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Abstract: Due to the anonymity of blockchain, frequent security incidents and
attacks occur through it, among which the Ponzi scheme smart contract is
a classic type of fraud resulting in huge economic losses. Machine learning-
based methods are believed to be promising for detecting ethereum Ponzi
schemes. However, there are still some flaws in current research, e.g., insuffi-
cient feature extraction of Ponzi scheme smart contracts, without considering
class imbalance. In addition, there is room for improvement in detection
precision. Aiming at the above problems, this paper proposes an ethereum
Ponzi scheme detection scheme through opcode context analysis and adaptive
boosting (AdaBoost) algorithm. Firstly, this paper uses the n-gram algorithm
to extract more comprehensive contract opcode features and combine them
with contract account features, which helps to improve the feature extraction
effect. Meanwhile, adaptive synthetic sampling (ADASYN) is introduced to
deal with class imbalanced data, and integrated with the Adaboost classifier.
Finally, this paper uses the improved AdaBoost classifier for the identification
of Ponzi scheme contracts. Experimentally, this paper tests our model in
real-world smart contracts and compares it with representative methods in
the aspect of F1-score and precision. Moreover, this article compares and
discusses the state of art methods with our method in four aspects: data
acquisition, data preprocessing, feature extraction, and classifier design. Both
experiment and discussion validate the effectiveness of our model.

Keywords: Blockchain; smart Ponzi scheme; n-gram; oversampling; ensemble
learning

1 Introduction

Blockchain stores all value transfer processes based on cryptocurrency transactions [1]. Due to
the characteristics of openness and transparency, tamper-proof and traceability, blockchain tech-
nology has laid a solid foundation of trust and created a reliable cooperation mechanism, which
has a very broad application prospect. For example, Kumar et al. apply blockchain to Industrial

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.039569
https://www.techscience.com/doi/10.32604/csse.2023.039569
mailto:huangjing@bjut.edu.cn


1024 CSSE, 2023, vol.47, no.1

Internet of Things (IIOT) [2] and Softwarized Unmanned Aerial Vehicles (UAV) environments [3]
to protect data privacy and build trusted communication entities. Ethereum is a blockchain-based
decentralized application platform, known as Blockchain 2.0 [4]. Smart contracts are applications that
run on an Ethereum virtual machine. In smart contracts, when preset conditions are met, contract
terms written in computer programs will be automatically executed. Traditional contracts need to
be overseen by a trusted third party, so they take longer and incur additional costs. In contrast,
smart contracts are stored and updated in a distributed blockchain, enabling secure and efficient
automatic peer-to-peer trusted transactions [5]. In a nutshell, smart contracts are agreements between
participants who do not trust each other and are automatically executed by the blockchain’s consensus
mechanism, rather than relying on a trusted authority [6].

As the growing popularity of blockchain has attracted more and more users, Kumar et al. have
provided a variety of solutions to the large-scale data storage problems it poses [7,8]. However, due to
the complexity and lack of supervision of this new technology, criminals take advantage of blockchain’s
anonymity, immutable, automatic execution of smart contracts, and high credibility to carry out
propaganda to obtain false trust and launch a series of fraud activities [9,10]. Many of the frauds are
related to Ponzi schemes, which are a common scheme in traditional financial investment, also known
as “empty handed white wolf”. Simply put, it is to use the money of new investors to pay short-term
returns to old investors, creating the illusion of making money, and then cheating more investment
[11]. Nowadays, criminals are introducing Ponzi schemes into the blockchain, causing huge economic
losses to investors [12]. Studies estimate that from September 2013 to September 2014, bitcoin-based
Ponzi schemes raised more than $7 million [10]. Ponzi schemes use smart contracts as camouflage,
which brings extremely expensive losses to users and seriously endangers the security of the blockchain
ecosystem. Therefore, it is urgent to find a way to realize the detection of smart contracts of Ponzi
schemes.

Detecting a Ponzi scheme on Ethereum is not an easy task. The Ethereum-based smart contract is
a series of EVM bytecodes, and smart contract source code written in a high-level language needs
to be compiled into bytecode by a compiler before it can run on an Ethereum virtual machine.
Bytecode, on the other hand, is a string of byte arrays encoded by hexadecimal digits, from which it
is difficult to extract effective features. Each byte of EVM bytecode corresponds to a human-readable
operation, and by decomposing the bytecode, it can be converted into an easy-to-understand opcode
[13,14]. In simple terms, bytecode is produced by compiling contract source code, and opcode is the
result of disassembling contract bytecode. Fig. 1 shows the conversion process between the source
code, bytecode and opcode of the ZeroPonzi contract. According to this transformation relationship
between contract source code, bytecode and opcode, we can analyze the code logic of smart contracts
by parsing contract opcode when contract source code is not available. These transactions of smart
contracts are transparent and traceable, so their trading behavior is a good reflection of smart
contracts.

Based on the above characteristics, we can detect a Ponzi scheme from the two dimensions of
contract code and contract transaction. At present, many scholars detect Ponzi scheme contracts from
these two perspectives. Relevant studies can be divided into three types. The first type is based on source
code inspection, which mainly checks and identifies Ponzi schemes by manually checking contract
source code [10,12,15]. The second type is based on feature engineering, which mainly represents
the contract by designing some features and then inputting them into the machine learning model to
realize the detection of a Ponzi scheme [13,14,16–24]. The main difference between different feature-
based methods is how to select effective features. The third type is based on network embedding.
This method mainly integrates the formation process of the trading network, the operation code of
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the smart contract, and other information into a low-dimensional continuous vector through node
embedding technology, and then models the detection problem of Ponzi scheme contract into a node
classification task [25,26].

Figure 1: Smart contract transcoding

However, current detection methods still have shortcomings. First, the code features selected do
not take into account the logical relationships of the contract source code [13,14,16,18]. A smart
contract is a logical code protocol and a single opcode frequency does not reflect this contract logic.
Second, most models do not address the problem of imbalanced datasets well [13,14,21]. The number
of Ponzi contracts on Ether is very small compared to the total number of contracts, and there
is a class imbalance problem. The detection of Ponzi schemes is essentially an imbalanced binary
classification problem, but many research methods do not currently address this. Third, there is room
for improvement in the detection accuracy of the model, and a more effective method for processing
and classifying features is needed to better improve the detection effect.

This paper proposes an ethereum Ponzi scheme contract detection model using AdaBoost
algorithm based on oversampling combined with opcode context characteristics. First, to better
extract the logical relationship of the contract code, we use the n-gram algorithm to extract more
comprehensive contract opcode features and combine them with account features that represent the
characteristics of the contract transaction to construct the contract feature data set. Secondly, to
deal with the class imbalance in the Ponzi scheme smart contract dataset, the adaptive synthetic
sampling (ADASYN) method [27] is adopted to extract effective characteristic data for detection.
Third, we trained the dataset using the better-performing AdaBoost [28] and combined oversampling
with AdaBoost. The weight assignment of the AdaBoost classifier to the training samples is indirectly
changed by introducing ADASYN in each round of augmentation, thus allowing each weak classifier
to better learn features from the Ponzi scheme contract samples. Finally, the detection of Ponzi scheme
contracts is improved.

The main contributions of this paper are as follows:

• The opcode feature extraction method has been improved. By using the n-gram algorithm to
extract opcode context features, we can better represent the logical relationship of the contract
source code.
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• We use the ADASYN algorithm to oversample characteristic datasets to solve the detection
problem of the ethereum Ponzi scheme with class imbalance.

• The AdaBoost classifier has been improved by combining with ADASYN, so as to better learn
the features of Ponzi contracts and improve the detection of the model.

• Experiments on large-scale datasets and comparisons with other representative methods. The
results verify the validity of the model.

The rest of this paper is organized as follows. In Section 2, we summarize the related works. In
Section 3, we give a detailed description of the design and construction of the model. In Section 4, we
show experimental studies and results. In Section 5, we have a discussion. Finally, we conclude this
article and propose future research directions in Section 6.

2 Related Work

2.1 Ponzi Scheme Detection
The combination of Ponzi schemes and smart contracts has created new forms of fraud that

have serious implications for the Ethereum ecosystem. Combining the characteristics of the two, we
can analyze the Ponzi scheme contract from two dimensions: first, by analyzing the code, mining
the business logic of the contract; second, by analyzing the transaction records of the contract, the
transaction characteristics of the contract are explored. Song et al. [29] summarized and analyzed
the important features of Ponzi scheme contracts based on relevant literature, and established an
effective method for investors to distinguish Ponzi scheme contracts in blockchain. At present, research
related to Ponzi scheme contract detection can be divided into three categories: The first type is based
on source code inspection, which mainly analyzes the contract control logic by manually checking
the contract source code. Chen et al. [15] analyzed four types of Ponzi scheme contract bytecode
level patterns by analyzing contract source code logic. Bartoletti et al. [12] established a standard
for classifying a contract as a Ponzi scheme by manually analyzing open source code to retrieve
Ponzi scheme contracts. Normalized Levenshtein Distance (NLD) is proposed to compare contract
similarities, so as to further dig out the Ponzi scheme hidden in non-open source contracts. The
downside of this approach is that it only finds Ponzi contracts that are similar to the bytecode of
known Ponzi contracts, and the code is cumbersome to check and requires a lot of human resources.
The second type is based on feature engineering. With the development of data mining methods and
machine learning technology in this field, a set of features is designed to represent a smart contract,
and then it is input into the machine learning model to realize Ponzi scheme detection in smart
contracts. Chen et al. [13,14] first extracted account characteristics and frequency characteristics of
individual opcodes were extracted from transaction data and opcodes of smart contracts, and then
classification models based on machine learning were constructed to detect potential Ponzi schemes
in smart contracts. Zhang et al. [16] innovatively added bytecode features and then used improved
LightGBM to identify Ponzi scheme contracts. Zhang et al. [17] proposed to use 2-gram opcodes to
more objectively reflect the correlation of adjacent operation instructions. Wang et al. [18] consider
account characteristics and code characteristics at the same time and propose a combination of
SMOTE and LSTM for Ponzi scheme contracts with sample imbalance problem. Sun et al. [19]
captured the changing characteristics of contracts in their transaction process through behavior forest,
so as to realize the identification of newly deployed Ponzi scheme contracts. Fan et al. [20] proposed
a model using the idea of ordered enhancement. They used ordered target statistics (TS) to deal with
class characteristics, avoid prediction bias problems, and improve the model’s detection performance.
Chen et al. [21] extracted semantic and structural features of codes and a method based on Text
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Convolutional Neural Networks. Jung et al. [22] used data mining methods to detect Bitcoin addresses
related to Ponzi schemes. Lou et al. [23] proposed an improved convolutional neural network as
a Ponzi scheme detection model in smart contracts to overcome the training difficulties caused by
different bytecode lengths of smart contracts. Bian et al. [24] processed contract features into grayscale
images and proposed a capsule network to identify Ponzi scheme contracts. Although these feature
engineering detection methods can realize the automatic detection of the Ponzi scheme contract well,
there are still some problems such as an imbalanced data set, the selected training features do not
take into account the logical relation of the contract source code, and the poor portability of the
model. The third type is based on network embedding. This method mainly integrates the transaction
formation process and the operation code of the smart contract into a low-dimensional continuous
vector through dynamic node embedding techniques and uses a binary classifier to identify the Ponzi
scheme. Liang et al. [25] proposed for the first time the realization of intelligent contract Ponzi scheme
detection through dynamic graph embedding techniques, and proposed a data-driven intelligent Ponzi
scheme detection system DSPSD, which can directly predict whether a contract account has realized
a Ponzi scheme according to the account operation code and transaction data. Yu et al. [26] modeled
the identification and detection of Ponzi schemes as a node classification task. By manually extracting
the basic features of smart contracts and combining these features with the topology of the trading
network, to identify a Ponzi scheme. However, existing node embedding methods will lose some
node information, and cannot combine the node characteristics and topology of the transaction
network well.

2.2 Imbalanced Data Classification
In smart contract transactions, fraudulent Ponzi scheme transactions account for only a small

part, while most of them are normal transactions. In essence, Ponzi scheme detection on Ethereum is
an imbalanced classification problem. If the sample numbers of different categories are very different,
the model learning process will be troublesome. Therefore, before constructing the classification
model, it is necessary to deal with the imbalance of the data set. The solution to the class imbalance
problem in this type of data set preprocessing is to change the class distribution. Because of the class
imbalance problem in data sets, some scholars are committed to eliminating most class samples to
solve the class imbalance problem. After improving and adjusting the undersampling method, better
classification results can be obtained. Random Under Sampling [30] is a relatively simple method.
However, ignoring most sample data can lead to the loss of some important information and reduce
the learning effect of the model. Another group of scholars focuses on minority samples to address the
class imbalance problem. Random Over-Sampling [31] is the earliest proposed over-sampling method,
which primarily aims to balance data by randomly copying minority samples. However, this simple
replication method easily causes the model’s overfitting problem, and the data after random replication
is not representative. SMOTE can effectively reduce the risk of overfitting due to random copying of
data, but when there are significant noise and boundary samples in the dataset, SMOTE cannot control
the smote sample and may lead to overgeneralization of the noise sample and increase overlap between
different decision boundary classes. This does not significantly improve the forecast [32]. BorderLine
SMOTE is an improvement on SMOTE. This algorithm uses only a few class samples on the boundary
to make new samples and does nothing with the rest [33]. Similar to Borderline SMOTE, ADASYN
uses a weight distribution based on minority learning difficulties. The strongest feature of this is some
mechanism to automatically determine how many SMOTE smote should be produced per minority
class, instead of Smote Smote by the same number per minority class, as in Smote, ADASYN can
adapt itself to make the classification boundary more reasonable [34] and reduce the deviation caused
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by class imbalance. In this model, we use the ADASYN algorithm to process a small number of Ponzi
scheme contract samples. By oversampling the characteristic data of the Ponzi scheme contract in
the training set, we can balance the two types of sample data in the training set quantitatively, thus
enhancing the model’s effect.

3 Model

This section summarizes the implementation process of the model, including data acquisition,
feature extraction, class imbalance processing of the dataset, and classifier training. Fig. 2 is the overall
process of our approach. First, we obtained valid contract information from the Etherscan website1,
mainly having contract opcodes and contract transaction records. Then, the corresponding opcode and
account characteristics are extracted to construct the smart contract feature data set. Here, we focus
on extracting opcode context features to better reflect contract logic. Finally, combining ADASYN
technique [34,35] with the AdaBoost algorithm [27,28], the introduction of ADASYN in each round
of boosting enables each weak learner to learn from a sample of Ponzi scheme contracts. To complete
model training by better modeling minority classes in the training set. After the training, the test set
data are predicted to verify the effectiveness of the model.

Figure 2: Framework of the model

3.1 Data Acquisition
We downloaded validated labeled datasets from the XBlock website2 provided by Chen et al. [13].

This dataset currently includes 200 Ponzi scheme contract addresses and 3590 normal contract
addresses, which is a class-imbalanced dataset. We crawled the bytecode of each contract and all
transaction records (both external and internal) from Etherscan website based on the contract
addresses provided in this dataset. Contract bytecode (see Fig. 1b) is a string from which it is difficult
to obtain valid features, which requires converting them into human-readable opcodes (see Fig. 1c).
Therefore, we split the bytecode into opcodes according to the Ethereum Yellow Book to better read
the functional features of the contract.

3.2 Feature Extraction
The features of Ponzi scheme smart contracts are extracted from the perspective of contract code

and contract account. In terms of contract code, since most source code is not published and is difficult

1https://etherscan.io/
2http://xblock.pro/

https://etherscan.io/
http://xblock.pro/
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to obtain, it is not practical to use source code to extract contract characteristics. In contrast, the
bytecode of contracts is public and easily available. It can be transformed into opcode, which contains
some semantic information from the source code, so that it can be used in feature extraction. Therefore,
we choose to disassemble the contract bytecode and convert it into opcode to extract the code features.
On the other hand, contract transaction data records the transaction relationship between the user and
the contract, as well as a series of actions triggered when the contract meets the conditions. Therefore,
we can also extract account characteristics from transaction data to detect abnormal trading behavior.
In a word, we choose to extract opcode features and account features to describe Ponzi scheme
contracts.

3.2.1 Opcode Features

The smart contract opcode is disassembled from EVM bytecode, which is compiled from the
source code. Contract opcodes may contain the logic of the source code, so we can dig into the potential
problems of smart contracts from the contract opcodes. To intuitively feel the opcode difference
between Ponzi scheme contracts and normal contracts, we compared the opcodes of different contracts
and found that there is a significant difference in opcode frequency between Ponzi scheme contracts
and normal contracts. Therefore, opcode frequency can be used as a valid feature of Ponzi scheme
smart contract detection.

Most of the existing research has extracted a single opcode frequency of a contract, and then used
it as an opcode feature to train the classification model. However, a single opcode may not reflect the
logical relationship of the contract. Therefore, we consider using the n-gram algorithm to extract the
context logic between contract operation codes, so as to reflect the code characteristics of the contract
more comprehensively.

N-gram is an algorithm based on a statistical language model [36]. It will perform a sliding window
operation of size n for the contract opcode to form a sequence of opcode fragments of length n. Each
fragment is called a gram, and then the frequency of occurrence of all grams is counted. Specifically,
we used an n-size sliding window for word segmentation of the contract opcode, and then used the
term frequency-inverse document frequency (TF-IDF) algorithm to calculate the frequency of each
opcode string. In this way, each operation code will be associated with the adjacent operation code, so
that the context of the contract operation code can be extracted to reflect the logical characteristics of
the contract source code more objectively and accurately.

3.2.2 Account Features

Smart contract transaction data records the money flow relationship between investors and smart
contracts, including external and internal transactions. In terms of trading, there are many differences
between Ponzi scheme contracts and ordinary smart contracts. Vasek et al. analyzed the supply and
demand of a Bitcoin Ponzi scheme, determining factors influencing the persistence of fraud, and noted
that the frequency of interaction between scammers and victims would have an impact on the life of
the scheme [37]. Chen et al. [13] summarized the characteristics of contract trading in a Ponzi scheme
through hand capital examination. Based on a summary and observation of the transaction behavior of
Ponzi scheme contracts, we extract the following 17 characteristics from contract transaction records,
and Table 1 shows the statistics for these characteristics.

1) Balance: the balance of smart contracts.
2) Maxpay_num: the maximum number of returns received by the investor.
3) Paid_rate: the percentage of investors who received one or more returns.
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4) Difference_index: indicates the difference between the income and investment amount of
participants.

5) Difference_counts_mean: the average value of the difference between the number of
investments.

6) Difference_counts_standard: standard deviation of the difference of investment quantity.
7) Difference_amounts_mean: indicates the average difference of the investment amount.
8) Difference_amounts_skewness: difference of the investment amount.
9) Known_rate: the percentage of payers who have invested before receiving returns.

10) Payment_time: investment time of the participant.
11) In_tx_num: the number of transactions invested in the contract.
12) Out_tx_num: the number of transactions in which the contract pays returns to the investor.
13) In_ETH: the amount invested in the contract.
14) Out_ETH: the amount paid by the contract to the investor.
15) Paying_num: the number of users invested in the contract.
16) Paid_num: the number of users to be paid by the contract.
17) Time_span: the time interval between the first and last trade of the contract.

Table 1: Transaction characteristics statistics

Ponzi Non-Ponzi

Mean Median Std Mean Median Std

Balance 1.15 0.00 5.05 142.82 0.00 3777.66
Maxpay_num 23.34 1.00 81.68 84.57 0.00 682.38
Paid_rate 0.39 0.33 0.41 0.13 0.00 0.31
Difference_index 0.22 0.00 1.76 −0.40 0.00 3.09
Difference_counts_
mean

0.93 0.00 20.10 −6.82 0.00 112.70

Difference_counts_
standard

2.96 0.00 12.37 8.89 0.00 135.78

Difference_amounts_
mean

−1.33 0.00 10.78 −397.49 0.00 8720.46

Difference_amounts_
skewness

−0.56 0.00 3.80 −0.73 0.00 4.88

Known_rate 0.27 0.00 0.36 0.10 0.00 0.27
Payment_time 0.28 0.15 0.34 0.12 0.00 0.29
In_tx_num 133.64 9.50 416.49 766.56 5.00 2319.54
Out_tx_num 54.39 2.00 165.44 162.60 0.00 1068.62
In_ETH 368.13 1.60 1914.88 13312.85 0.00 292660.54
Out_ETH 367.08 1.25 1913.86 17516.37 0.00 367637.73
Paying_num 42.72 2.00 300.59 67.86 0.00 468.83
Paid_num 6.26 1.00 16.82 20.47 0.00 283.07
Time_span 16424499.36 69316.00 36799130.17 16059999.38 88114.00 36685802.54
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By comparison, it can be found that there are obvious statistical differences between normal
contracts and Ponzi scheme contracts in the above 17 account characteristics. With the exception of
paid_rate, known_rate, Payment_time, and time_span, the standard deviation of the remaining 13
Ponzi scheme contract characteristics is much lower than that of normal contracts, which implies
that there are many similar user behaviors in Ponzi scheme contracts. So we can use these trading
characteristics to detect Ponzi schemes.

For the four account characteristics whose differences are not intuitive, we use a summary scatter
diagram for visualization, as shown in Fig. 3.

Figure 3: Scatter plot of different account characteristics

As shown in Figs. 3a–3c, for Ponzi scheme contracts, Paid_rate is mainly between 0.3 and 0.8,
known_rate is concentrated between 0.2 and 0.6, and Payment_time is concentrated between 0.1
and 0.7. The Paid_rate value, known_rate value, and Payment_time value of normal contracts are
concentrated in the 0 or 1 position. As shown in Fig. 3d, Time_span is mainly between 0 and 2 ∗ e7
in Ponzi scheme contracts, while in non-Ponzi scheme contracts it is concentrated around 7 ∗ e7.
Therefore, these four account data can also be used as transaction features.
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3.3 Class Imbalance Processing of Data Set
Based on the above code and account features, we obtain a data set of contract characteristics

containing 3590 normal contracts and 200 Ponzi scheme contracts, which is a seriously imbalanced
dataset. Because the majority of samples occupy too much proportion in the total samples, the
minority of samples are ignored, and the trained classifier is more inclined to the majority of classes,
leading to degradation of classifier performance.

In order to solve this class imbalance problem, we use the ADASYN oversampling algorithm
to process the data. ADASYN automatically determines how many to combine per minority sample
based on the data distribution, not SMOTE Smote with the same amount per minority sample [27].
Assuming that the majority class samples are ml and the minority class samples are ms. First, we need
to set the number of minority class samples to be synthesized according to Eq. (1), where β ∈ [0, 1],
to control the desired balance level.

G = (ml − ms) × β (1)

For each minority class sample xi, the Euclidean distance is used to calculate the k neighbors of
xi, and �i is the number of majority class samples in k neighbors of xi. Then, Eq. (2) can be used to
calculate the ratio ri, and Eq. (3) can be used for normalization processing to obtain the situation of
most samples around a few samples xi. Next, calculate the number of samples to be generated for xi

according to Eq. (4).

ri = �i/k, i = 1, . . . , ms (2)

r̂i = ri

/ ms∑
i=1

ri (3)

gi = r̂i × G (4)

Finally, a minority sample xzi is randomly selected from k neighbors of xi. Generate the synthesis
sample according to Eq. (5). This step is repeated until the number of synthesized samples reaches gi.

si = xi + (xzi − xi) × λ (5)

The ADASYN algorithm is amount to adding a weight to each minority class sample, and
the more majority class samples around, the higher the weight. Use the ADASYN algorithm to
oversample the characteristic data of Ponzi scheme contracts in the training set, which can balance
the sample data in the training set quantitatively, thus improving the effect of the model.

3.4 Model Training
We use AdaBoost to learn contract code characteristics and account characteristics to realize

Ponzi scheme detection. AdaBoost (Adaptive Boosting) is a kind of Boosting algorithm proposed
by Wang [35] in 1995, which has strong practical advantages compared with Boosting the previous
algorithm. The adaptability of this algorithm is mainly reflected in the following aspects: in the
former basic classifier, if a sample is misclassified, its corresponding weight will be increased; on the
contrary, the weight of the correctly classified samples will decrease. Next, these samples are used to
train the next basic classifier. At the same time, the algorithm will add a new weak classifier in each
iteration according to the preset parameters until the setting is satisfied. In general, the core idea of this
algorithm is “divide and conquer”. By constantly adjusting the role of samples and weak classifiers in
training, the accuracy of model prediction results is finally improved [28].
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The training process for the model is divided into three main steps.

The first step is to initialize the weight distribution of the training data. If the number of samples is
n, then the initial weights of these samples are all 1/n. This may cause the sampling bias of the training
set to the majority classes. Therefore, we introduction of ADASYN in each round of boosting will
enable each weak classifier to learn from more minority samples and thus learn wider decision regions
for the minority class. The final initial weight distribution of the training set is obtained as shown in
Eq. (6). Where N is the number of samples after oversampling.

D1 = (
w1,1, . . . w1,i, . . . w1,N

)
, ω1,i = 1

N
, i = 1, 2, . . . , N (6)

The second step is to perform iterative training. In the mth round of training, the training
dataset with weight distribution Dm is used for learning to obtain the weak classifier Gm(x), and the
classification error rate of Gm(x) on the training dataset is calculated according to Eq. (7). Immediately
afterward, the coefficient of Gm(x) is calculated using Eq. (8), which is used to characterize the
importance of Gm(x) in the final splitter. Finally, the weight distribution of the training dataset is
updated by Eqs. (9)–(11).

em = P (Gm (xi) �= yi) =
N∑

i=1

ωm,iI (Gm (xi) �= yi) (7)

αm = 1
2

log
1 − em

em

(8)

Dm+1 = (wm+1,1, . . . wm+1,i, . . . wm+1,N) (9)

ωm+1,i = ωm,i

Zm

e−αmyiGm(xi), i = 1, 2, . . . , N (10)

Zm =
N∑

i=1

ωm,ie−αmyiGm(xi) (11)

The third step is to combine the M weak classifiers into a strong classifier according to the weak
classifier weights αm. As shown in Eq. (12).

G (x) = sign (f (x)) = sign

(
M∑

m=1

αmGm (x)

)
(12)

We trained this model on the training set and then used the trained model to fit the test set and
obtain the predicted results. The detection effects are shown in Part 4.

4 Experiment

In this section, we evaluate the validity of our proposed model through experiments. First, we
introduce the data set and related indicators for model evaluation. We then describe in detail the Ponzi
scheme detection experiment in our model and introduce the comparison with other representative
methods. Finally, the most representative features are analyzed.
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4.1 Data Set
In this experiment, we use the same dataset as in [13]. First, we downloaded the dataset from the

XBlock website, containing the addresses of 3590 non-Ponzi scheme contracts and 200 Ponzi scheme
contracts.

Based on the above contract address, we obtained the corresponding contract bytecode and
transaction records from the Etherscan web crawler. Then, according to the list of bytecode and
opcode conversion relationships, we decompose the bytecode into opcodes and extract the contextual
characteristics of the opcodes from them. At the same time, according to the transaction records of
each contract, we obtain the characteristics of each contract transaction.

Our model uses a combination of code characteristics and account characteristics, and the
contract characteristics dataset contains 5017 characteristics (5000 opcode context characteristics and
17 account characteristics). To construct the model, we randomly divided the above data set of contract
characteristics, 80% for training and 20% for testing.

4.2 Evaluation Metrics
To compare with other representative Ponzi scheme detection methods, we use accuracy rate,

recall rate, and F1-score to evaluate these models. The formula for these indicators is shown in
Eqs. (13)–(15):

Precision = true positive
true positive + false positive

(13)

Recall = true positive
true positive + false negative

(14)

F1−score = 2 × Precision × Recall
Precision + Recall

(15)

4.3 Impact of N-Gram Parameter
Unlike previous studies, we choose the n-gram algorithm to extract the context of the contract, so

as to more accurately reflect the logic of the contract source code. The n-gram algorithm divides the
contract opcodes into several fragments by sliding windows of n size, and then performs frequency
statistics on them. In order to observe the influence of different window sizes on model accuracy, we
conducted experiments on different values of n, and Table 2 shows the corresponding results.

Table 2: Comparison of n-gram performance

Precision Recall F1-score

1-gram 0.94 0.74 0.83
2-gram 0.94 0.77 0.85
3-gram 0.94 0.79 0.86
4-gram 0.91 0.82 0.86

According to Table 2, with the increase of the sliding window n, the recall rate and F score
gradually increase, but when the sliding window increases to 4, the detection accuracy of the model
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will decrease. Therefore, we finally set the sliding window size to 3, and select 3-gram with the best
performance to extract opcode context features.

4.4 Impact of Different Features
In order to compare the detection performance of different features, we respectively use code

features, account features, and the combination of two features for training, and compare the training
effect. Table 3 summarizes the performance of the above three characteristics in detecting Ponzi
schemes.

Table 3: Performance comparison of different features

Precision Recall F1-score

Account 0.86 0.31 0.45
Opcode 0.94 0.79 0.86
Account + Opcode 0.97 0.85 0.90

According to Table 3, account characteristics are not effective in detecting Ponzi schemes and
cannot be used alone for contract classification. In contrast, opcode context features are well detected.
Although using only account characteristics does not work well, it may help improve the efficiency of
the model. By combining the account feature and the code feature, the model’s detection precision,
recall rate, and F1-score are all improved. To sum up, the model can learn more valuable information
and improve the training effect of the model by combining the account features with the context
features of the operation code.

4.5 Imbalanced Classification Processing
This section addresses the problem of data imbalance. Table 4 shows the model classification effect

before and after different sampling methods.

Table 4: Model performance before and after oversampling

Precision Recall F1-score

No sampling 0.97 0.85 0.90
Random oversampling 0.97 0.82 0.89
SMOTE 0.95 0.90 0.92
SMOTE_Tomek 0.97 0.85 0.90
ADASYN 0.97 0.87 0.92

In our model, the ADASYN algorithm is used to oversample the training set data. As shown in
the table, the detection effect of the model after oversampling has been greatly improved, especially
since the F1-score has increased to 0.92, indicating that oversampling of a few classes is effective.

4.6 Impact of Different Classifiers
The experiment verifies the accuracy of the AdaBoost classifier and five classifiers, XGBoost,

Random Forest, LightGBM, GBDT, and CatBoost. The features used in the experiment are 17
account features and 3-gram opcode features. We randomly divided the feature data set, 80% for
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training, 20% for testing, and then used the above six classifiers for model training. Fig. 4 shows the
comparison results.

Figure 4: Comparison of detection effect of different classifier methods

As can be seen from Fig. 4, AdaBoost’s performance is superior to the other five classifiers in
accuracy, precision, recall, and F1-score. Adaboost obtained the best prediction when the ensemble
size reached about 80, but as the ensemble size increased, overfitting would occur, resulting in slightly
poor model prediction performance.

4.7 Performance Comparison
We compared the proposed method with a more representative Ponzi scheme detection model,

and Fig. 5 shows the results.

It can be seen from the above experimental results that the proposed method significantly improves
the performance of the detection model. The accuracy rate reached 0.97, and the F1-score reached
0.92, indicating that our method can effectively detect the Ponzi scheme smart contract on Ethereum.
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Figure 5: Performance comparison of different models

4.8 Feature Importance Ranking
To analyze the impact of the selected features on the model, AdaBoost’s feature importance

calculation method, feature_importances_, is used to calculate the importance of the above features
to the model. Fig. 6 shows the 10 most important features of AdaBoost model training.

Figure 6: Feature importance ranking

The results show that iszero_push_eq and gt_iszero_jumpdest are the two most important opcode
fragments, where iszero, eq, and gt are all conditional instructions that determine whether they are 0,
equal, or greater, respectively. Whereas push is associated with a stack operation, jumpdest is the jump
instruction. We speculate that the combination of these two orders may be effective because Ponzi
contracts typically place investor addresses in the stack in order according to some judgment. Or
when certain conditions are met to jump, in order to complete the contract to a specific user payment
operation.
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5 Discussion

Cryptocurrency fraud detection is an important research issue in blockchain transaction security.
Ponzi scheme contracts, as a hidden fraudulent activity, have brought a lot of economic losses to
people. In order to protect the security of the blockchain system, many researchers have proposed a
variety of detection models for Ponzi schemes. Related research is mainly carried out from four aspects,
including data acquisition, imbalanced class processing, feature extraction, and classifier design, as
shown in Fig. 7.

Figure 7: Model design process

The first problem in dealing with Ponzi scheme detection is how to obtain data. Currently, the
open source data set about the Ponzi scheme is relatively lacking, and the dataset from the XBlock
website is the most widely used. For example, Chen et al. [13] use the dataset to train their models.
The data set contains the contract address and corresponding labels, and the number of contract
samples is constantly updated with the collection and verification of researchers. To date, the dataset
contains 3,790 contract addresses and their labels, including 200 Ponzi scheme contracts. In this paper,
we choose the same data set as well. Some researchers have expanded the dataset, e.g., Fan et al. [20]
supplemented Ponzi scheme contracts through promotion website inspection and source code analysis,
but some of this data is not yet publicly available.

The second problem is feature extraction. Effective features can better characterize the contract
function and improve the model’s detection performance. Some researchers [17,20,21] take advantage
of the code features to describe contracts. The difference is that [21] extracts the semantic features and
structural features of the contract code by abstract syntax tree and structure-based traversal, while
[17,20] uses the 2-gram algorithm to segment the opcode sequence and obtain the opcode character-
istics of the contract. However, the code features cannot represent the transaction characteristics of
the contract well, while the transaction records contain the fund flow relationship, which can be used
as the basis to identify the Ponzi scheme. Therefore, some researchers [13,14,18] construct the data
set of contract characteristics by extracting contract account characteristics and the frequency of a
single opcode. In addition, Zhang et al. [16] add contract bytecode features and construct the contract
data set by extracting contract bytecode features, opcode features, and account features, so as to extract
contract characteristics in a more comprehensive way. The results in Table 2 show that context features
(2-gram, 3-gram, and 4-gram) extracted from opcodes are superior to single opcode features (1-gram)
in terms of detection accuracy, and 3-gram features can achieve better results. Meanwhile, the results
in Table 3 show that the combination of code and account features can improve the model’s detection
performance. Therefore, our model uses 3-gram algorithm to extract the context logic of the contract
operation code, and combines it with account characteristics to represent the characteristics of the
contract.

The third work of detection is to deal with class imbalance problems in the dataset because the
number of abnormal contracts accounts for a very small proportion. Some early studies [13,14,21] did
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not address this problem. In contrast, other subsequent studies note the problem and use oversampling
methods to balance classes. Wang et al. [18] used the synthetic minority oversampling technique
(SMOTE) to fill in contract characteristics data for class imbalance. However, the SMOTE algorithm
cannot overcome the category distribution problem in the imbalanced data set, which tends to produce
distribution marginalization and blur the boundary between positive and negative samples. Aiming to
solve this problem, some studies [16,17] have used the SMOTE_Tomek global sampling method to
balance the dataset. After using the SMOTE algorithm, expand the samples, and use the Tomek Link
algorithm to remove the heterogeneous samples glued at the boundary. And other researchers [20]
used the modified Borderline-SMOTE technique based on SMOTE to improve the class distribution of
samples. Our model uses ADASYN to make the classification boundary more reasonable by assigning
different weights to different minority samples. As shown in Table 4, the model will perform better
after using reasonable methods to deal with class imbalances in the dataset.

The fourth part of the whole scheme is the classifier. Related methods can be divided into
three categories: traditional machine learning methods, deep learning or neural network models,
and ensemble learning. Among the first group methods, the decision tree is a popular approach.
Fan et al. [20] used the decision tree as a basic predictor to detect Ponzi scheme contracts. In
addition to classical machine learning algorithms, some other researchers have used neural networks,
such as LSTM (long-short-term memory network) [18] and fully connected neural networks [21], to
detect Ponzi scheme contracts. Ensemble Learning uses a variety of compatible learning algorithms
to perform a single task and achieve better generalization performance than a single learner. Due
to the prominent advantage in classification tasks, most Ponzi scheme contract detection models
[13,14,16,17,20] choose ensemble learning algorithms as classifiers. Among them, SMOTE_Tomek
mixed sampling was used to replace LightGBM weight allocation, which improved the detection effect
of the model [16]. The optimization strategy can significantly improve the predictive performance of
the model. The AdaBoost algorithm increases the weight of misclassified samples from the previous
base classifier and is used to train the next base classifier again, iterating continuously to obtain
the final strong classifier. The algorithm uses the method of adjusting sample weight to highlight
the classification error and finally achieves a low generalization error rate. In this paper, we use the
AdaBoost algorithm in ensemble learning to adjust sample weights, thus improving the detection
accuracy of the model.

Table 5 shows the comparison of the above models.

Table 5: Model comparison (The number in account features (#) indicates the number of features)

Data set Feature extraction Class imbalance
processing

Classification
model

Chen et al. [13] Dataset from
XBlock

Opcode features
(individual); account
features (7);

—— XGBoost

Chen et al. [14] Dataset from
XBlock

Opcode features
(individual); account
features (13);

—— Random forest

(Continued)
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Table 5: Continued
Data set Feature extraction Class imbalance

processing
Classification
model

Chen et al. [21] Dataset from
XBlock

Source code features
(structural and
semantic)

—— Fully connected
neural network

Fan et al. [20] Open source dataset
[12] + dataset from
XBlock + DApp

Opcode features
(2-gram);

Borderline-
SMOTE

Decision tree

Wang et al. [18] Dataset from
XBlock

Opcode features
(individual); account
features (7);

SMOTE LSTM

Zhang et al. [16] Dataset from
XBlock

Opcode features
(individual); account
features (7); bytecode
features;

SMOTE_Tomek LightGBM

Zhang et al. [17] Dataset from
XBlock

Opcode features
(2-gram); bytecode
features;

SMOTE_Tomek CatBoost

Ours Ponzi_label.csv Opcode features
(2-gram); account
features (7);

ADASYN AdaBoost

6 Conclusion

In this study, we propose a new method for detecting Ponzi scheme smart contracts in Ethereum.
We use the n-gram algorithm to extract more comprehensive contract opcode features and combine
them with account features characterizing contract transaction characteristics to construct the con-
tract feature data set. Then, we indirectly change the weight assignment of the AdaBoost classifier
to the training samples by using the ADASYN algorithm. thereby better learning features from
a small number of classes and solving the class imbalance problem that exists for Ponzi scheme
contract detection in ethereum. Experimental results show that our method can effectively improve
the detection effect of Ponzi scheme contracts.

However, the structural features of contract transactions have not been analyzed in depth in our
work, so in the next work we will consider capturing topological structural information of contract
transactions by constructing a transaction graph. We will also investigate the scalability of the model
framework to enable the detection of other similar fraudulent activities and promote the security of
blockchain technology.
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