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Abstract: Visual motion segmentation (VMS) is an important and key part of
many intelligent crowd systems. It can be used to figure out the flow behavior
through a crowd and to spot unusual life-threatening incidents like crowd
stampedes and crashes, which pose a serious risk to public safety and have
resulted in numerous fatalities over the past few decades. Trajectory clustering
has become one of the most popular methods in VMS. However, complex
data, such as a large number of samples and parameters, makes it difficult for
trajectory clustering to work well with accurate motion segmentation results.
This study introduces a spatial-angular stacked sparse autoencoder model
(SA-SSAE) with l2-regularization and softmax, a powerful deep learning
method for visual motion segmentation to cluster similar motion patterns
that belong to the same cluster. The proposed model can extract meaningful
high-level features using only spatial-angular features obtained from refined
tracklets (a.k.a ‘trajectories’). We adopt l2-regularization and sparsity regu-
larization, which can learn sparse representations of features, to guarantee
the sparsity of the autoencoders. We employ the softmax layer to map the
data points into accurate cluster representations. One of the best advantages
of the SA-SSAE framework is it can manage VMS even when individuals
move around randomly. This framework helps cluster the motion patterns
effectively with higher accuracy. We put forward a new dataset with its manual
ground truth, including 21 crowd videos. Experiments conducted on two
crowd benchmarks demonstrate that the proposed model can more accurately
group trajectories than the traditional clustering approaches used in previous
studies. The proposed SA-SSAE framework achieved a 0.11 improvement in
accuracy and a 0.13 improvement in the F-measure compared with the best
current method using the CUHK dataset.
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1 Introduction

Crowd behavior analysis (CBA) is one of the most significant and critical topics for ensuring
that large events in public areas run smoothly, peacefully, and without casualties. Furthermore, CBA
is a multidisciplinary topic that concentrates on a variety of domains, including biology, sociology,
and computer vision. Among the important applications of CBA is visual motion segmentation
(VMS), which provides a significant amount of information about crowd dynamics in both natural
and human communities. Generally, one person’s information can only convey a limited amount of
local information about the scene. On the other hand, individuals are recognized as union members
when crowd motion arises, and they share the same characteristics that are extremely significant
for research across many fields. VMS aims to break down a visual image into cohesive subsets
corresponding to rigidly and independently moving targets. The pedestrians within each set show
collective behaviors and similar motion paths. VMS is an essential preprocessing for a variety of
computer vision applications, and it has become a burgeoning study topic in the last few decades.
When moving objects are semantically and independently categorized, we obtained motion segments
that we can utilize in a variety of video-surveillance tasks, including motion analysis, video indexing,
traffic monitoring, activity recognition, crowd counting, crowd tracking, abnormal event detection,
disasters recognition, and semantic scene segmentation [1–4].

Even though VMS has progressed considerably [5–10] in the past few years, further improvements
are still required to accomplish satisfactory performance. The major challenge in VMS is when the
target is too small scaled. Because of the high occlusion in crowd images, state-of-the-art (SOTA)
approaches use feature points, which then combined into one group using similar motions to avoid
directly detecting pedestrians. Depending on how the objects move in the scene, both structured and
unstructured crowd images can be formed. A structured crowd scene has consistent spatiotemporal
motion patterns formed by objects that move in concert over the whole scene. Put another way, every
spatial location in any structured crowd scene has an identical motion pattern, and the motion’s
direction does not change most of the time (Fig. 1a). An unstructured crowd scene, on the other hand,
consists of non-uniform spatiotemporal motion patterns formed by irregularly moving objects whose
movement direction continually changes and cannot be anticipated (Fig. 1b).

Figure 1: The motion patterns are exhibited as tracklets; every color represents a particular pattern.
(a) Structured crowd (b) unstructured crowd
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With the evolution of surveillance devices, massive amounts of human trajectory data have been
captured, making it vitally difficult and crucial to extract valuable data. A human trajectory is a set
of sequenced spatio-temporal data from a single person. Human trajectories provide insight into a
variety of real-world applications. An effective way to analyze human trajectories is through trajectory
clustering. Trajectory clustering approaches are classified into three groups based on the availability of
labeled data: supervised, unsupervised, and semi-supervised. The learning of supervised models occurs
before trajectory clustering. Labeled data is typically employed to train a function that creates clusters
by mapping data to labels. Then, this function is utilized to predict the clusters of unlabeled data.
The objective of unsupervised models is to cluster data without the aid of humans or labeled data.
By analyzing unlabeled datasets, an inference function can be built, which can then be used to group
data. The former two models are combined through semi-supervised modeling, which is modified
using unlabeled data after learning it on labeled data [11]. However, traditional clustering methods
would struggle to achieve satisfactory performance if the original data were not evenly distributed
owing to high intravariance, as shown on the left side of Fig. 2.

Figure 2: The distribution of the original data is on the left side. Because of the large intravariance, it
is hard to separate the data properly. By performing a non-linear transformation function, the points
are compacted in a new space with regard to the appropriate cluster centers, as shown on the right side

To address the earlier issue, we aim to map the spatial-angular feature space to a new feature
space that is more suited for clustering tasks. The sparse-autoencoder network is a strong contender
to solve the above issue. It uses iterative learning to learn both the encoder (EN) and the decoder
(DE) to provide a non-linear transformation function. EN is actually the non-linear transformation
function, and DE requires reconstructing precise data from the feature representation produced by the
EN. Repeating this procedure ensures that the transformation function is reliable and can accurately
represent the data. This paper proposes an effective model to cluster human trajectories in different
crowd places based on spatial-angular stacked sparse autoencoders (SA-SSAE). When using high-
dimensional large-scale datasets, conventional clustering techniques suffer from major performance
concerns. For instance, dimensionality reduction techniques must be used prior to using the clustering
algorithm to extract features from raw data [12]. Deep learning has always been at the heart of tackling
these concerns [13], so we used stacked sparse autoencoders (SSAE) to extract features from the spatio-
temporal trajectory data and to group the trajectories together based on their shared characteristics.

The contributions of our work are as follows:

• An efficient framework called SA-SSAE for VMS has been proposed. The SA-SSAE framework
is indispensable for high-level crowd behavior analysis. The proposed framework’s capacity to
handle pedestrian flows that are randomly dispersed is one of its main attractions. To our
knowledge, this is the first study that leverages stacked sparse autoencoders for visual motion
segmentation in crowd videos using trajectory data employing the Chinese University of Hong
Kong (CUHK) crowd benchmark.

• The generalized Kanade-Lucas-Tomasi key point tracker (gKLT) is applied to the input video
sequences to extract the trajectories of motion patterns. Individual trajectory formation is a
primary concern in the VMS. For studying and analyzing crowded environments, the accurate
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extraction of individual trajectories over time is crucial. In this study, the generalized KLT
tracker is applied to video sequences to construct individual trajectories.

• Dataset with ground-truth annotations is presented to validate our framework’s performance.
The Hajj, a significant pilgrimage to Mecca in Saudi Arabia, is one of Islam’s five pillars. Every
year, up to four million pilgrims carry out the Hajj rituals. As a result, it ranks as one of the
most significant pedestrian issues worldwide. Therefore, we collected our Hajj dataset from real-
world crowd scenes in Mecca. The dataset includes 21 crowd videos with different scenes and
scenarios.

• Our framework is evaluated using two real-world datasets with various crowd densities. On
both datasets, we found that our framework can construct high-quality clusters and outperform
existing methods quantitatively.

The remainder of the paper is laid out as follows: Section 2 discusses related work. Section
3 presents the proposed spatial-angular stacked sparse autoencoder model for VMS. Comparative
results are discussed in Section 4. Concluding remarks are presented in Section 5.

2 Related Work

The various methods for VMS are reviewed in this section. The VMS approaches can be catego-
rized into three main subsets depending on the density of movement flows. Approaches addressing
a maximum of five humans are described under the domain of low-level density (LLD). Approaches
that address between five and fifteen humans are characterized as mid-level density (MLD). Likewise,
approaches that target more than fifteen humans fall under the subset of high-level density (HLD)
[14].

LLD Approaches: Nguyen et al. proposed a consensual approach for visual motion segmentation
in dynamic views [15]. The model combined unsupervised techniques to address the label corre-
spondence issue. Seyedhosseini et al. put forward a discriminative learning scheme, called CHM,
for semantic segmentation. It benefits from contextual data at various resolutions in a hierarchy.
The ability of CHM to optimize a posterior probability at various resolutions is its major feature. It
effectively and greedily implements this optimization. CHM trains a number of classifiers at various
resolutions and uses the gained findings to learn a classifier at the original resolution [16]. An approach
for motion segmentation by employing optical flow orientations was proposed by Narayana et al. [17].
The over-segmentation of an image into depth-dependent units was addressed by the utilization of
optical flow orientations. Their approach could automatically obtain the quantity of foreground
motions. Meunier et al. proposed a CNN-based fully unsupervised approach for VMS from optical
flow. Meunier et al. hypothesized that the optical flow input could be expressed as a set of parametric
motion models, commonly quadratic or affine. The basic principle of their method is to utilize the
Expectation-Maximization to rationally build a loss function and a training procedure for their
ground-truth-free neural network for VMS [18]. Choudhury et al. proposed a method for VMS by
combining the advantages of appearance-based and motion-based segmentation. They put forward
supervising a network of image segmentation with the function of predicting areas that are likely to
have simple motion patterns and so are likely to match with targets [19].

MLD Approaches: Mukherjee et al. presented a linear-time video segmentation approach [20]
that uses a Gaussian mixture model (GMM) to cluster each video sequence. It also utilizes recursive
filtering to re-obtain the parameters of the GMM. In addition to updating the variance iteratively
and creating or removing clusters as needed, their hybrid approach can uniquely propagate Gaussian
clusters through each subsequent frame. However, a distance threshold parameter is required as its
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primary input. A cluster similarity criterion, which may be based on a user-defined distance metric,
controls how new clusters are included and removed. A unified conditional random field (CRF model)
was proposed by [21] for multiple-targets joint-tracking and segmentation in complex video sequences.
The model utilizes low-level image features to associate each super pixel with a particular objective or
to designate it as a background.

HLD Approaches: A statistical approach established using the Lagrangian-particle-dynamics [22]
for flow segmentation and detection of flow instability was presented in [9]. The flow field created by
the crowd motion is handled as an aperiodic dynamical system. To determine the Lagrangian coherent
structures existent in the underlying flow, a Finite Time Lyapunov exponent field is built using the
greatest eigenvalue of the tensor. In a normalized cuts framework, the Lagrangian coherent structures
are used to identify the boundaries of the flow segments by dividing the flow into regions with
markedly distinct dynamics. Establishing correspondences between flow segments over time allows
for the detection of any alteration in the number of flow segments, called instability. From the point
of vision, [6] carefully looked at groups’ basic and universal aspects that are present in several crowd
environments. These aspects are essential to comprehending congested environments and are driven by
sociopsychological investigations. Moreover, a group discovery approach was put forward by learning
the collective transition priors.

The VMS problem may alternatively be considered a trajectory clustering (TC) challenge. Deter-
mining a proper metric to calculate the similarity of trajectories with different attributes and a proper
method to cluster the trajectories on the basis of their commonalities are the two primary issues in TC
[23]. Most VMS approaches explored to date either have limited applicability to certain categories
of crowd scenes or suffer from major performance concerns. Based on spatial-angular stacked
sparse autoencoders, this study provides a model for clustering human trajectories in various crowd
environments. The proposed framework is effective and robust for various crowd scene scenarios.

3 Proposed Spatial-Angular Stacked Sparse Autoencoder Model for VMS

The proposed intelligent VMS framework is described in detail in this section. The SSAE
network is built based on spatial-angular motion information and is used to find clusters of similar
instances in an unlabeled dataset. The framework is illustrated in Fig. 3. Five main steps are involved
in constructing the proposed framework: generating trajectories, refining the generated trajectories,
obtaining spatial-angular motion information, applying spatial-angular stacked sparse autoencoders,
and softmax layer. SA-SSAE is proposed to automatically segment motion patterns, expressed as
trajectories. The SA-SSAE framework employs the generalized KLT tracker (gKLT tracker [24]),
which is proposed as an improvement to the standard KLT tracker [25]), owing to its computing
efficiency and tracking accuracy. Every generated trajectory is made up of a set of 2D spatial
coordinates {(x1, y1), (x2, y2), . . . , (xk, yk)}, where L ∈ [1, k] is the trajectory length. The following sub-
section describes each step where trajectories are refined following Shao et al.’s approach. The motion
point features that are made from the new trajectories are then used to make both spatial and angular
features. This valuable motion information is then fed into the stack sparse autoencoder network to
output motion segments.
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Figure 3: Flowchart of the SA-SSAE framework

3.1 Generating Trajectories
A major challenge in the VMS is the formation of individual trajectories. The precise extraction

of individual trajectories over time is critical for investigating and examining crowded scenarios.
Following state-of-the-art papers [6,26–28], we utilize the gKLT due to its efficacy in determining
trajectories, particularly for small objects in crowd images. The gKLT was first proposed by [25].
First, gKLT obtains the feature points in the moving foreground with enough texture data to detect.
The feature points are then tracked, and their velocities are calculated frame by frame based on their
displacements. A collection of tracked feature points is thus acquired. The gKLT tracker commences
with a group of sparse features in the present frame fi and seeks to locate their positions in the
subsequent frame fi + 1 by matching a patch of an image surrounding a feature to its identical image
patch in the subsequent frame. The assumption of brightness constancy indicates that the intensities of
the patches in the subsequent image will not vary significantly. Utilizing a patch enables differentiation
between surrounding points of equivalent intensity. The ω(x) window function, which is commonly a
Gaussian function, is employed to highlight nearby pixels more than far-off ones. This explains why
points nearer to the feature point are likelier to exhibit comparable motion than those further away.
Calculating the error function is the next step in the matching:

ε (d) =
∑
f (x0)

[fi+1 (x + d) − fi (x)]2
ω

(
x − x0

ηw

)
(1)
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through the window function’s support ω(x0), which is positioned over the feature point x0. The
estimated displacement d for the feature point at x0 in picture fi is obtained by decreasing the weighted
nonlinear least squares formula. The simulation results (Fig. 4) show that the gKLT algorithm
effectively tracks feature points that indicate crowd movement.

Figure 4: gKLT algorithm simulation results

3.2 Refining the Generated Trajectories
Through the former processing, a collection of tracked feature points was obtained. Nevertheless,

the points gKLT generated do not accurately describe the pedestrians because, in some cases, there
could be numerous points inside the same part of a moving person. Moreover, the points can be located
in the background or formed owing to changes in illumination, producing noisy, short, and static
tracklets. In our framework, following Shao et al. [6], such tracklets are filtered out, which increase
VMS’s overall performance.

3.3 Obtaining Spatial-Angular Motion Information
The spatial locations of motion features are obtained from the newly refined trajectories. The

spatial location features of a trajectory are critical because trajectories that are spaced far apart, even
if they are identical in shape, often do not belong to the same cluster. The spatial location features for
each trajectory ti can be calculated using the following equation:

spti (vi) = 1
k

k∑
j=1

(vi) (2)

where vi = [xi, yi], and k is the trajectory length. The spti (vi) denotes the spatial location feature vector.
Angular features describe the direction of the crowd’s motion [28]. To compute the average feature, the
average displacement Ati of a trajectory is obtained first using Eq. (3) below:

Ati = 1
(n − 1)

n∑
s=2

((
xsti

− x(s−1)ti

)
,
(

ysti
− y(s−1)ti

))
(3)

The average displacement vector A contains two components u and v. Now, using Eq. (3), the
average angular can be calculated based on the following equation [28]:

�ti =

⎧⎪⎪⎨⎪⎪⎩
cos−1

(
A·Â||A||∗||Â||

)
∗ 180

π
, v > 0[

2π − cos−1
(

A·Â||A||∗||Â||
)]

∗ 180
π

, u �= 0, v ≤ 0

0, u, v = 0

(4)
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Â indicates the horizontal direction’s unit vector. The value of �ti ∈ [0, 2π − 1] differs based on
the values of the vectors u and v. Furthermore, a �ti value of zero indicates the absence of motion.

3.4 Spatial-Angular Stacked Sparse Autoencoders
In our sparse-autoencoder with smoothed l2-regularization technique, m numbers of input spatial-

angular training features {Xm}M
m=1 are given such that {(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))}, where x(i) ∈

R, and yi ∈ {1, 2, 3, . . . , C} are the labels. These training samples are fed into the proposed stacked
sparse-autoencoders network. The encoder and decoder are two main components of the sparse-
autoencoder training process. The encoder maps the input data into the hidden representation while
the decoder reconstructs data from the hidden representation. The hidden encoder vector calculated
from Xm is denoted by the letter hm. X̂m indicates the output layer decoder vector. Therefore, the
following is the encoding procedure:

hm = fe(WeXm + be) (5)

fe shows the encoding function, We is the encoding weight parameter, and be represents the corre-
sponding bias. The following is a description of the decoder process:

X̂m = fd (Wdhm + bd) (6)

fd represents the decoding function. Wd and bd are the decoding weight and bias, respectively.

The sparse-autoencoder model minimizes the reconstruction error to learn a meaningful hidden
representation. Thus, to diminish the reconstruction error and resolve the parameters We, Wd, be, and
bd, the sparse-autoencoder’s parameter settings are optimized as follows:

φ = argmin
1
m

m∑
k=1

L
(
Xk, X̂k

)
(7)

L
(
Xk, X̂k

)
represents the loss function, where L

(
Xk, X̂k

) =
∣∣∣∣∣∣X − X̂

∣∣∣∣∣∣ . Fig. 5 presents the SSAE

architecture. SSAE in our framework is built by stacking two sparse-autoencoders into m hidden layers
using an unsupervised learning method called “layerwise learning”, which is subsequently fine-tuned
utilizing a supervised method. By including a regularizer in the cost-function, it is feasible to promote
an autoencoder’s sparsity. This regularizer is based on a neuron’s average output activation value,
described as follows:

ρi = 1
k

k∑
i=1

h(1)

n

(
xj

) = 1
k

k∑
i=1

fe

(
w(1)T

n xi + b(1)

n

)
(8)

where k represents the overall quantity of the training patterns. xi is the ith training pattern, w(1)T
n is the

nth row of the weight matrix W 1, and b(1)

n is the nth element of the bias vector b(1). The sparse-autoencoder
uses back-propagation (bp) to lessen the cost-function, and it can be computed as follows:

Jsparse =
[

1
N

N∑
i=1

1
2

∣∣∣∣hW ,b

(
xi − x̂i

)∣∣∣∣2

]
+ λ

2

nl−1∑
l=1

s1∑
i=1

sl+1∑
j=1

(W (l)
ji )2 + υ

n∑
j=1

S
(
aj

)
(9)

where the first expression of Eq. (9) presents the average sum-of-squares error, λ is a variable to control
the relative weight of the regularization. Incorporating the l2-weight regularizer makes the solution
“smoother” and improves its generalization ability. υ is the sparsity penalty term’s weight. The λ and
υ can be specified while training the sparse-autoencoder. S(·) denotes the sparsity regularizer that
regulates the sparsity of the hidden layer output. S has a low value for every neuron “specializing”
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in the hidden layer, it produces a high output for a few training samples. On account of this, a lower
sparsity fraction promotes a high level of sparsity. aj presents the average output of the jth-hidden-unit
and can be obtained using Eq. (10) below:

aj = 1
k

k∑
i=1

u(i)
j (10)

where u is the jth-hidden-unit-output of an ith-training pattern. The parameters l2-weight regularize,
and sparsity regularize are utilized to prevent overfitting. The stack sparse-autoencoders are linked to a
softmax layer that predicts the probabilistic assignments of clusters. The softmax layer’s mathematical
model is as follows [29]:

Oθ

(
xi

) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p(yi = 1|xi; θ)

p(yi = 2|xi; θ)

p(yi = 3|xi; θ)

·
·
·

p(yi = r|xi; θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 1

r∑
i=1

eθT
j xi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

eθT
1 xi

eθT
2 xi

eθT
3 xi

·
·
·

eθT
r xi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

where {θ1, θ2, . . . , θr} represents the model parameters and the expression 1/
r∑

i=1

eθT
j xi

normalizes the

distribution to guarantee that the sum is equal to one.

Figure 5: Stacked sparse autoencoder architecture

4 Experiments

In the dense crowd scenes, individuals are a gathering of many groups with similar motion charac-
teristics. Groups are essential components of a crowd. A novel crowd segmentation framework based
on spatial-angular stacked sparse autoencoders was presented in this paper to obtain fundamental
crowd interactions for subsequent crowd behavior analysis. The proposed framework can be applied
to various dense crowd scenes. In this section, we extensively evaluate the performance of the proposed
framework for VMS on two crowd video datasets: the Hajj and the CUHK crowd datasets.

4.1 Motion Segmentation Benchmarks
Hajj Benchmark: The Hajj benchmark consists of crowd videos shot in various indoor and outdoor

locations in Mecca. Islam’s Hajj, a major pilgrimage to Mecca in Saudi Arabia, is one of the five pillars
of Islam. The Hajj rituals are performed annually by up to four million pilgrims. Consequently, it is one
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of the most significant global pedestrian issues. The benchmark has 21 real-world crowd videos with
various scenarios and situations. It has several challenges, including occlusions, lighting, and various
object scales. The Hajj benchmark videos contain six scenes, as shown in Fig. 6.

Figure 6: A few examples of Hajj benchmark frames. The original frames of crowded indoor and
outdoor scenes are on the right, and the motion patterns are on the left
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CUHK Benchmark: The CUHK is a set of crowd videos that includes 55 videos captured by
Shao et al. [6], as well as former crowd benchmarks that have already been released from the following
SOTA studies [9,24,30,31]. The CUHK collection has 300 annotated crowd clips with different crowd
densities, and the benchmark has the groups for each clip’s motion pattern segmentation. These 300
video clips are used to validate the proposed model following the SOTA approaches in [6,14,28]. Based
on the crowd dynamics, these clips are grouped into structured and unstructured groups. Additionally,
each scene is grouped into indoor and outdoor subcategories based on the location of the recording
and the nature of its content. Fig. 7 shows examples of crowd images from the CUHK benchmark.

Figure 7: CUHK benchmark sample frames

4.2 Evaluation Methods and Results
VMS is evaluated as a clustering issue, and the performance evaluation can be achieved by

utilizing widely well-known cluster assessment measures: Purity, Rand Index (RI), Normalized Mutual
Information (NMI), accuracy, and F-measure [14,32,33]. A larger value denotes better clustering
performance; all performance measurements lie within the range [0, 1]. The values of the training
parameters for the sparse autoencoders are listed in Table 1. Purelin function and logistic sigmoid
function, respectively, serve as the transfer functions for the encoder and decoder. A linear transfer
function known as the Purelin function is defined as follows:

f (z) = z (12)

The Logistic sigmoid function is given as:

f (z) = 1
1 + e−z

(13)

Moreover, scaled conjugate gradient descent (SCGD) was employed for the autoencoder training
process to optimize the weights and bias by minimizing Jsparse(W , b) in Eq. (9). The encoder attempts
to encode the considerable input features into a smaller hidden representation with only the related
information. The decoder turns the process back to reproduce the same set of features as the input.
After training, weights will be assigned to every neuron in the hidden layer, enabling them to provide an
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efficient stimulus against input visual information. The feature set produced from the first sparse AE’s
weights is utilized to train the second sparse AE. The first sparse AE’s feature t-Distributed Stochastic
Neighbor Embedding (t-SNE) plot is shown in Fig. 8a. The t-SNE demonstrates very clearly that the
feature set exhibits good discriminatory behavior. The size of the hidden layers for the first sparse AE is
30, and the size of the hidden layers for the second sparse AE is 10, leading to a smaller representation
of the features. A significant difference that may be seen in the t-SNE plots in Figs. 8a and 8b is that the
features are compressed about the appropriate cluster centers in the new feature space. Fig. 9 presents
some visual motion segmentation results of real-life crowd scenes from the CUHK and Hajj crowd
benchmarks. Different colors stand for different motion segments. It is clear that the proposed SA-
SSAE framework works very well compared to the ground truth segmentation groups.

Table 1: Parameters of SA-SSAE model

No Parameter Value

1 Max epochs 400
2 l2 weight regularization 0.1
3 Sparsity regularization 2
4 Sparsity proportion 0.01
5 Scale data False

Figure 8: The t-SNE plot of features produced from (a) the first sparse AE, (b) the second sparse AE,
using the “exact” method, which maximizes the Kullback-Leibler divergence (KLD) of distributions
between the original data space and the embedded data space
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Figure 9: Visual motion segmentation results based on the proposed framework

4.2.1 Results on Hajj Crowd Benchmark

Table 2 compares the results and shows the average performance for 21 crowd videos of the Hajj
benchmark. It indicates that the proposed model surpasses the recent SADC approach for VMS by
a large margin in terms of purity, NMI, and RI. Upon closer examination, we discovered that the
NMI-performance-metric always produces a value of zero when one of the two grouping assignments
(ground truth or clustering outcome) has only one cluster and the other clustering has multiple clusters.
This is not permitted when calculating the NMI. This is because of an underlying mathematical
problem with how mutual information is computed. However, such a debate is outside the purview
of this study.

Table 2: Results based on Hajj benchmark

Method Purity NMI RI

SADC [28] 0.85 0.21 0.74
SA-SSAE 0.93 0.70 0.91

4.2.2 Results on CUHK Crowd Benchmark

To demonstrate the efficacy of the proposed model, its performance results are compared to the
following SOTA methods: MCC [24], CT [6], and SADC [28]. As shown in Table 3, the proposed SA-
SSAE model outperforms all other approaches. As mentioned previously, the NMI will equal zero if
one of the two clustering assignments has only one cluster and the other clustering has more than one.
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With 25% of the overall videos in the CUHK benchmark having one group ground-truth, this explains
why other approaches give smaller values for NMI.

Table 3: SA-SSAE CHUK

Method Purity NMI RI

MCC [24] 0.69 0.43 0.70
CT [6] 0.76 0.41 0.73
SADC [28] 0.93 0.78 0.89
SA-SSAE [ours] 0.96 0.84 0.95

Table 4 presents a comparative assessment in terms of the Acc and F-measure using nine relevant
approaches HC [34], CF [35], CT [10], CDC [26], MCC [24], AMR [36], HSIM [14], MPF-l1 [33], and
MPF-l2 [33]. Additionally, Fig. 10 illustrates the relative improvement of the SA-SSAE model over
the other approaches. The proposed model gets the highest Acc and F-measure values, which shows
that it is better at getting motion pattern segments. It is well known that performance decreases when
pedestrian distribution varies. All SOTA approaches [10,24,26,33–36] disregard the changes in the
distribution of individuals, which only remains true if the motion flow is coherent across time. Such
variations generate isolated areas, which in turn, lower overall performance. Furthermore, the SOTA
approaches [10,24,26,33–36] cannot group structurally comparable pixels into significative segments.
Discovering and segregating isolated pedestrian segments presents a highly complicated issue. Even
though the HSIM approach is emphasized for its ability to handle randomly distributed pedestrian
flows, our SA-SSAE model achieves better results regarding the F-measure. The relative improvement
of the SA-SSAE framework compared to the HSIM approach is 0.36.

Table 4: Comparative assessment in terms of the Acc and F-measure employing CUHK benchmark

Method Acc F-measure

HC [34] 0.63 0.62
CF [35] 0.70 0.67
CT [10] 0.75 0.74
CDC [26] 0.67 0.67
MCC [24] 0.68 0.67
AMR [36] 0.78 0.76
HSIM [14] - 0.58
MPF-l1 [33] 0.83 0.80
MPF-l2 [33] 0.80 0.79
SA-SSAE [ours] 0.94 0.93
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Figure 10: The relative improvements of the SA-SSAE model compared to HC, CF, CT, CDC, MCC,
AMR, HSIM, MPF-l1, and MPF-l2

Fig. 11 depicts the comparison findings across several crowd scenario categories (mass movement,
street, street-market, station, mall, public pathway, cross-walk, and escalator). The proposed SA-SSAE
model performs the best among the other three approaches for all the crowd scenario categories.
Moreover, the proposed model provides robust results for all evaluated metrics because it considers
the trajectory history for several known frames, which is a significant factor in the model’s training.
The NMI results for the mass movement category for MCC and CT approaches are very low (close
to zero). The SADC approach succeeds in increasing the results of NMI to 0.59. However, SA-SSAE
outperforms SADC by 0.38, which proves our model’s efficiency.

Figure 11: Quantitative comparison according to the scene type (mass movement, street, street-market,
station, mall, public-walkway, cross-walk, escalator)

Similarly, Figs. 12 and 13 compare the findings across several crowd scenario categories, structured
or unstructured, as well as indoor or outdoor, respectively. SA-SSAE excels in all categories.
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4.2.3 Sparsity Parameter Study

The optimal value of the sparsity proportion parameter for the SA-SSAE model was determined
via comparative experiments using the CUHK benchmark. Table 5 illustrates that the sparsity
proportion gives the best results for all performance metrics when its value is between 0.01 and 0.1.
Thus, 0.01 was determined for the sparsity proportion parameter.

Figure 12: Quantitative comparison according to the crowd movement (structured or unstructured)

Figure 13: Quantitative comparison according to the crowd location (indoor or outdoor)

Table 5: Various values of sparsity portion parameter. The sparsity proportion value must be in the
range [0, 1]

Sparsity Proportion Purity NMI RI Acc F-measure

0.00 0.73 0.26 0.64 0.74 0.75
0.001 0.73 0.27 0.65 0.75 0.75
0.01 0.96 0.84 0.95 0.94 0.94
0.1 0.96 0.84 0.95 0.94 0.94
0.5 0.96 0.83 0.95 0.94 0.93
1 0.73 0.26 0.64 0.74 0.75

5 Conclusion

This study proposed a deep learning framework for VMS using spatial-angular stacked sparse
autoencoders. The framework is meant to aid in proactive stampede avoidance to enhance people’s
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safety in crowd scenes. In this study, it is suggested to decompose the motion tracks in a given crowd
scene into groups. Each group contains trajectories with similar behavioral characteristics. We prove
that sparse stack autoencoders can be adopted effectively for VMS and provide better results than
traditional clustering methods. According to experimental results, the proposed SA-SSAE model is
superior to the comparative methods in terms of purity, NMI, RI, accuracy, and F-measure. Future
research will focus on methods for integrating our VSM framework with outlier detection. Another
crucial element that we will consider for increasing robustness is camera motion. To further improve
the performance of the segmentation results, new features will be researched by utilizing other feature
descriptors. Moreover, future research can be implemented by investigating the performance of the
Kalman filter and YOLO (You Only Look Once) for VMS.
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