5)

where, d is the inflation factor. k is the size of the convolution kernel. s − d · i denotes the direction of
looking in the past. When dilated convolutions are used, d typically increases exponentially with the
depth of the network layer i, i.e., d = O (2i) to ensure that the valid input of input time sequences is
covered as the receptive field expands.
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Figure 4: TCN model

As the TCN’s receptive field depends on the network’s depth (n), the convolution kernel’s size (k),
and the inflation factor (d), the addition of residual connections can keep the deep network stable. Its
residual module is composed of network F and input x:

o = Activation (x + F (x)) (6)

In reality, there is much redundant information in the time sequence information of network
security situations. The performance of extracting model information will be disturbed if the redun-
dant and essential information is equally treated. The attention mechanism has been one of the
mainstream methods and research hotspots in current deep learning. It has been extensively used
in various domains, including natural language processing, picture recognition, voice recognition,
and other fields. The CAM is often used in computer vision to extract the mutual information
between channels. The TCN herein is 1D convolution. As a result, the CAM should be improved.
As shown in Fig. 5, in the CAM, the global information in different channels was first extracted by
global max pooling (GMP) and global average pooling (GAP) to generate the corresponding output
ml = {

m1
l , m2

l , . . . , mk
l

}
and al = {

a1
l , a2

l , . . . , ak
l

}
.

mi
l = max

(
zi

l−1

)
(7)

ai
l = 1

T

T∑
j=1

zi,j
l−1 (8)

where, zi
l−1 = {

zi,1
l−1, zi,2

l−1, . . . , zi,T
l−1

}
denotes the output of the l−1th layer. l denotes the lth layer of the

network. T is the time step, and i is the ith dimension channel of the output feature map.

The output features mi and ai were obtained by max pooling, and average pooling was placed
in the multilayer perceptron (MLP) with a linear hidden layer. To reduce the parameter overhead in
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the network, the number of neurons in the hidden layer is k/r, where r is the decline rate, and k is the
number of channels. The two groups of output features obtained via the MLP network were merged by
element-wise summation. The hard sigmoid activation function normalized the merged output. The
element-wise product was performed on the final output feature map and the original input to obtain
the final output of the CAM module.

Figure 5: CAM module

2.3 The BiGRU Network Prediction Layer
The BiGRU network prediction layer mentioned herein comprises three layers bi-directional gate

recurrent unit (BiGRU) network. The number of neurons in the three layers is ln1, ln2, and ln3,
respectively. All three layers BiGRU network are used to learn the before-and-after relationships
of the network security situation. However, it is difficult to thoroughly learn the before-and-after
relationships by relying only on a single-layer BiGRU network. Deepening the number of neural
network layers can make the learning more adequate and improve the model prediction accuracy.
Meanwhile. to avoid overfitting, a dropout layer was introduced after each layer BiGRU network to
improve the neural network’s performance. Its structure is shown in Fig. 6.

The gate-recurrent unit (GRU) [22] is a common gate-recurrent neural network. GRU introduces
the concepts of reset gate rt and update gate zt and modifies the calculation method of the hidden state
h̃t in the recurrent neural network [23]. Its internal structure is shown in Fig. 7.

where, xt denotes the input information at the current moment. ht−1 and ht are the hidden statuses
at the last and current moments, respectively. σ is the sigmoid activation function, and t is the tanh
activation function.

The calculation equations for the GRU network are:

rt = σ (Wr · [ht−1, xt] + br) (9)

zt = σ (Wz · [ht−1, xt] + bz) (10)

h̃t = tanh (Wh̃ · [rt · ht−1, xt] + bh̃) (11)

ht = (1 − zt) · ht−1 + zt · h̃t (12)
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yt = σ (Wo · ht + bo) (13)

where, W and b represent the weight matrix and bias term, respectively.

Figure 6: The structure of the BiGRU network prediction layer

Figure 7: Basic structure of GRU

In NSSP, the network’s current state is related to the before and after state. The state information
from after to before cannot be obtained if only TCAN is used. The BiGRU network was introduced
herein to improve the prediction effect for NSSP.

BiGRU is formed by the forward and reversed superposition of GRUs. Its structure is shown in
Fig. 8.

To determine the hidden layer status output
→
H = {

hL1
, hL2

, . . . , hLt

}
and

←
H = {

hRt , hRt−1
, . . . , hR1

}
,

the situation values of the forward and backward inputs were calculated using the forward and
backward GRU networks, respectively. Afterward, the final output of the BiGRU network layer is
obtained by splicing the forward and reverse hidden layer state output vectors:

H =
{ →

H,
←
H

}
(14)
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Figure 8: BiGRU network model

2.4 Model Training Optimizer Algorithm
The TCAN-BiGRU model proposed herein adopts the Ranger21 optimizer algorithm [24,25]

to solve the model parameters by solving the optimization problem of the cost function. Ranger21
combines AdamW [26], LookAhead [27], and eight other components. It integrates the advantages
of AdamW for better generalization performance and the advantages of other components. See
Algorithm 1 for the specific algorithm of Ranger21.

Algorithm 1. Ranger21
Input: training set
Output: the best model
Parameters: objective function ft (θ), learning rate η, weight decay λ = 10−4, decay rates β0 = 0.9, β1 =
0.9, β2 = 0.999, βlookahead = 0.5, epsilon for numerical stability ε = 10−8, εclipping = 10−3, the threshold for
adaptive gradient clipping τclipping = 10−2, frequency of the update klookahead = 5, number of iterations tmax,
number of learning rate warm-up iterations twarmup = 0.22 × tmax, number of learning rate warm-down
iterations twarmdown = 0.28 × tmax

θ0 = 0 //Model initialization
m0 = 0 //1st mom. initialization
v0 = 0 //2nd mom. initialization
vmax = 0 //2nd mom. maximum initialization
for t = 1 to tmax do

Collect a small batch containing m samples
{
x(1), . . . , x(m)

}
from the training set, and the corre-

sponding target y(i)

gt = ∇ft (θt−1) //Calculate gradient
for r ∈ rows (gt) do //Gradient clipping

if

∣∣∣∣gr
t

∣∣∣∣
max

(∣∣∣∣θ r
t

∣∣∣∣ , εclipping

) > τclipping then

gr
t = τclipping

max
(∣∣∣∣θ r

t

∣∣∣∣ , εclipping

)∣∣∣∣gr
t

∣∣∣∣ gr
t

end if
end for
gt = gt − mean (gt) //Gradient centralization
mt = β1mt−2 + (1 − β1) gt //1st mom. estimate

m̂t = (1 + β0) mt − β0mt−1

1 − β t
1

//Bias correction

(Continued)
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Algorithm 1. Continued
vt = β2vt−1 + (1 − β2) g2

t //2nd mom. estimate
vmax = max (vt, vmax) //2nd mom. maximum estimate
v̂t = vmax

1 − β t
2

//Bias correction

ut = m̂t√
(1 + β0)

2 + β2
0

(√
v̂t + ε

) //Update vector

ηt = min
(

1, max
(

1 − β2

2
· t,

t
twarmup

)
,

tmax − t
twarmdown

)
η //Learning rate scheduling

dt = ηt√
mean

(
v̂t

)λ

(
1 − 1

||θt−1||
)

θt−1 //Weight decay

θt = θt−1 − ηtut − ηtdt //Parameter update
if t%klookahead == 0 then //LookAhead

lt/k = βlookaheadlt/k−1 + (1 − βlookahead) θt

θt = lt/k

end if
end for
return the best model

3 Improved Quantum Particle Swarm Optimization Algorithm

3.1 Particle Swarm Optimization
Particle swarm optimization (PSO) is a population-based optimization algorithm [28–31]. The

term “population” describes several possible answers to an optimization issue. Every particle is a
possible resolution. These particles move randomly through the problem space. Each particle will
retain the fitness value associated with its prior best location (pbest). Also, each particle takes hold of
the best location (gbest) discovered so far among all the particles in the population. Moreover, the final
particle discovered in gbest is the best. Eqs. (15) and (16) in the PSO display particles’ speed vector and
position vector adjustments of in D-dimensional space.

vij (t + 1) = w · vij (t) + c1 · r1

(
pij − xij

) + c2 · r2

(
pgj − pij

)
(15)

xij (t + 1) = xij (t + 1) + vij (t + 1) (16)

where, w is the inertia factor. c1 and c2 are learning factors. r1 and r2 are two random numbers within
the [0, 1] range. Xi = (xi1, xi2, . . . , xiD) means the position vector of the ith particle. Vi = (vi1, vi2, . . . , viD)

represents the speed vector of the ith particle. Pi = (pi1, pi2, . . . , piD) means the previous best position
of the ith particle, and the optimal fitness value in that position. Pg = (

pg1, pg2, . . . , pgD

)
means the

best position of all particles in the population. Each particle in the PSO converges to a focus point
P = (p1, p2, . . . , pD) specified in Eq. (17) to guarantee the PSO’s convergence.

Pd = (c1 · r1 · pid + c2 · r2 · gd)/(r1 + r2), d = 1, 2, . . . , D (17)

3.2 Quantum Particle Swarm Optimization
It is simple to slip into the local optimum trap because of classical PSO’s lack of randomization

in particle location changes. In order to maximize the unpredictability of particle location by
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eliminating the traveling direction characteristic of particles, Sun Jun introduced quantum particle
swarm optimization (QPSO) [32] in 2004.

The wave function 	
(

⇀

x, t
)

of the QPSO represents the particle’s state. The likelihood that particles

will arrive at the place
⇀

x is represented by its squared value. Moreover, the Delta potential, with the
point

⇀

p = (p1, p2, . . . , pD) at its core, constrains the quantum particles in the PSO, allowing them
to converge to their local P-point without exploding. By resolving the Schrödinger equation, the
probability density and distribution function are produced. The Monte Carlo approach may be used
to determine the location of the ith particle. Equation provides its formulation (18).

xij = pj ± Lij

2
In (1/u) (18)

where, pj is the focal point to which particles converge. u is a random number within the [0, 1] range.

Lij (t + 1) = 2 · β · ∣∣mbestj − x (t)ij

∣∣ (19)

mbestj = 1
M

M∑
i=1

pij, j = 1, 2, . . . , D (20)

mbest = (mbest1, mbest2, . . . , mbestD) (21)

where, mbest denotes the mean best of all particles. β is the shrinkage and expansion coefficient. M is
the population size. Therefore, Eq. (18) can be rewritten as:

xij (t + 1) = pj ± β · ∣∣mbestj − x (t)ij

∣∣ · In (1/u) (22)

3.3 IQPSO
3.3.1 Chaotic Map

Initializing a population randomly in the typical quantum particle swarm optimization leads to a
swift fall into the optimum local solution trap. It has a slow rate of convergence. With logistics mapping,
the population is started in a chaotic order. In order to increase the efficiency and convergence rate of
this method, the optimized variables are handled with the ergodicity of chaotic motion for optimum
solution search.

The Logistics mapping is as follows:

U γ+1
n = aU γ

n

(
1 − U γ

n

)
(23)

where, n denotes the serial number of the chaotic variable. γ denotes the serial number of the
population to be optimized. U γ

n denotes the chaotic variable. a denotes the chaotic attractor, here
a = 4.

3.3.2 Crossover Operator

The genetic algorithm is the source of the crossover operator. In the genetic algorithm, the
crossover operation is used to exchange information between the chromosomes’ genes to keep good
genes and allow them to develop into better genes. To broaden the population and enhance the
algorithm’s ability to leap out of the local optimum, the longitudinal crossover operator was added to
the QPSO in this study.

An arithmetic crossing between two distinct dimensions of a particle in a population is known as
a “vertical crossover.” The problem that elements of different dimensions have different value ranges
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is solved by normalization. Meanwhile, each operation only generates one progeny particle, and only
one dimension is updated.

Assuming that X (i) the d1
th and d2

th dimensions are involved in vertical crossover, the mean
solution MSvc (i, d1) is generated according to Eq. (24).

MSvc (i, d1) = r · X (i, d1) + (1 − r) · X (i, d2) (24)

where, i ∈ N (1, M), d1, d2 ∈ N (1, D), r ∈ [0, 1], MSvc (i, d1) is the d1
th dimension offspring of the d1

th

and the d2
th dimension of the individual particle X (i) generated by vertical crossover.

The conventional crossover operator chooses the crossover probability pc and executes crossover
and mutation with a certain probability. One of the key elements that influence an algorithm’s capacity
for optimization is the crossover probability. The production of new individuals slows down during
iteration if pc is too tiny, which causes the calculation to end early. If pc is too big, the population
will produce too many new individuals, harming any outstanding individuals who have already been
produced. Therefore, seeking an adaptive crossover and mutation probability is vital for optimizing the
algorithm. The adaptive crossover probability of a genetic algorithm improved the following formula:

pc =
⎧⎨
⎩

( pc1 − pc2) ( fmax − f ′)

fmax − favg

, f ′ ≥ favg

pc1, f ′ < favg

(25)

where, pc1 and pc2 are constants. f’ represents the fitness value of a relatively excellent individual between
the two individuals in which the crossover operation occurs. f represents the fitness function value of
the particle on which the mutation operation occurs. favg means the current mean of the fitness function
of the whole population.

3.3.3 Flow of IQPSO

The IQPSO is shown in Fig. 9. See Pseudocode 1 for the specific algorithm of IQPSO.

Pseudocode 1. IQPSO
1 Set the size of the initialized population, the initial value of the crossover probability of each particle,
and the range of values for the shrinkage-dilation coefficient.
2 According to Eq. (23), initialize populations with chaotic mappings in the space of feasible solutions.
3 Evaluate the adaptation value of each individual in the population.
4 while does not meet the termination conditions do:
5 for to do
6 According to Eqs. (18)–(22), the particle’s attraction point and the characteristic length of the
potential well are calculated to generate the test position.
7 Evaluate the adaptation value of the test position.
8 if then
9 According to Eq. (24), perform longitudinal cross.
10 else
11 No operation.
12 end if
13 According to Eq. (25), update crossover probabilities.
14 end for
15 end while
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Start

The chaotic map initializes the particle population, 
and set the convergence coefficient

Calculate the fitness of particles

Calculate the individual historical optimal position pbest, 
and calculate the group optimal position gbest

Calculate the center of gravity of all particles mbest

Update the solution from the iterative equation of the 
quantum particle swarm

Satisfy cross 
requirements?

meet termination 
conditions?

End

Longitudinal cross
Yes

No

Yes

No

Figure 9: Flow chart of IQPSO

3.3.4 Hyperparameter of Optimization Model of IQPSO

In practical applications, different selections of hyperparameters will affect the training results
of the model. The five hyperparameters in the model (number of neurons of the three-layer BiGRU,
batch size, and optimizer’s learning rate) were optimized by the IQPSO in this paper to find the optimal
solution to the model parameters. The algorithm flow is as follows:

Step 1: Data on the state of network security is read, cleaned, normalized, and processed with
sliding windows before the training set and test set are split.

Step 2: Determine the topology of the model.

Step 3: The population is initialized by the chaotic map. In the population, each particle represents
weight and offset. The fitness function is the mean absolute error of the training samples, and chaotic
variables are added to the starting population.

Step 4: Establish the input model for the training set and evaluate the fitness of each particle
according to the predicted value obtained.

Step 5: Compute the fitness value of particles, the population’s optimal location, the best historical
position for each individual, and the center of gravity for every particle.

Step 6: Update the solution according to Eq. (22).
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Step 7: Perform genetic coding on samples and carry out the longitudinal crossover operation on
Eq. (24) according to the adaptive crossover probability of Eq. (25).

Step 8: Update the new generation of particle swarm.

Step 9: Calculate the fitness value of the new generation of particles.

Step 10: Achieve the desired number of repetitions or confirm that the termination requirements
have been satisfied. If so, the iteration should end or go to Step 5.

Step 11: Use the particle with the final optimal fitness value as the hyperparameter of the model.

Step 12: Apply to optimal the hyper-parameter obtained to the model for prediction to get results.

4 Experimental Results and Analysis

4.1 Performance Evaluation of IQPSO
4.1.1 Benchmark Functions

To verify the optimization ability and feasibility of the algorithm improved herein, this paper
selected four test functions comparing this algorithm with the genetic algorithm (GA), traditional par-
ticle swarm optimization (PSO), traditional quantum particle swarm optimization (QPSO), crossover
particle swarm optimization (CPSO) and crossover quantum particle swarm optimization (CQPSO)
in different dimensions. The specific test functions are listed in Table 1. Where, f 1 and f 3 are low-
dimensional unimodal functions. f 2 and f 4 are high-dimensional unimodal functions. f 5 and f 7 are low-
dimensional multimodal functions. f 6 and f 8 are high-dimensional multimodal functions. Unimodal
functions only have one optimum global point and no local extreme point, primarily for the test
function convergence rate. The performance of functions that jump out of the local extreme point
in many dimensions is observed using multimodal functions with numerous local extreme points.

Table 1: Benchmark functions

SN Function
name

Function formula Dimension Domain of
definition

Optimum
value

f1 Schwefel’s f (x) =
n∑

i=1

|xi| + ∏n

i=1 |xi| 5 [−10, 10] 0
f2 30 [−10, 10] 0
f3 Step f (x) =

n∑
i=1

(|xi + 0.5|)2 5 [−100, 100] 0
f4 30 [−100, 100] 0
f5 Alpine f (x) =

n∑
i=1

|xi sin (xi) + 0.1xi| 5 [−10, 10] 0
f6 30 [−10, 10] 0
f7 Griewing f (x) = 1

4000

n∑
i=1

x2
i − ∏n

i=1 cos
(

xi√
i

)
+ 1 5 [−600, 600] 0

f8 30 [−600, 600] 0

4.1.2 Analysis of Simulation Results

The parameters in algorithms and functions in the test were set as follows: The population size was
30. The maximum number of iterations was 200. The shrinkage and expansion coefficient was 0.6. The
maximum crossover probability was 0.8. Each benchmark function was selected to run independently
50 times to avoid excessive accidental errors. The optimum values, means, and standard deviations were
taken as evaluation indexes. The optimum value is the highest or most favorable value of a particular
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variable or set of variables. A mean is an average of a set of numerical values or quantities. Standard
deviation (SD) measures how spread out numbers are in a data set. The experimental results are shown
in Table 2.

Table 2: Comparison of Benchmark function results

Algorithm Optimum value Mean SD

f1

GA 1.179E − 03 1.736E − 01 2.813E − 01
PSO 3.386E − 10 4.002E − 01 1.960E + 00
QPSO 5.645E − 02 2.103E + 00 2.164E + 00
CPSO 1.011E − 11 7.403E − 11 5.883E − 11
CQPSO 0.000E + 00 0.000E + 00 0.000E + 00
IQPSO 0.000E + 00 0.000E + 00 0.000E + 00

f2

GA 4.423E + 00 1.162E + 01 3.618E + 00
PSO 5.687E + 01 1.091E + 02 2.618E + 01
QPSO 2.567E + 01 5.530E + 01 2.056E + 01
CPSO 2.773E − 06 2.217E − 05 2.408E − 05
CQPSO 0.000E + 00 1.042E − 13 2.210E − 13
IQPSO 0.000E + 00 3.631E − 14 1.260E − 13

f3

GA 2.756E − 04 6.721E + 00 2.336E + 01
PSO 7.081E − 18 2.926E − 16 6.654E − 16
QPSO 1.815E − 01 1.052E + 02 1.209E + 02
CPSO 8.601E − 22 2.624E − 19 5.639E − 19
CQPSO 0.000E + 00 0.000E + 00 0.000E + 00
IQPSO 0.000E + 00 0.000E + 00 0.000E + 00

f4

GA 3.549E + 02 1.444E + 03 1.018E + 03
PSO 1.151E + 04 3.308E + 04 1.105E + 04
QPSO 2.895E + 03 1.143E + 04 5.316E + 03
CPSO 1.329E − 11 1.807E − 10 2.482E − 10
CQPSO 2.829E − 27 1.862E − 24 3.215E − 24
IQPSO 8.078E − 28 2.568E − 26 6.697E − 26

f5

GA 4.073E − 07 2.639E − 02 9.343E − 02
PSO 2.047E − 19 2.586E − 18 3.293E − 18
QPSO 5.151E − 03 1.403E + 00 2.659E + 00
CPSO 2.729E − 23 1.964E − 21 4.335E − 21
CQPSO 0.000E + 00 0.000E + 00 0.000E + 00
IQPSO 0.000E + 00 0.000E + 00 0.000E + 00

f6

GA 1.334E + 00 1.096E + 01 8.915E + 00
PSO 1.231E + 02 3.142E + 02 1.110E + 02
QPSO 2.694E + 01 9.791E + 01 4.704E + 01
CPSO 3.377E − 14 1.201E − 12 1.211E − 12
CQPSO 6.942E − 29 8.962E − 27 1.949E − 26
IQPSO 0.000E + 00 1.628E − 28 3.936E − 28

(Continued)
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Table 2: Continued
Algorithm Optimum value Mean SD

f7

GA 5.863E − 02 1.700E + 00 2.434E + 00
PSO 2.464E − 02 1.030E − 01 5.637E − 02
QPSO 1.142E − 01 2.019E + 00 2.088E + 00
CPSO 8.216E − 15 1.098E − 01 5.315E − 02
CQPSO 1.616E − 07 5.068E − 02 2.686E − 02
IQPSO 0.000E + 00 1.555E − 02 1.308E − 02

f8

GA 4.014E + 00 1.351E + 01 6.839E + 00
PSO 3.908E + 01 2.884E + 02 1.146E + 02
QPSO 2.400E + 01 1.021E + 02 4.404E + 01
CPSO 1.093E − 09 6.062E − 02 1.728E − 01
CQPSO 0.000E + 00 1.073E − 03 3.599E − 03
IQPSO 0.000E + 00 0.000E + 00 0.000E + 00

In the two low-dimensional unimodal functions, CQPSO and IQPSO found the theoretical
optimum value of 0 when solving f 1 and f 3 functions. Meanwhile, the SD was also 0, showing the
algorithm’s advantages. In the two high-dimensional unimodal functions, CQPSO and IQPSO found
the theoretical optimum value of 0 when solving the f 2 function, but the mean and SD of IQPSO
were smaller than CQPSO’s. When the f 4 function was solved, the optimum value, mean, and SD
obtained by IQPSO were improved by at least one order of magnitude compared with those obtained
by the other five algorithms. The stability was higher than that of other algorithms. In the two low-
dimensional multimodal functions, the advantages of CQPSO and IQPSO were higher and more stable
for the f 5 function solution than the other four algorithms. Only IQPSO could reach the theoretical
optimum value for the f 7 function solution, but its ability was equivalent to that of the other five
algorithms. In the two high-dimensional multimodal functions, IQPSO could find the theoretical
optimum value when solving the f 6 function, but its stability needed improvement. When solving the f 8

function, IQPSO could reach the theoretical optimum value, and the SD was 0. Besides, only CQPSO
could find the theoretical optimum value, but its stability must be revised.

According to the research, unimodal functions had greater solution accuracy than multimodal
functions for each method. In comparison to high-dimensional functions, low-dimensional functions
have greater solution accuracy. IQPSO demonstrated superior optimization accuracy and stability
than the other five methods, independent of unimodal or multimodal and high-dimensional or low-
dimensional functions.

4.1.3 Analysis of Convergence Curves

Experiments were carried out on eight functions with six algorithms to compare the convergence
rate of six algorithms intuitively. The eight average convergence curves in Fig. 10 were obtained.

The eight graphs above clearly show each algorithm’s fitness value changes in the optimization
process. In these graphs, the convergence rate of IQPSO is relatively higher, and its convergence accu-
racy is much higher than that of other algorithms, showing the advantages of algorithm improvement.
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Figure 10: (Continued)



CSSE, 2023, vol.47, no.1 1011

Figure 10: Mean convergence curves of Benchmark functions

4.1.4 Wilcoxon Rank Sum Test Analysis

A statistical test should be carried out for the performance evaluation of enhanced algorithms,
according to Ref. [33]. In other words, it is not sufficient to compare the benefits and drawbacks
of algorithms based just on the mean and SD. The suggested enhanced algorithms must pass the
statistical test to demonstrate that they are significantly better than other algorithms already in use.
Independently compare the results of each test to reflect the stability and fairness of algorithms. The
Wilcoxon rank sum test, with a significance threshold of 5%, was employed in this study to determine
if the findings of IQPSO were statistically different from the best results of the other five algorithms.
The hypothesis should be rejected when the p-value is less than 5% since it shows that the comparison
algorithms differ significantly from one another. If not, the hypothesis should be accepted, proving
that the comparison algorithms’ capacity to optimize is equivalent. Table 3 lists the rank sum test p-
value of IQPSO and the other five algorithms under eight functions. The NAN in the table denotes “not
applicable” since no comparison is available when the two comparison algorithms arrive at the optimal
value. That is, it is impossible to assess the relevance. R is the outcome of a decision of significance.
“+”, “–” and “=” signify that IQPSO’s performance when compared to other algorithms is better,
worse, or equal.

Table 3: p value of Wilcoxon rank sum test

Function GA PSO QPSO CPSO CQPSO
P R P R P R P R P R

f1 3.3111E-20 + 3.3101E-20 + 3.3111E-20 + 3.3111E-20 + NaN =
f2 4.4381E-18 + 4.4381E-18 + 4.4381E-18 + 4.4381E-18 + 2.7407E-4 +
f3 3.3111E-20 + 3.3111E-20 + 3.3111E-20 + 3.3111E-20 + NaN =
f4 7.0629E-18 + 7.0629E-18 + 7.0629E-18 + 7.0629E-18 + 1.3375E-12 +
f5 3.3111E-20 + 3.3111E-20 + 3.3111E-20 + 3.3111E-20 + NaN =
f6 6.9868E-18 + 6.9868E-18 + 6.9868E-18 + 6.9868E-18 + 2.4991E-13 +

(Continued)
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Table 3: Continued
Function GA PSO QPSO CPSO CQPSO

P R P R P R P R P R

f7 7.0502E-18 + 5.9606E-17 + 7.0502E-18 + 2.6493E-13 + 1.1435E-11 +
f8 3.3111E-20 + 3.3111E-20 + 3.3111E-20 + 3.3111E-20 + 2.5398E-4 +

It can be seen from Table 3 that most p-value is much less than 5%, which shows that IQPSO has
significant advantages over the other five algorithms. In comparing IQPSO and CQPSO, the R-value
in f 1, f 3, and f 5 functions is “=.” This is because CQPSO has good optimization performance. IQPSO
and CQPSO can find the optimum value.

4.2 NSSP Analysis
4.2.1 Selection of Network Security Situation Data and Environment Configuration

Two data sets were selected for experiments to verify the situation prediction algorithms proposed
in this paper. The two sets of data are specified as follows:

Data I: The experimental data obtained from the network environment built in Ref. [34] was
adopted to obtain exact and practical network security situation value in this study: the number,
type, and severity of attacks on the host were comprehensively evaluated through the network security
evaluation system every 30 min to calculate the network security situation value of the current period.
Finally, 150 situation values were selected for normalization. The resultant sample data of this
experiment are shown in Fig. 11a.

Figure 11: Network security situation value

Data II: The experimental premise was the weekly security situation data that the CNCERT/CC
publishes. From the website’s 30th issue in 2012 to its 29th issue in 2022, 522 issues of weekly
situation data were chosen as the foundation for experimental verification. The data were mainly
evaluated from five perspectives. The scenario evaluation approach from Ref. [35] was used in this
article for quantization in order to accurately portray the network security state. As illustrated in
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Table 4, different weights were allocated based on the severity of network security risks. The weekly
circumstance value was then determined using Eq. (26).

SA =
5∑

i=1

NTi

NTi max

· ωi (26)

where, NTi represents the number of a particular network security threat in a specific week (i represents
the type of security threat). NTimax represents the maximum number of this security threat in the 522
issues of data selected. ωi is the corresponding weight.

Table 4: Network security threat weight allocation

Number of hosts
infected with
network viruses in
China

Total number of
tampered websites
in China

Total number of
websites implanted
with a backdoor in
China

Number of
counterfeit pages
of websites in
China

Number of new
information
security
vulnerabilities

0.30 0.25 0.15 0.15 0.15

Data normalization can reduce the variance of features to a specific range, reduce the influence of
outliers, and improve the convergence rate of the model. This paper normalized the characteristic data
to the interval [−1, 1] by the min-max normalization method. The calculation formula is as follows.

x′ = x − min (x)

max (x) − min (x)
(27)

where, x’ is the data of x mapped to the [−1, 1] range. min (x) and max (x) are the minimum and the
maximum of the data set. The calculated network security situation value is shown in Fig. 11b.

The TCAN-BiGRU model and all the experiments were carried out under the TensorFlow deep
learning framework. The specific experimental environment [36] is shown in Table 5.

Table 5: Experimental environment configuration

Experimental environment Specific configuration

Operating system Windows 11
CPU Intel(R) Core(TM) i5-11300H @ 3.10 GHz 3.11 GHz
Memory 16 GB
Hard disk 500 GB
Development framework TensorFlow 2.8.0
Development language Python 3.9.12

4.2.2 Experimental Evaluation Criteria

To evaluate the effect of the prediction models proposed herein, three parameters, the mean
absolute error (MAE), the mean square error (MSE), and the coefficient of determination (R2) were



1014 CSSE, 2023, vol.47, no.1

selected as evaluation indexes [37]. The calculation formula for these indexes is as follows:

MAE = 1
N

N∑
i=1

∣∣yi − ŷi

∣∣ (28)

MSE = 1
N

N∑
i=1

(
yi − ŷi

)2
(29)

R2 =

[
N∑

i=1

(yi − y)
(

ŷi − ŷi

)]2

[
N∑

i=1

(yi − y)
2

] [
N∑

i=1

(
ŷi − ŷi

)2
] (30)

In the above three equations, yi is the true value of a sample. ŷi is the predicted value of a sample.
N is the number of samples. yi is the mean of true values. ŷi is the mean of predicted values.

4.2.3 Selection of Different Optimizer Algorithms

To verify the effectiveness of the Ranger21 algorithm selected in this paper, it was compared with
Adam [38], SGD [39], and Adagrad [40] optimizer algorithms by experiments. The comparison of
predictions on different data sets by different optimizer algorithms is shown in Fig. 12.

It can be seen from the figure that compared with the Adam algorithm, SGD algorithm, and
Adagrad algorithm, the Ranger21 algorithm has a higher convergence rate for network training.
Moreover, its prediction fitting degree is higher than that of the other three optimization algorithms.
Experimental results showed that the Ranger21 algorithm could promote the optimization of network
training.

4.2.4 Selection of Optimal Model Parameters

To better realize the prediction effect, the IQPSO was adopted in this paper to optimize these
hyper-parameters to find the optimal solutions to model parameters. The IQPSO-associated parame-
ters were set as follows: The population size was 5; the number of iterations was 30; the shrinkage and
expansion coefficient was 0.6; and the maximum crossover probability was 0.8.

To increase the convergence rate and prevent the aimless search of particles in the search space, the
bounds of optimization parameters are now set as follows: The number of BiGRU neurons is taken
in the [10, 500] range. The batch size is taken in the [100, 1000] range. The optimizer’s learning rate is
taken in the [0.0001, 0.005] range.

The training results of the TCAN-BiGRU model optimized by IQPSO are shown in Fig. 13.
The training error converges and becomes stable with the updating of the algorithm, verifying the
effectiveness of IQPSO.

The parameters of the network model optimized by the IQPSO are shown in Table 6.

4.2.5 Analysis of Experimental Prediction Results

The model provided here was tested against both conventional machine learning techniques and
deep learning techniques, such as the BP, LSTM, GRU, TCN, BiGRU, and IQPSO-TCAN-BiGRU
models, to see how well it performed in the NSSP.
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Figure 12: Comparison of predictions by different optimizer algorithms

Figure 13: Changes in hyper-parameters of the TCAN-BiGRU model optimized by IQPSO
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Table 6: Setting of parameters of the optimized model

Model parameter Parameter setting

Data I Data II

Optimization algorithm Ranger21 Ranger21
Learning rate 0.00033 0.0001
TCN convolution kernel 3 3
Inflation factor 1/3/9 1/3/9
Number of neurons of BiGRU 110/339/131 356/205/350
Batch size 112 232

SSA of Experimental Data

After the SSA of the network security situation value, it was embedded, decomposed, grouped,
and reconstructed into six subsequences. The results are shown in Fig. 14.

Figure 14: Results after SSA

It is commonly accepted that the high-frequency component, such as subsequence 4, subsequence
5, and subsequence 6, shows the random effect of the network security situation based on the
subsequence characteristics of the decomposed network security scenario data sequence. Several low-
frequency elements, including subsequences 1, 2, and 3, can be seen as periodic elements of the
network security status data sequence since they exhibit strong sinusoidal fluctuation characteristics.
The network security situation’s low-frequency portion is a trend indicator that may be used to identify
the long-term trend in network security.

Comparison of Prediction Accuracy

To evaluate the predictive ability of models as a whole, the MAE, MSE, and R2 of different models
were calculated. The results are listed in Table 6. To make the comparison fairer, multiple experiments
were conducted on all prediction models to take the mean. According to Table 7, the error of the
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SSA-IQPSO-TCAN-BiGRU model is over one order of magnitude lower than other models than the
IQPSO-TCAN-BiGRU model. In terms of error, it has significant advantages over the IQPSO-TCAN-
BiGRU model. The degree of fitting of the SSA-IQPSO-TCAN-BiGRU model is more than 0.5%
higher than that of other models. Overall, it is shown that the SSA-IQPSO-TCAN-BiGRU model is
effective in predicting network security situation data.

Table 7: Comparison of evaluation indexes of different models

Prediction model Data I Data II

MAE MSE R2 MAE MSE R2

BP 2.515E-02 1.359E-03 0.903 1.334E-02 2.531E-04 0.931
LSTM 1.745E-02 4.002E-04 0.971 6.135E-03 5.731E-05 0.984
GRU 1.039E-02 2.600E-04 0.981 6.222E-03 5.960E-05 0.984
TCN 1.429E-02 4.607E-04 0.967 8.758E-03 1.252E-04 0.966
BiGRU 1.031E-02 1.574E-04 0.989 6.239E-03 4.740E-05 0.987
IQPSO-TCAN-BiGRU 5.770E-03 8.671E-05 0.994 5.929E-03 4.169E-05 0.989
SSA-IQPSO-TCAN-BiGRU 1.711E-03 1.019E-05 0.999 8.786E-04 1.160E-06 0.999

The predicted and true values of the SSA-IQPSO-TCAN-BiGRU model and BP, LSTM, GRU,
TCN, BiGRU, and IQPSO-TCAN-BiGRU prediction models are compared in Fig. 15. The closer
the predicted value curve of each model is to the actual value, the better the model effect is proved.
Intuitively, all prediction models have certain predictive abilities. The predicted and true values of the
SSA-IQPSO-TCAN-BiGRU model have the highest degree of the fitting. Its predicted values almost
coincide with true values at each prediction point.

Figure 15: Comparison of situation value prediction by different models
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Convergence Analysis

Fig. 16 displays the curves of model training error with the number of iterations. Every curve can
reach convergence and stability. This chart shows that the prediction model presented here is more
accurate and has a higher convergence rate than previous models, demonstrating that it can completely
understand the characteristics of temporal data and produce valuable results.

Figure 16: Curves of model training error with the number of iterations

Runtime Analysis

The models make predictions while taking into account both the accuracy of the forecast and
the amount of time needed to run the model, i.e., the time for model training and the time for the
prediction. The complexity of the model, the number of iterations, and the batch size all affect how
long it takes to run. Table 8 displays the execution timings of several prediction models discovered
through experimentation.

Table 8: Comparison of run times of different models

Prediction model Data I Data II

Train/s Predict/s Sum/s Train/s Predict/s Sum/s

BP 0.0856 0.0019 0.0875 0.182 0.0898 0.2718
LSTM 26.15 1.51 27.66 75.44 5.18 80.62
GRU 39.59 1.08 40.67 80.59 6.08 86.67
TCN 40.1 0.26 40.36 80.12 5.37 85.49
BiGRU 46.96 1.16 48.12 85.53 6.17 91.7
IQPSO-TCAN-BiGRU 418.94 0.77 419.71 659.76 6.76 666.52
SSA-IQPSO-TCAN-BiGRU 632.7 2.71 635.41 812.3 6.25 818.55
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As can be seen from Table 7, the BP model takes less time. However, it is easier to process the data
and obtain lower prediction accuracy of the results, and we need help to predict the posture values
accurately. The IQPSO-TCAN-BiGRU model and the model proposed in this paper are optimized
by IQPSO and take longer training time, but the prediction time remains relatively stable. The model
proposed in this paper improves the prediction accuracy while the prediction time spent is the same.

5 Conclusions

Multi-attribute security indicators were fused based on network security situation data. In this
paper, SSA was introduced into network security prediction. A series of subsequences were obtained by
embedding, decomposing, grouping, and reconstructing the network security situation values obtained
weekly. Afterward, the prediction model of the TCAN-BiGRU network was established for each
subsequence. Finally, the prediction results of subsequences were superposed to obtain the final NSSP
value. Meanwhile, the QPSO was improved. The chaotic map and crossover operator were introduced
to ensure population diversity. Besides, adaptive crossover probability was adopted to improve the
algorithms’ convergence accuracy and rate. In this paper, it was proved with different data and by
multiple experiments that the model has strong feature extraction ability, high prediction accuracy,
and prediction efficiency when network security situation data are processed, whose coefficient of
determination is up to 0.999 on both sets, indicating that the model proposed herein is effective
and practical. In subsequent studies, the cutting-edge deep learning model and swarm intelligence
optimization algorithm will be focused on further improving the effectiveness of this model in actual
applications.
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