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Abstract: The anonymity of the darknet makes it attractive to secure com-
munication lines from censorship. The analysis, monitoring, and categoriza-
tion of Internet network traffic are essential for detecting darknet traffic
that can generate a comprehensive characterization of dangerous users and
assist in tracing malicious activities and reducing cybercrime. Furthermore,
classifying darknet traffic is essential for real-time applications such as the
timely monitoring of malware before attacks occur. This paper presents a
two-stage deep network chain for detecting and classifying darknet traffic.
In the first stage, anonymized darknet traffic, including VPN and Tor traffic
related to hidden services provided by darknets, is detected. In the second
stage, traffic related to VPNs and Tor services is classified based on their
respective applications. The methodology of this paper was verified on a
benchmark dataset containing VPN and Tor traffic. It achieved an accuracy
of 96.8% and 94.4% in the detection and classification stages, respectively.
Optimization and parameter tuning were performed in both stages to achieve
more accurate results, enabling practitioners to combat alleged malicious
activities and further detect such activities after outbreaks. In the classification
stage, it was observed that the misclassifications were due to the audio and
video streaming commonly used in shared real-time protocols. However, in
cases where it is desired to distinguish between such activities accurately,
the presented deep chain classifier can accommodate additional classifiers.
Furthermore, additional classifiers could be added to the chain to categorize
specific activities of interest further.
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Nomenclature

VPN Virtual Private Network
Tor Onion routing
CNN Convolutional Neural Network
P2P Peer-to-peer

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.039374
https://www.techscience.com/doi/10.32604/csse.2023.039374
mailto:aaamunshi@uqu.edu.sa


892 CSSE, 2023, vol.47, no.1

VoIP Voice over Internet Protocol
CC Classifier chains
TP True positive
TN True negative
FP False positive
FN False-negative
ROC Receiver operating characteristic
AUC The Area under the curve
N Number of training entities
y Ground-true set of class labels
yi True labels for the i-th training entity
ŷi Detected label for the i-th training entity

1 Introduction

The integration of the Internet into our daily lives is more evident now than ever before. It has
revolutionized our day-to-day activities and led to groundbreaking changes in many aspects, such
as communication, entertainment, education, transportation, and health care. While the Internet
conveniently enables numerous information services, it presents various risks, which include incessant
attacks by a wide variety of network-based threats. A common method to identify such threats
is monitoring incoming traffic from suspicious network addresses, known as the “darknet.” The
detection and categorization of Internet network traffic [1] is considered a specialized solution that
can effectively deal with critical system infrastructure and monitor various cyber threat activities [2].
Many organizations collect web traffic data to improve their security. The data are then analyzed
by being correlated with the presented services. Analyzing of this data can potentially secure those
services, guarantee the delivery of critical data, optimize intrusion prevention, and detect malicious
activities after outbreaks [3–5]. In [6], a compelling novel approach to protecting users’ privacy against
sophisticated traffic analysis attacks is proposed. Also, [7] presents a robust dynamic network traffic
scheme to defend against malicious attacks. Thus, classifying of darknet traffic is essential for real-time
applications such as the timely monitoring of malware before attacks occur.

Anonymous communication attempts to hide services on the Internet with the to secure the
communication line from censorship circumvention. Virtual Private Networks (VPNs) and onion
routing (Tor) are examples of anonymous communication. VPNs and Tor have similar tunneling
communication frameworks. Tor offers greater anonymity than a standard web browser by encrypting
web traffic through three encryption layers; however, it is not entirely secure as it is subject to
information disclosure, eavesdropping, and man-in-the-middle attacks from malicious exit nodes.
Also, both utilize encryption technologies to maintain the integrity of the transferred data. VPNs and
Tor are known as representative examples of darknet traffic. More than two million worldwide users
directly connect with Tor clients, and a significant number of hidden services are related to suspicious
activities [8]. The detection of darknet traffic is, therefore, an area of particular research interest.

Artificial intelligence techniques have been successfully used in numerous problems related to
network security, such as detecting malicious encrypted traffic [9–16]. The utilized techniques in those
studies usually classify network activities into two main classes, namely, legitimate and abnormal
intrusion, to occur whenever there is a deviation from normal activities. Furthermore, many works
utilize specific features of the network traffic to guide traffic classification. In [17], an approach to
identifying encrypted traffic is presented by employing packet header and statistical flow feature
sets, which achieved high accuracy without inspecting the payload, IP addresses, and port numbers.
Furthermore, detecting encrypted traffic covering VPN and Tor traffic is of interest. In [18], an
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approach to characterizing encrypted traffic into categories, such as browsing, streaming, file transfer,
etc., is introduced based on the traffic type. Also, a novel approach is presented in [19] for classifying
encrypted VPN Internet traffic and identifying applications by transforming basic flow data into an
intuitive picture and then applying image classification techniques. A supervised learning approach
using correlation-based feature selection and random forest algorithms to detect Tor traffic effectively
is presented in [20]. Recently, approaches for detecting VPN and Tor applications together as the real
representatives of darknet traffic have become an area of interest. In [21], a dataset that covers VPN and
Tor traffic to create a complete dataset that covers a wide range of captured applications and hidden
services provided by darknets is presented. Furthermore, the authors present a two-dimensional
convolutional neural network (CNN) that utilizes feature selection techniques to characterize darknet
traffic, including VPN and Tor applications with high detection rates. This encourages further
investigation into methods for effectively detecting and classifying darknet traffic. To do so, this
paper presents a two-stage network chain methodology for detecting and classifying darknet traffic.
In the first stage, anonymized darknet traffic, including VPN and Tor traffic related to hidden services
provided by darknets, is detected. In the second stage, traffic related to VPNs and Tor services is
classified into eight classes:

1) Audio streaming
2) Browsing
3) Chat
4) Email
5) File transfer
6) P2P (peer-to-peer)
7) VOIP (Voice over Internet Protocol)
8) Video streaming

The approach in this paper deploys a chain of deep networks to detect and classify darknet traffic
while achieving high accuracy that enables practitioners to combat alleged malicious activities and
further detect such activities after outbreaks. The primary contributions of this paper are as follows:

- Identifying the capability of detecting encrypted traffic covering either VPN or Tor traffic
separately, covering a wide range of captured darknet activities;
- Demonstrating the effectiveness of the chain of deep networks to detect and classify darknet
traffic while achieving higher accuracy measures;
- Presenting a deep chain classifier that can accommodate additional classifiers to categorize
specific activities further.

The remainder of this paper is structured as follows. Section 2 presents the multilabel deep network
chain classifier. The methodology for detecting and classifying darknet traffic is presented in Section 3.
The application and evaluation results of the proposed methodology are presented in Section 4.
Finally, the conclusions are discussed in Section 5.

2 Multilabel Deep Network Chain Classifier

Multilabel classification is a supervised learning problem in which one entity can be associated
with multiple labels. This is opposed to the traditional problem of single-label classification in which
each entity is associated with a single class label. Recently, classifier chain (CC) [22] methods have
become a practical approach to multilabel learning problems. The advantage of CCs is that they
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combine the computational efficiency of binary relevance methods and can take label dependencies
into account for classification. A CC trains a binary or multiclass classifier for each label in a
prespecified order on the label set. The features used to induce each classifier are extended by the
previous labels in the chain—that is, the labels are treated as additional feature attributes to model
the conditional dependence between the label and its predecessors. This approach can be adopted
for problems related to the detection and classification of entities, where the first model in the chain
“detects,” and then the next model “classifies.” For that, the CC approach is adopted and used in a
dedicated formulation concerning other applications. In this formation, a label from a predecessor
model is treated as an additional feature attribute; however, only a subset of entities of interest are
passed on the chain to the next model to model the conditional dependence between the label and its
predecessors. The supervised models considered in the CC are deep networks in which the first deep
network “detects.” If the entity is of interest, the entity is passed to the following deep network in
the chain, which “classifies” the entity. Fig. 1 presents the chain architecture with two deep network
models. It should be noted that such architecture can adopt additional models into the chain, and the
architecture can be further formulated based on the required application.

Figure 1: General architecture of the classifier chain

3 Methodology of Detecting and Classifying Darknet Traffic

The main objectives of the methodology presented in this section are: 1) to detect encrypted traffic
separately covering both VPN and Tor traffic and a wide range of captured darknet activities, 2) to
present an effective chain of deep networks to detect and classify darknet traffic while achieving higher
accuracy, and 3) to identify the ability of deep CCs to accommodate additional classifiers in the chain
to categorize specific activities of interest.

The detection and classification of darknet traffic are achieved by constructing a chain of two
deep network models. The first deep network model is a binary classifier that classifies the entities
into normal or suspicious based on the features of the entity. The latter deep network refers to the
features of the suspicious entity and categorizes those that are suspicious into different groups based
on the activity to which they are related. The methodology of detecting and classifying darknet traffic
can be decomposed into three subsequent steps: 1) data preprocessing, 2) deep network CC building,
and 3) result evaluation. Fig. 2 presents the general layout of the methodology. To build a classifier
that will be able to detect darknet traffic, the data should include both normal and darknet traffic
entities. As shown in Fig. 2, the data are to be preprocessed in the first step so that missing and invalid
entities are amended or removed. This results in entities carrying the features of the traffic and two
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labels. The first label (Label1) is a binary class label, where an entity is classified as either normal or
darknet traffic. If the entity is classified as darknet traffic, a second multiclass label (Label2) classifies
the type of service. Once the data are preprocessed and include the required features and labels, a
Deepnet that can detect darknet traffic entities based on their features is built in the second step. In
cases in which an entity is detected as darknet traffic (Label1), in the second stage, the type of darknet
service is classified based on the features of the entity and considering Label1.

Figure 2: General layout of the methodology

It should be noted that only darknet traffic-detected entities are passed to the classification
stage. In the last step, the built models (i.e., the detection and classification stages) are evaluated
utilizing evaluation metrics that describe the complete performance of the models. The models can
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be continuously improved based on the evaluation results; parameters can be compared to choose the
optimal settings. The details of the aforementioned steps are presented in the following subsections.

3.1 Data Preprocessing
A recent dataset that includes both VPN and Tor traffic is used to detect and classify darknet

traffic efficiently. The Darknet dataset [21], which combines the ISCXVPN2016 [18] and ISCXTor2017
[23] datasets, is used in this study. The Darknet dataset includes 158,659 entities, of which 24,311 enti-
ties are darknet traffic, and 134,348 are normal. Furthermore, darknet traffic entities are categorized
into eight hidden services. Each entity’s activity is represented by 83 features, including information
such as the utilized protocol, total length of the bandwidth packet, bytes/packet flow per second,
source IP/port, destination IP/port, timestamp, etc. A darknet traffic entity is an erroneous traffic
observed in the empty address space, a collection of globally valid IP addresses that have not been
allocated to any hosts or devices. Traffic is not anticipated to enter such a darknet IP space in an
ideal, secure network system. The dataset also includes two class labels. The first class label consists
of four categorizations: Non-Tor, Non-VPN, Tor, and VPN. The second class label consists of eight
traffic activities. It should be noted that network traffic can be collected utilizing data feed platforms
such as Apache Spark using Apache Kafka. To formulate the dataset for the construction of a CC
that will be able to detect darknet activity and then further classify the type of activity into one of the
eight hidden services, each entity in the Darknet dataset is first labeled as “normal traffic” or “darknet
traffic” this will be referred to as the detection stage. Then, each entity classified as “darknet traffic”
is further classified into one of the eight hidden services. This will be referred to as the classification
stage. Table 1 presents the number of normal and darknet traffic entities for the detection stage and
the number of entities for the eight darknet hidden services for the classification stage in the Darknet
dataset. To detect darknet traffic in general—not specific to known IP addresses—the features are
reduced by eliminating flow label features, including flow ID, timestamp, source and destination IP,
and ports. This enables us to detect and classify a broad range of darknet activities potentially. The
result of this data preprocessing stage is a dataset that includes 158,659 entities, each represented by
64 features, including two-class labels for the detection and classification stages.

Table 1: Number of normal and hidden services activities

Darknet dataset Detection Classification

134,348 (Normal) n/a
24,311 (Darknet traffic) 13,284 (Audio streaming)

263 (Browsing)
4,541 (Chat)

158,659 582 (Email)
2,610 (File transfer)
220 (P2P)
1,465 (VOIP)
1,346 (Video streaming)
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3.2 Deep Network Classifier Chain Building
In the previous stage, the data were preprocessed for the construction of a CC that will be able to

detect darknet activity. The type of activity was further classified into one of the eight hidden services.
The deep network CC is constructed by training two deep networks in this stage. The first deep network
implements the detection stage. Accordingly, the first deep network is a binary classifier that detects
darknet traffic. Entities that do not represent darknet activity are classified as normal activities and are
not passed on the CC to the next classifier. However, entities detected as darknet traffic are of interest
and are passed on the CC to the next classifier to classify the type of activity. Thus, in cases where a
new entity contains darknet activity, the classifier should be able to detect the entity as darknet activity.
Further, classify each activity based on its features into Audio streaming, Browsing, Chat, Email, File
Transfer, P2P, VOIP, or Video streaming.

It should be noted that the class label resulting from the first classifier is added as a feature attribute
to the next classifier in the chain. A second multiclass deep network in the CC that implements the
classification stage is trained to accomplish that task. To build a CC that will achieve the two models,
pre-trained deep networks [24] are adopted. The trained deep networks are repurposed by their learned
knowledge, which includes the layers, weights, and biases. Furthermore, models that achieve higher
classification accuracy are fine-tuned to improve their accuracy and classify entities into the correct
class labels. This approach is applied in both the detection stage and the classification stage. Each
Deepnet is evaluated using performance metrics, and the Deepnet that produces the highest accuracy
results for each classifier in the CC is chosen. The parameters of the deep network with tuned values
for the detection and classification stages are presented in Tables 2 and 3, respectively.

Table 2: Parameters with tuned values for the detection stage

Parameter Value
Activation function (Hidden layer 1) RELU
Activation function (Hidden layer 2) RELU
Layer size (Hidden layer 1) 41
Layer size (Hidden layer 2) 20
Learning rate 0.00073
Optimizer adam
Batch size 64

Table 3: Parameters with tuned values for the classification stage

Parameter Value

Activation function (Hidden layer 1) RELU
Activation function (Hidden layer 2) RELU
Activation function (Hidden layer 3) RELU
Layer size (Hidden layer 1) 64
Layer size (Hidden layer 2) 128
Layer size (Hidden layer 2) 64
Learning rate 0.001
Optimizer adam
Batch size 128
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3.3 Performance Evaluation
To evaluate the deep network CC, each classifier is fine-tuned and assessed independently. The

accuracy, precision, recall, and F-score metrics are used to assess the performance of the built
classifiers. In addition, a performance indicator based on the entities’ ground truth and detection
probability, namely, the receiver operating characteristic (ROC) curve, is utilized. The ROC curve
quantifies the classifier’s performance by calculating the area under the curve (AUC).

As mentioned previously, eight class labels are in the second multilabel classifier in the chain (i.e.,
the classification stage). The performance evaluation is computed for every class label, and the final
result is based on the overall average of all classes.

In CC problems, it is essential to include multiple and contrasting evaluation measures due to
the additional degrees of freedom that the multilabel setting introduces [25]. For that, per-label and
label set-based evaluation, which evaluates the label sets of the CC, are utilized in the experimental
evaluation.

When a predicted set of class labels (ŷ) match the ground-true set of class labels (y) exactly (i.e.,
label set-based evaluation), this is considered the exact match measure is known as the “0/1 loss”
measure. In this measure, any label set not detected and classified ideally is given a zero score. N is
the number of training entities, yi is the true label for the i-th training entity, and ŷi is the detected label
for the i-th training entity.

Furthermore, for CCs, the accuracy measure for a set of N entities can be computed [26]. In
contrast with the accuracy measure (i.e., class label set-based evaluation), the F-measure macro
averaged over the label-based evaluations for N test entities.

4 Experimental Results

The methodology presented in the previous section is applied to the Darknet dataset, which
consists of 158,659 entities. The data are split into training and test data. It can be observed from
Table 1 that due to the multiclass problem in the classification stage, the data are split such that class
imbalances are accounted for, and datasets have a proportional number of entities. This will ensure that
the data splits have similar class distributions of 70% and 30% for training and test data, respectively.
In the following subsections, the application and results of the methodology on the detection and
classification stages. Furthermore, the Deep Network Classifier is evaluated.

4.1 Detection Stage
The trained deep networks presented in Section 3.2 were applied to the training data portion

of the Darknet dataset. Among 200 pre-trained deep networks, the deep network parameters with the
tuned values that generate the highest evaluation results are presented in Table 2. The ROC curve plots
TPR versus. FPR at different classification thresholds. Lowering the classification threshold classifies
more items as positive, thus increasing both TP and FP. The result of the per-label evaluations and
ROC curve for the detection stage deep network are presented in Table 4 and Fig. 3, respectively. It
can be observed in the evaluation results that the deep network can detect darknet traffic entities in
the detection stage with an accuracy of 96.8% and that most of the misdetection entities were normal
activity entities detected as darknet traffic. The probability that the model ranks a random positive
entity more highly than the AUC can measure a random negative entity. The AUC-ROC is closer
to one, which indicates the higher performance of the built Deepnet model in the detection stage. In
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cases in which it is desired only to detect darknet activity, completing the detection stage is sufficient
to accomplish this task.

Table 4: Per-label evaluation results of the detection and classification stages

Metric Detection stage Classification stage

Accuracy 96.8% 94.4%
Precision 94.2% 87.8%
Recall 93.0% 92.2%
F1 0.93 0.89

Figure 3: ROC curve for the detection stage deep network

4.2 Classification Stage
To further classify the detected darknet activity, entities classified as darknet entities are passed

along the CC to the classification stage. Similarly, in the detection stage, numerous pre-trained deep
networks were applied to darknet-related entities in the Darknet dataset. Furthermore, the deep
network’s parameters were tuned, and values representing the highest evaluation results are presented
in Table 3. The results of the per-label evaluations for entities that have been passed to the classification
stage deep network are presented in Table 4. It should be noted that the results of the evaluation
metrics of Table 4 were based on the overall average for all eight label classes. The accuracy and
recall metrics were relatively high. However, the precision value degraded in cases where the model
has to deal with several unbalanced class labels; thus, the accuracy metric needs to be more accurate.
In situations characterized by poor performance in either precision or recall, the F-measure is a
more valid indication of performance. The classification deep network model achieved a score of
89% in the classification stage. This is the product of 75.8% and 77% precision scores for detecting
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video-streaming and P2P activities, respectively, as few video-streaming entities and P2P activities
were classified as audio streaming. One of the reasons for this misclassification is that Audio and
Video streaming is commonly used in shared real-time protocols for streaming, such as the Real-time
Transport Protocol (RTP) [27]. Accordingly, the features of those class labels tend to have similar
observations, primarily when the same RTP is utilized. This only affects the classification of an entity;
however, the entity was detected as a darknet activity in the detection stage. In cases in which it is
desired to accurately distinguish between P2P, Audio streaming, and Video streaming entities, an
additional classifier in the CC can be added; however, this is beyond the scope of this work.

4.3 Deep Network Chain Evaluation
To evaluate the performance of the deep network chain (i.e., label set-based evaluation), the

“harsh” loss measure is utilized. This loss measure only considers whether the exact detection
and classification labels match. For example, when a darknet activity is accurately detected but
misclassified, the loss score considers this a mismatch and is given a zero score. Accordingly, this
penalizes the performance evaluation. Furthermore, the F-measure macro averaged over the label
set-based evaluations for N test entities is computed. The performance results of the deep network
chain were 0.038, 0.96, and 0.91 for loss-measure, accuracy, and F-measure, respectively. In general,
classifiers presenting lower loss values and higher accuracy, and F-measure values are considered
adequate and can thus be relied upon. Table 5 compares the presented Deep Network Chain with the
results of the DeepImage approach [21]. It can be observed from Table 5 that the overall performance
of the presented Deep Network Chain outperformed the DeepImage approach. This could be due
to the DeepImage method selecting only certain features to build a gray image, then feeding it into
a two-dimensional CNN to detect and characterize darknet traffic. However, the superiority of the
methodology presented in this work is due to employing two chains of deep networks instead of
employing one classifier for detecting and characterizing darknet traffic, where the first deep network
detects darknet traffic. The darknet activities are passed into a second classifier for characterization.

Table 5: Comparison with other classifiers of [17]

Approach Accuracy F-measure

1D CNN 73% 0.73
DeepImage 86% 0.86
Deep network chain 96% 0.91

5 Conclusions

This paper presented an approach to detecting and classifying darknet traffic by deploying Deep
Network Chains. The first classifier in the chain is a deep network binary classifier that detects darknet
activities in the detection stage. Such activities are passed into the second classifier in the chain. The
second classifier is a multiclass deep network that categorizes the hidden services and applications in
the darknet classification stage. The methodology of this paper was verified on a dataset containing
both VPN and Tor traffic. Optimization and parameter tuning were carried out in both stages (i.e.,
the detection stage and the classification stage) to achieve more accurate results. To evaluate the
performance of the deep network chain, adequate evaluation metrics for classifier chains were utilized,
including the loss measure. The performance results of the deep network chain were 0.038, 0.96, and
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0.91 for loss measure, accuracy, and F-measure, respectively. It was observed that the misclassification
is due to the Audio and Video streaming commonly used in shared real-time protocols. However, in
cases in which it is desired to distinguish between such activities accurately, the presented deep chain
classifier can accommodate additional classifiers. Furthermore, additional classifiers can be added to
the chain to categorize specific activities of interest further.
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