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Abstract: With the popularity of online learning and due to the significant
influence of emotion on the learning effect, more and more researches focus
on emotion recognition in online learning. Most of the current research uses
the comments of the learning platform or the learner’s expression for emotion
recognition. The research data on other modalities are scarce. Most of the
studies also ignore the impact of instructional videos on learners and the
guidance of knowledge on data. Because of the need for other modal research
data, we construct a synchronous multimodal data set for analyzing learners’
emotional states in online learning scenarios. The data set recorded the eye
movement data and photoplethysmography (PPG) signals of 68 subjects and
the instructional video they watched. For the problem of ignoring the instruc-
tional videos on learners and ignoring the knowledge, a multimodal emotion
recognition method in video learning based on knowledge enhancement is
proposed. This method uses the knowledge-based features extracted from
instructional videos, such as brightness, hue, saturation, the videos’ click-
through rate, and emotion generation time, to guide the emotion recognition
process of physiological signals. This method uses Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) networks to extract
deeper emotional representation and spatiotemporal information from shal-
low features. The model uses multi-head attention (MHA) mechanism to
obtain critical information in the extracted deep features. Then, Temporal
Convolutional Network (TCN) is used to learn the information in the deep
features and knowledge-based features. Knowledge-based features are used
to supplement and enhance the deep features of physiological signals. Finally,
the fully connected layer is used for emotion recognition, and the recognition
accuracy reaches 97.51%. Compared with two recent researches, the accuracy
improved by 8.57% and 2.11%, respectively. On the four public data sets,
our proposed method also achieves better results compared with the two
recent researches. The experiment results show that the proposed multimodal
emotion recognition method based on knowledge enhancement has good
performance and robustness.
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1 Introduction

In recent years, Internet technology and 5G technology have developed rapidly. With a new round
of technological innovation, online learning has become a learning mode commonly used by learners
of different ages. Compared with the traditional learning mode, online learning breaks the time and
space constraints, provides a possibility for lifelong learning [1], and provides a way to share learning
resources, so learners of different regions and ages can obtain excellent learning resources. Although
online learning has many advantages that the traditional learning mode does not have, some problems
must be addressed. In online learning, especially in video learning, learners cannot feel the emotional
feedback and cognitive support from teachers in time, so there will be a “lack of emotion” problem.
Relevant research shows that emotion plays a crucial role in decision-making, perception, and learning,
and positive emotions can improve learners’ understanding [2]. Suppose we can identify the learners’
emotional state in real-time during the learning process, provide them with corresponding emotional
feedback and cognitive support, and transform their negative emotions into positive ones. In that case,
we can effectively promote the learners’ learning outcomes.

Currently, most research on online learning emotion recognition uses comments of the learning
platform or expressions to study learners’ emotions in online learning [3–5]. However, the use of learner
comments can only obtain learners’ emotions after the completion of a stage of learning. It cannot
identify the real-time emotion of learners in the learning process and cannot intervene according to the
real-time emotion of learners in the learning process [6]. The expression can be artificially covered up or
hidden, which cannot objectively reflect the learners’ emotions. Physiological signals can be collected
in real-time and emotion recognition can be performed in real-time. Physiological signals cannot be
controlled artificially and are more objective. However, most data sets in online learning scenes are
composed of expressions or learner comments, and the emotional data sets of physiological signals
are less. Therefore, we conducted data collection experiments and selected eye movement and PPG
physiological signals. These two physiological signals can fully reflect learners’ emotional states, and
eye movement data can be collected in a non-contact way. Although PPG signals are collected using
ear clip sensors in this paper, some studies can use cameras to collect Remote Photoplethysmography
(rPPG) signals so that PPG signals can also be collected in a non-contact way. These two kinds of non-
contact collected physiological signals can minimize the impact on learners by fully reflecting learners’
emotional states.

The processing of temporal data is an essential issue in Affective Computing. The text, speech, and
physiological signals commonly used in Affective Computing all contain time series. Currently, most
of the research uses raw data or extracted features as input when using the deep learning method to
classify the emotion of temporal data. Mustaqeem et al. [7] input raw speech signals into ConvLSTM
and GRU for feature extraction and emotion recognition. Du et al. [8] use EEG features extracted
from different channels for emotion classification. However, using raw data as input will cause much
irrelevant information to be input into the network. Using features as input will lose the temporal
nature of the data itself. In addition to temporal data processing, selecting research data in video
learning scenes is also very important. In the video learning scene, most studies use the information
displayed by learners to identify their emotions, but learners’ emotions are generated by the stimulation
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of instructional videos. Therefore, the video content that learners watch, the audio they hear, and the
video’s hue will impact learners’ emotions. These factors can also be added to the emotion recognition
task as knowledge. Because of the above problems, this paper proposes a construction method based
on continuous multi-window multimodal temporal features and a method of multimodal emotion
recognition in video learning based on knowledge enhancement. The main contributions of this paper
are as follows:

• In this study, video features of instructional videos watched by learners during their learning
process are used as prior knowledge to assist emotion classification tasks in emotion classifi-
cation modeling. Specific knowledge includes: learning video features such as saturation, hue,
brightness, the click-through rate of instructional videos, relative time, and absolute time of
emotion generation.

• Aiming at the temporal characteristics of emotional data, this paper proposes a construction
method based on continuous multi-window multimodal temporal features (MMTF). Based on
dividing the time window of eye movement data and PPG data, eye movement features and
PPG features in each time window are extracted. The feature values in consecutive multiple
time windows are used as a temporal feature input that integrates the relationship between
features and time. The experiment result shows that compared with the commonly used feature
input or raw temporal data input, our proposed continuous multi-window multimodal temporal
feature not only extracts the emotion-related representation in the raw data but also preserves
the temporal relationship between the raw data and achieves better performance in the emotion
recognition task.

• According to the physiological signal time series data and knowledge characteristics used in this
paper, a novel method of multimodal emotion recognition in video learning based on knowledge
enhancement is proposed. This method uses CNN and LSTM, which can extract spatiotempo-
ral information and deep features, to further extract emotional information in physiological
signals, uses attention mechanism to extract key information in deep representations. After
the extraction of spatiotemporal information and key information, the TCN that can also
extract spatiotemporal information is used to extract spatiotemporal information in knowledge-
based features and integrate knowledge-based features with physiological signal features. The
information in knowledge-based features is used to enhance the emotional recognition process
of physiological signals. The experimental results demonstrate that our proposed method
extracts spatiotemporal and key information, effectively integrates knowledge-based features
and physiological signals, and the addition of knowledge information also makes the emotion
recognition task get better results.

2 Related Works

2.1 Online Learning Emotion Recognition
With the popularity of online learning, more and more researchers have paid attention to the

problem of “lack of emotion”in online learning, and more and more researchers have researched online
learning emotion recognition. Emotion classification in online learning mainly collects unimodal or
multimodal data and classifies emotion states using machine learning or deep learning methods after
feature extraction.

Using the comments of the learning platform to identify learners’ emotions is one of the most
widely used methods in online learning emotion recognition research. Many researchers use learners’
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comments to identify learners’ emotional states. For example, Li et al. [9] proposed a shallow BERT-
CNN model consisting of a shallow pre-trained BERT, convolution layer, and self-attention pooling
module to analyze the emotion of MOOC comments, with an accuracy rate of 81.3%. As the most
commonly used modal in Affective Computing, the facial expression is also the modal researchers will
use in online learning emotion recognition research. Bian et al. [10] established a spontaneous facial
expression dataset in an online learning environment and proposed an adaptive data enhancement
method based on a spatial transformer network. This method can retain discriminative regions in
facial images and ignore regions unrelated to emotions. The pre-trained VGG16 was used to classify
the emotion of facial expression datasets enhanced by adaptive data and random data, and the
classification accuracy reached 91.6%.

However, since the learner’s comments can only be obtained after the end of a stage of learning, it
is impossible to receive relevant information in real-time during the learner’s learning process, and it
is also impossible to conduct a real-time intervention on learners. Although facial expressions can
be obtained in real-time, learners may have little expression changes during the learning process,
leading to unsatisfactory recognition results. Compared with text and expression modals, physiological
signals can be obtained in real-time by using sensors, and physiological signals are controlled by the
autonomic nervous system and endocrine system without human control, which can more objectively
reflect learners’ emotions [11]. Researchers began to study emotional recognition using physiological
signals. Ullah et al. [12] used EEG for emotion recognition, proposed a sparse discriminant ensemble
learning algorithm for selecting the most discriminative signal subset, and used SVM to classify EEG
signals. For emotional recognition research using physiological signals, sensors are first necessary to
collect physiological signal data. Different types of sensors can be used to collect different physiological
signal data. Liu et al. [13] use a blood oxygen sensor to collect PPG signals, a 5-lead cable sensor to
collect ECG tracks, and a blood pressure cuff to measure noninvasive blood pressure. Chanel et al. [14]
collected subjects’ EEG, GSR, blood pressure, heart rate, respiration, and body temperature with an
EEG cap, a GSR sensor, a plethysmograph, a respiration belt, and a temperature sensor. In online
learning emotion recognition research, researchers also used sensors to collect physiological signals
for emotion recognition research. Luo [15] used an iWatch bracelet and camera to collect heart rate
and facial video data of primary and secondary school students in the process of emotion generation
through emotion induction and used a parallel way of self-report and expert annotation to label data,
including pleasure, focus, confusion, and boredom. After preprocessing the dataset, the pre-trained
model based on ResNet18 was used for transfer learning, the frame attention network was used to learn
emotion features, and the online learning emotion recognition model was trained. The recognition
accuracy of the trained model for the four cognitive emotion states reached 87.804%.

In summary, online learning emotion recognition researches mostly use text and facial expression,
and fewer use physiological signals. However, physiological signals are more real-time in acquisition
than learners’ comments on the platform. Compared with facial expressions, physiological signals are
free from human control and more objective. Therefore, this paper uses an eye tracker and a wearable
ear clip sensor to collect learners’ eye movement data and PPG data to study learners’ emotional states
in video learning.

2.2 Knowledge Enhancement
At present, most emotion recognition studies only consider the relevant data of subjects when

using data such as expression [16], speech [17], gesture [18], text [19], physiological signals [20,21], etc.
However, subjects’ emotion is stimulated by stimulus materials, which also have a more significant
impact on the emotional state of subjects, so stimulus materials may also contain some information
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and knowledge. Chen et al. [22] analyzed the effect of different types of online instructional video
lectures on continuous attention, emotion, cognitive load, and learning performance. The results show
that different types of video lectures significantly impact learning effects, continuous attention, and
cognitive load. Kim et al. [23] analyzed the influence of different types of multimedia content on
learners’ cognition. The analysis results showed that learners’ cognition of multimedia content was
different due to different types of multimedia content, grades, and genders. The lower grades will be
more interested in multimedia content, and boys have a higher cognitive level than girls in the video,
plain drill, and game multimedia content. Wang et al. [24] summarized the movie’s grammar and
used the audio and video elements that can stimulate the audience’s emotion, such as color, lighting,
rhythm, formant, and intensity, as domain knowledge to classify and regression the emotion of video
content, and achieved good results. It can be seen that in the video learning scene, instructional videos
greatly influence learners, so the collected relevant information of the subjects should be combined
with the stimulus materials to analyze the emotional states in the study of emotion recognition in
video learning. In addition to collecting physiological signals and extracting features, this paper also
uses the brightness, hue, and saturation of stimulus materials, the videos’ click-through rate, and the
time of emotion generation as knowledge-based features to study learners’ emotional states together
with physiological signals. We use knowledge-based features to enhance the process of emotional
recognition of physiological signals so that the information contained in knowledge-based features
and the information contained in physiological signals can complement each other, thus improving
the effect of emotional recognition.

3 Proposed Method

We propose a method that combines eye movements, PPG signals, and knowledge-based features
extracted from instructional videos to identify learners’ emotional states in the learning process. This
method uses the new multi-window multimodal temporal features (MMTF) as the model’s input
and uses our CNN-LSTM-MHA-TCN (CLA-TCN) model to extract deep features and recognize
emotions based on knowledge enhancement. We will introduce the method from two aspects: multi-
window multimodal temporary feature (MMTF) construction and CLA-TCN model based on
knowledge enhancement.

3.1 Multi-Window Multimodal Temporal Feature (MMTF) Construction
For temporal data, the output at the present time is related to the present and previous time

input. A person’s mood changes not only about current events but may also be influenced by previous
events. Therefore, for the emotion recognition task, not only the input at the current moment but
also the input at the previous moment should be considered. We examine the input forms of studies
that use time series for emotion recognition. Du et al. [8] concatenated the features extracted from
EEG signals of different channels as input and fed them into the proposed ATDD-LSTM model
for emotion classification. Nie et al. [25] used neural networks to extract text, audio, and video
features in the sliding window. They fed the extracted features into the multi-layer LSTM as input
for emotion recognition. Xie et al. [26] used openSMILE to extract frame-level speech features in
audio and input frame-level speech features into LSTM based on the attention mechanism for speech
emotion recognition. Thus, the input forms commonly used by researchers for emotion recognition
using time series can be roughly divided into three categories, as shown in Fig. 1: (a) The raw data is
directly fed into the neural network; (b) Hand-engineered features are extracted and then fed into a
neural network; (c) Researchers use a neural network to extract deep features and feed deep features
into neural networks. Due to the limitations of the current input form of temporal data, this paper
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proposes a new form of input, as shown in Fig. 1 (d). Firstly, eye movement and PPG signals are
divided into time windows, and the eye movement features and PPG features within each time window
are extracted. The eye movement features and PPG features in each time window are concatenated to
obtain the f -dimensional multimodal features in each time window. Suppose the feature in a time
window is W = [

F1, F2, . . . , Ff

]
. The feature values of t consecutive time windows are combined

to form a multi-window multimodal temporal feature T = [W1, W2, . . . , Wt]. The t × f matrix is a
sample, and the following sample is obtained by sliding down a time window every time, and all the
obtained MMTF samples are sent to the network as input. This input form ensures the timeliness of
the input data, and the temporal feature has higher accuracy and a stronger correlation to the emotion
recognition task than the raw data.

Figure 1: Three common input forms and MMTF

3.2 CLA-TCN Model Based on Knowledge Enhancement
Since the hand-engineered features only contain shallow emotional representations, which may

not be sufficient to predict emotions, some researchers use DNN, CNN, and other neural networks to
extract deep emotional representations to make up for the deficiency of shallow features. Ma et al. [27]
used ResNet50 to extract feature representations from audio and visual data and then used the fusion
network to combine the extracted features for emotion prediction. Zhu et al. [28] used LSTM to
extract the deep features of three kinds of shallow feature signals: RRI, R peaks amplitude (RAMP),
and respiratory signal (EDR). Muhammad et al. [29] used the attention mechanism of the deep
BiLSTM network to learn the spatiotemporal features in sequential data and utilized the convolution
network with residual blocks to upgrade the features to identify the human behavior in the sequence.
Khan et al. [30] used 2-layer CNN to extract multi time-scale features, and then concatenated the
multi time-scale features as the input of 2-layer LSTM, and the LSTM model was used to learn
the dependencies in the time series. The above studies show that CNN can effectively extract the
deep features and spatial information of input data, and LSTM can learn and extract the temporal
relationship between input data, which is used in time series research. Therefore, CNN and LSTM are
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used in this paper to extract deep features, including temporal and spatial information, from the input
shallow features.

In selecting knowledge enhancement and classification models, we chose the TCN proposed by
Bai et al. [31] to fuse deep features and knowledge-based features and use the fully connected layer
for emotion recognition. TCN is mainly composed of the 1D fully-convolutional network (FCN) and
causal convolutions. Causal convolution is shown in Fig. 2a. In causal convolution, future data reading
can be abandoned in training. The value at time t of the ith layer only depends on the influence of
time t of layer i − 1 and the values before it, and the following results can be obtained only with the
previous causes. However, simple causal convolution still has the problem of traditional convolution
neural networks, that is, the modeling length of time series is limited by the size of the convolution
kernel, and it is difficult to obtain long-term dependencies. Therefore, TCN uses dilated convolutions
instead of simple causal convolutions. Dilated convolution allows for interval sampling of the input
during convolution. The receptive field can cover more values in the input sequence through interval
sampling. Then we can obtain long-term dependency. To ensure that the TCN can remain stable when
the number of layers becomes deeper, Bai et al. replaced the convolution layer with a generic residual
block. As shown in Fig. 2b, the residual block contains two layers of dilated causal convolution and
non-linearity. WeightNorm and Dropout are added to each layer to regularize the network. The 1 × 1
convolution layer ensures that the outputs of the lower layer and the upper layer have the same shape
when merging. The dilated causal convolution and residual block enable TCN to extract dependencies
and causal relationships from long sequences, avoid the problem of exploding/vanishing gradients, and
save training time and required memory.

Figure 2: Architectural elements in a TCN, (a) is the visualization of causal convolutional; (b) is the
residual block structure

The specific structure of our proposed model is shown in Fig. 3. We input the constructed multi-
window multimodal physiological signal temporal features into two-layer CNN and two-layer LSTM
to extract the spatiotemporal information and deeper emotional representation of the physiological
signal temporal features. We use the multi-head attention mechanism to make the model pay more
attention to critical information. The extracted deep temporal features and knowledge-based temporal
features are concatenated and sent to TCN, where the knowledge-based temporal features and the deep
features of physiological signals are fused with TCN. The information contained in knowledge-based
temporal features is used to supplement and enhance the deep features of physiological signals. Finally,
the fully connected layer is used to classify the four kinds of emotions.
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Figure 3: CLA-TCN model based on knowledge enhancement

4 Experiment

4.1 Data Collection
We have designed an experimental scheme based on video learning to let subjects watch the

instructional videos and stimulate subjects to generate emotions. We use the Tobii TX300 table-
mounted eye tracker and wearable ear clip sensor to collect the real-time eye movement and PPG data
generated by subjects during the learning process. The eye tracker will generate the subjects’ fixation,
saccade, pupil size, eye movement trajectory, and other data during the experiment, and the ear clip
sensor will generate the subjects’ PPG signals during the experiment.

Because the experiment is to study the learners’ emotions in the video learning scene, before the
experiment, the experimenters screened a large number of stimulating materials and selected four
instructional videos to stimulate the learners’ four academic emotions: interest, boredom, happiness,
and confusion.

We recruited 68 participants for the testing procedure. They were all college students with normal
vision or correction. Tests were performed with 34 males and 34 females. The experiment was
conducted in a quiet room without noise and harassment. The experiment used a desktop computer,
a table-mounted eye tracker, and a wearable ear clip sensor. The participants were briefed about the
experiment verbally before testing.

Before the experiment, eye calibration was performed after wearing the sensor device. Then the
subjects watched the crosshairs on the screen for 30 s to obtain the baseline values of eye movement
data and PPG data in the neutral state. During the experiment, four 2 min video clips were played in
random order. The subjects watch the video clip on the computer screen. After the video is played, the
subjects need to label the emotion generated when watching the video by pressing the key and then
watch the next video clip and label the emotion by pressing the key.

After the experiment, participants were introduced to the meaning of arousal and four emotional
words: interest, boredom, happiness, and confusion. Then, the subjects needed to watch the instruc-
tional videos again and recall the emotional state generated at that time. According to the emotional
words in the emotion classification model, they selected their emotional state to label the four videos
and scored A1 (weak) to A5 (strong) according to the emotional intensity at that time.

We retained the data of subjects with no missing data and eye movement calibration accuracy and
PPG calibration accuracy higher than 70%. Finally, 45 subjects with emotion intensity from A3 to A5
were selected as the data set. The sample number of each emotion in the data set is shown in Table 1.
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The data set can be obtained from https://github.com/zhou9794/video-learning-multimodal-emotion-
dataset.

Table 1: The sample number of four emotions

Emotion Sample number

Interest 1451
Boredom 2723
Happiness 1761
Confusion 2275

4.2 Data Preprocessing
We preprocess the multimodal data collected by the sensor. For eye movement data, we removed

the lost eye movement data due to blinking, eye closure, lower head, and other reasons during the
experiment. We subtracted the average of the corresponding baseline values of the subject’s eye
movement data from the remaining data to exclude the differences between the subjects. For missing
values, use the linear interpolation method to supplement, and the linear interpolation formula is
shown in Eq. (1).

y = y0 + (x − x0)
y1 − y0

x1 − x0

(1)

where (x0, x1) is the time point of adjacent frames before and after the missing value, (y0, y1) is the
corresponding eye movement data value of (x0, x1), x is the corresponding time point of the missing
eye movement data, and y is the missing eye movement data.

The PPG signal is similar to most physiological signals and belongs to low-frequency signals. The
signal frequency band range is 0–20 Hz, and most energy is concentrated within 10 Hz [32]. Due to
the low-frequency and weak characteristics of the PPG signal, it is easily affected by power frequency
interference, baseline wander, and other noises in the data collection process, so it is necessary to filter
and denoise the PPG signal in the preprocessing process. Power frequency interference refers to the
noise generated by the distributed capacitance of the human body and the influence of electric and
magnetic fields, with a frequency of about 50 Hz. Baseline wander is a low-frequency noise caused by
respiratory artifact and motion artifact, with a frequency of about 1 Hz. For this reason, a high-pass
filter with a threshold of 1 Hz is set to filter out baseline wander, and a low-pass filter with a threshold
of 10 Hz is set to filter out power frequency interference and retain the primary information of PPG.
For the filtered PPG signal, the average value of the baseline PPG signal of the corresponding subjects
was subtracted to exclude the differences among subjects.

4.3 Feature Extraction
We extracted standard features of eye movement and PPG. For eye movement data, we extracted

29 time-domain features of pupil diameter, fixation, and saccade, and for PPG data, we extracted
42 time-domain features, frequency-domain features, and nonlinear features. Then we calculated the
Pearson correlation coefficient between the above features and emotional states, and the calculation

https://github.com/zhou9794/video-learning-multimodal-emotion-dataset
https://github.com/zhou9794/video-learning-multimodal-emotion-dataset
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formula is shown in Eq. (2).

rij =
∑n

1

(
Xi − X

) (
Yi − Y

)
√∑n

1

(
Xi − X

)2 ∑n

1

(
Yi − Y

)2
(2)

where X and Y are samples for which correlation coefficients need to be calculated, X and Y are
the mean values of samples X and Y , and n is the number of samples. However, due to random
sampling, sample imbalance, and other problems, the correlation coefficient has a certain degree of
contingency, so it is necessary to carry out a significance test to find the significance coefficient p. It is
generally believed that there is no significant correlation when p > 0.05, the two groups of samples are
significantly correlated when p < 0.05, and the two groups of samples are very significantly correlated
when p < 0.01.

According to the value of the significant coefficient, we selected 24 eye movement features and 29
PPG features with a significant coefficient less than 0.05, and the final selected features are shown in
Table 2.

Table 2: Eye movement features and PPG features

Modality Feature

Eye
movement

Fixation times, saccade times, minimum and mean of fixation velocity and saccade
velocity, maximum of fixation velocity, maximum and mean of fixation time,
maximum, minimum, mean, standard deviation and variance of left pupil diameter,
right pupil diameter and mean pupil diameter

PPG Maximum, minimum, mean, and median of HR, IBI, and R peaks, and standard
deviation of HR, SDSD, NNI_20, PNNI_20, RMSSD, range_NNI, CVSD, CVNNI,
lf, hf, vlf, lf_hf_ratio, lfnu, hfnu, total_power, triangular_index, sd1

After extracting eye movement features and PPG features, we analyzed the videos watched by
learners, divided the instructional videos into 20 frames per second, calculated the hue, saturation,
and brightness of each frame image, calculated the mean, maximum, minimum, variance and standard
deviation of hue, saturation, brightness of multiple images in each time window. We also extracted
the video’s click-through rate on the video website, the time of the learner’s emotional generation in
the whole experimental process (absolute time), and the time of the learner’s emotional generation
compared with the current video (relative time). A total of 18 features are used as knowledge-based
features. The Pearson correlation coefficient and significance coefficient between 18 knowledge-based
features and emotional states are calculated. The hue, saturation, and brightness feature values are
calculated as shown in Algorithm 1, and the 17 knowledge-based features are retained according to
the significance coefficient, as shown in Table 3.
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Algorithm 1: Calculation of hue, saturation, and brightness feature values
Input: Instructional videos, start time of the time window Wb, end time of the time window We

Output: Feature values of hue, saturation, and brightness: H, S, Br
1: The instructional video is divided into multiple images at 20 frames per second
2: for Wb to We do
3: if Wb< time of the current frame <We then
4: for i = 0 to the height of the frame do
5: for j = 0 to the length of the frame do
6: Brp← max (R, G, B)

7: Sp←
⎧⎨
⎩

Br − min (R, G, B)

Br
if Br �= 0

0 otherwise

8: Hp ←

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

60 (G − B)

Br − min (R, G, B)
if Br = R

120 + 60 (B − R)

Br − min (R, G, B)
if Br = G

240 + 60 (R − G)

Br − min (R, G, B)
if Br = B

9: end for
10: end for
11: H ←mean

(∑
Hp

)
12: S ← mean

(∑
Sp

)
13: Br ← mean

(∑
Brp

)
14: end if
15: Calculate the mean, maximum, minimum, variance, and standard deviation of H, S, and Br of
multi-frame images in the time window
16: end for

Table 3: Knowledge-based features

Kind Feature

Hue Mean, maximum, minimum, variance, standard deviation
Saturation Mean, maximum, variance, standard deviation
Brightness Mean, maximum, minimum, variance, standard deviation
Click-through rate The click-through rate of instructional video
Time Relative time, absolute time

4.4 Experiment Setup
Our implementation is based on the TensorFlow deep learning framework. We divided the

training set, validation set, and test set according to the ratio of 7:1:2 and carried out 5-fold cross-
validation. 500 epochs are set to ensure adequate training. The optimization algorithm selects the
Adam algorithm. The cross-entropy is selected as the loss function. The initial learning rate is set to
0.001. To prevent the model from overfitting, we use the learning rate decay and early stopping criteria
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to complete the learning in the network training process: whenever a model performs better than the
previous best model in training, the model will be saved. If the model does not get better results in the
subsequent five epochs, the learning rate will decay to the original 0.2. If the model does not get better
results in the subsequent ten epochs, it is considered to be the model is overfitting, and the training
process will be stopped.

4.5 Comparison Experiments and Results
This section analyzes the recognition results of different input forms, the recognition results of

multimodal physiological signals fused with knowledge-based features, the recognition results of using
the shallow feature, the deep feature, and knowledge enhancement, the recognition results of using
MHA, the comparison between the proposed model and other models, and the comparison on public
data sets.

4.5.1 Analysis of Recognition Results in Different Input Sequence Lengths

We studied and compared the amount of time information contained in different input sequence
lengths and the impact of different input sequence lengths on recognition accuracy. We respectively
tried to send 0.5, 1, and 2 s time windows with different numbers of continuous time windows as
input and sent them to the two-layer LSTM network. The results are shown in Fig. 4, where n is the
continuous number of time windows.

Figure 4: Recognition accuracy of different input sequence lengths

It can be seen from the Fig. 4 that, compared with the 2 s window, the relatively short time windows
of 0.5 and 1 s have higher emotion recognition accuracy, and the recognition accuracy of the 1 s time
window as input is also higher than that of 0.5 s time window as input. The result may be because we
have extracted the features in the time window and taken the features in the continuous time window
as the temporal data. The window of 2 s is long, and some temporal relationships of data may be lost
in the feature extraction process, while the window of 0.5 s is too small to include changes in IBI and R
peak in some cases. The recognition accuracy of the 0.5 s window may be lower than that of the 1 s time
window due to the lack of part of PPG signal information. Compared with the 2 and 0.5 s windows,
the 1 s time window is a short time to obtain the original time relationship and the PPG information.
Therefore, we finally choose 1 s as the time window value for feature extraction.
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The recognition accuracy and the standard deviation of accuracy were compared when 1 s
windows of different continuous lengths were used as input and fed into LSTM. The results are shown
in Fig. 5. The recognition accuracy of 9 ∗ 1, 10 ∗ 1, and 11 ∗ 1 s as input is similar, and the standard
deviation of the recognition rate of 10 ∗ 1 s as input is lower. It shows that the model trained with
10 ∗ 1 s as input has better recognition performance and more stability, so 10 ∗ 1 s is selected as the
final input form.

Figure 5: Accuracy and standard deviation of 1 s windows with different continuous lengths as input,
(a) is recognition accuracy; (b) is the standard deviation of recognition accuracy of ten-fold cross-
validation

4.5.2 Analysis of Recognition Results in Different Input Forms

To compare the effectiveness and superiority of the multi-window multimodal temporary feature
input form (MMTF) we proposed, we used our data set and PPG data in DEAP data set and compared
the raw data and features of 1 and 10 s as input. We input the data of three input forms into the LSTM
network. Because LSTM has advantages in processing temporal data, we use LSTM to compare the
emotional recognition results of the three input forms. The result can reflect the amount of temporal
information in different input forms. The recognition results are shown in Table 4.

Table 4: Recognition accuracy of MMTF, raw data, and features as input

Data set Input form Accuracy

Ours

Feature (1 s) 77.48%
Raw data (1 s) 72.43%
Feature (10 s) 65.91%
Raw data (10 s) 74.65%
MMTF (10 ∗ 1 s) 97.38%

DEAP

Feature (1 s) 34.79%
Raw data (1 s) 29.14%
Feature (10 s) 27.60%
Raw data (10 s) 30.21%
MMTF (10 ∗ 1 s) 43.66%
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We compare the features and raw data in 1 and 10 s as input with the 10 ∗ 1 s MMTF as input.
We respectively sent different forms of input to LSTM for classification. In our data set, the MMTF
input form has a recognition accuracy of 97.38%, which is 19.9% and 31.47% higher than 1 and 10 s
feature forms and 24.95% and 22.78% higher than 1 and 10 s raw data input forms. When the input
time is 1 s, the recognition accuracy of the feature form input is 5.05% higher than that of the raw
data sequence input. When the input time is 10 s, the recognition accuracy of the feature form input
is 8.74% lower than that of the raw data sequence input. We obtain similar results in the DEAP data
set, where MMTF outperforms 1 and 10 s raw data and feature input, 1 s feature input outperforms
1 s raw data input, and 10 s raw data input outperforms 10 s feature input. It can be seen that when the
length of time of the input data is short, although there is a specific temporal relationship between the
raw data, the time relationship in a short time does not contain much information related to emotion.
After extracting features from the raw data, the information related to emotion is retained, and the
information unrelated to emotion is discarded, which improves recognition accuracy. When the length
of time of the input data is long, the raw data contains more temporal relationships, which can play
a particular auxiliary role in emotion recognition. After extracting features from raw data, due to the
long-time window, most of the information will be lost after extracting features, thus leading to the
decline of the recognition accuracy of feature input. However, our proposed input form of MMTF is
composed of features of multiple continuous windows, whether input short-time data or long-time
data. MMTF not only guarantees the time relationship between data to a certain extent but also
extracts emotion-related features, effectively integrates the advantages of two common input forms
of feature and raw data sequence, and achieves higher recognition accuracy.

4.5.3 Analysis of Multimodal Physiological Signal Recognition Results Based on Knowledge
Enhancement

To compare the influence of unimodal and multimodal on recognition accuracy, we input
eye movement data, PPG data, and eye movement and PPG data (multimodal) into CLA-TCN,
respectively. The recognition accuracy of unimodal and multimodal are shown in Fig. 6.

Figure 6: Recognition accuracy of unimodal and multimodal

As can be seen from Fig. 6, multimodal fusion can improve recognition accuracy. Compared with
only using PPG data, the recognition accuracy of multimodal fusion is significantly enhanced. The
recognition accuracy of the four emotions and the overall recognition accuracy have increased by
more than 17%, indicating that the eye movement data contains much information that is not in the
PPG data. Eye movement data plays a complementary role in PPG data. Compared with only using
eye movement data, the recognition accuracy of multimodal fusion is also improved. The recognition
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accuracy of four emotions and the overall recognition accuracy increased by 17.33%, 5.61%, 9.57%,
13.98%, and 10.7%, respectively, which indicates that PPG data also has a specific complementary
effect on eye movement data. Especially in recognizing interest, happiness, and confusion, the
recognition accuracy of the three emotions after integrating eye movement and PPG data is greatly
improved. The result may be because eye movement and PPG contain certain information that can
distinguish these three emotions, and the information contained in multimodal can complement
each other. The multimodal fusion method also effectively integrates the information contained in
multimodal, thus improving emotion recognition accuracy. In addition, it can be seen from Fig. 6 that
eye movement has a higher recognition accuracy for boredom in recognizing four emotions. The result
may be because learners fix their eyes at a point or look outside the screen when bored, which will be
reflected in eye movement data. Therefore, compared with the other three emotions, eye movement
data may be easier to recognize boredom.

To compare the effects of the shallow feature, the deep feature, and knowledge enhancement on
the prediction results, we respectively compared four cases: (1) The hand-engineered shallow features
are input into TCN and the fully connected layer for emotion recognition; (2) Two-layer CNN, two-
layer LSTM, and multi-head attention mechanisms are used to extract deep features, and the deep
features are input into TCN and the fully connected layer for emotion recognition; (3) The fused deep
features and knowledge-based features are input into TCN and the fully connected layer for emotion
recognition (deep + knowledge); (4) The fused shallow features, deep features, and knowledge-based
features are input into TCN and the fully connected layer for emotion recognition (shallow + deep +
knowledge). The recognition accuracy of the four cases is shown in Fig. 7.

Figure 7: Recognition accuracy of shallow feature, deep feature, and knowledge enhancement

As can be seen from Fig. 7, compared with only using shallow features to recognize emotions, the
recognition accuracy of the four emotions and the overall recognition accuracy after extracting deep
features has been significantly improved. The recognition accuracy of the four emotions has increased
by 12.18%, 8.26%, 13.84%, and 8.67%, respectively. The overall recognition accuracy has increased
by 10.27%. The result shows that CNN, LSTM, and multi-head attention mechanisms extract the
spatiotemporal information in shallow features. The extracted deep features contain more effective
and deeper emotional representations not found in shallow features, which effectively makes up for
the deficiency of shallow features. After knowledge enhancement, the recognition accuracy of the
four emotions and the overall recognition accuracy have been further improved. The recognition
accuracy of the four emotions has increased by 2.76%, 1.74%, 3.78%, and 4.87%, respectively. The
overall recognition accuracy has increased by 3.1%. The result indicates that knowledge-based features
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contain information not included in physiological signals. In addition, the method of knowledge
enhancement can effectively integrate physiological signals and knowledge-based features so that the
two kinds of features complement each other and then get a better recognition effect.

Moreover, Fig. 7 also shows that the recognition accuracy of the fused shallow features, deep
features, and knowledge-based features as input is lower than using the fused deep features and
knowledge-based features. The result may be because the shallow features have gone through the
neural network to extract deeper features containing more information and less noise, improving the
recognition accuracy. The shallow features may include more noise, and the information in the shallow
features may overlap with the deep features. Therefore, the shallow features may not bring more
practical information to the deep features, but bring noise, which reduces the recognition accuracy.

Fig. 8 shows the confusion matrix of using the shallow feature classification, using the deep feature
classification, and using the deep feature and knowledge-based feature classification in an experiment
randomly selected in the five rounds of experiments of 5-fold cross-validation. As can be seen from
Figs. 8a and 8b, the use of deep features improves the recognition accuracy of the four emotions and
the overall recognition accuracy, and the use of deep features reduces the misclassification probability
among the four emotions. The result indicates that the deep features extracted by CNN-LSTM-
MHA contain more spatiotemporal information and emotional representation. The deep features also
enhance the model’s ability to distinguish the four kinds of emotions. It can be seen from Figs. 8b and
8c that after using knowledge to enhance the emotion recognition process of physiological signals, the
emotion of interest and happiness got higher recognition accuracy improvement. The result may be
because the knowledge-based features consist of the hue, brightness, and saturation of the instructional
video, the video’s click-through rate, and the time of emotion generation. The video that stimulates
the learners’ happiness and interest may have colorful and changeable pictures. The video that makes
the learners bored may have monotonous and dull images. A video with a high click-through rate
could also stimulate the learners’ interest. Moreover, learners’ emotions may also be related to the
teaching stage. The introduction stage may be more able to stimulate learners’ interest. The longer the
learning time is, the more likely learners are to have negative emotions. The knowledge-based features
we extracted contain this information, so the recognition accuracy of the two emotions of interest
and happiness has been improved significantly. It can be seen from Figs. 8a–8c that boredom achieves
the highest recognition accuracy no matter using shallow features, deep features, or deep features and
knowledge-based features. The result may be because boredom has the largest number of samples
among the four emotions, so the model can learn more information from more samples and better
distinguish boredom from other emotions. In addition, it can be seen that when only physiological
signal features are used, the recognition accuracy of interest and happiness differs significantly from
that of the other two emotions. After using knowledge-based features, the difference between the
recognition accuracy of interest and happiness and that of the other two emotions becomes smaller.
The result indicates that knowledge-based features contain information not in physiological signals
and can complement physiological signals to improve the recognition effect.
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Figure 8: The confusion matrix of shallow feature, deep feature, deep + knowledge-based feature. (a)
is the confusion matrix of shallow feature classification, (b) is the confusion matrix of deep feature
classification, and (c) is the confusion matrix of deep + knowledge-based feature classification

4.5.4 Analysis of Recognition Results by Adding Multi-Head Attention Mechanism

We compared the effect of using and not using MHA on the recognition results. The results are
shown in Table 5. CLA-TCN uses MHA to obtain critical information after CNN-LSTM, and CL-
TCN does not use MHA after CNN-LSTM.

Table 5: Comparison of with or without the use of multi-head attention mechanism

Model Accuracy

CLA-TCN 97.51%
CL-TCN 95.40%

It can be seen from Table 5 that after MHA is added to the model, the recognition accuracy of the
model is improved by 2.11%, which indicates that MHA takes into account the correlation between
deep features and learns the dependency between deep features. MHA enables the network to focus
on multiple regions at the same time, expands the network’s attention range, and enables the network
to focus on both local information and global information.

4.5.5 Compared with Other Model Recognition Results

To prove the superiority of the proposed method, we compare the proposed method with three
machine learning methods, three classical deep learning methods, and two recent approaches. The
comparison results are shown in Table 6. In the following comparison methods, the Decision Tree
[33], SVM [34], and Random Forest [35] all use grid search to find the optimal parameters. The hyper-
parameters of ResNet18 [36], VGG16 [37], and Xception [38] are consistent with the hyperparameters
of our proposed model. CNN [39] and CNN-LSTM [40], respectively, use the hyperparameters in the
corresponding references. All deep learning models use learning rate decay and early stopping criteria
to prevent overfitting.
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Table 6: Comparison with other models

Model Accuracy F1-score AUC

Decision tree [33] 52.02% 0.6718 0.8780
SVM [34] 58.34% 0.399 0.7573
Random Forest [35] 62.42% 0.5437 0.8092
ResNet18 [36] 85.32% 0.8466 0.9735
VGG16 [37] 94.29% 0.9387 0.9786
Xception [38] 83.20% 0.8100 0.9540
CNN [39] 88.94% 0.8803 0.9744
CNN-LSTM [40] 95.40% 0.9595 0.9805
Ours 97.51% 0.9734 0.9971

As seen from Table 6, our proposed method’s accuracy, F1-score, and AUC are better than
other methods. Our proposed method achieved the highest recognition accuracy of 97.51%, which
is improved by more than 28% compared with the three machine learning methods of Decision
Tree, SVM, and Random Forest. Compared with the classical neural networks ResNet, VGG16,
and Xception, the recognition accuracy of the proposed method is improved by 12.19%, 3.22%, and
14.78%, respectively. Compared with CNN [39], the recognition accuracy of the model proposed in
this paper is improved by 8.57%. Compared with CNN-LSTM [40] model, the recognition accuracy
of the model proposed in this paper is improved by 2.11%. The result indicates that our proposed
method extracts emotion representations containing more spatiotemporal information from shallow
features and pays attention to both local and global information.

In addition, we also compare the parameters and computational complexity of the model. We
calculate the total parameters and Floating-point Operations (FLOPs) of the five neural networks
compared in Table 6 and the proposed network. FLOPs refer to the number of floating-point
operations in one training turn, which is used to measure the complexity of the model. The total
parameters and FLOPs index of the five networks is shown in Table 7, where m after the number
represents one million FLOPs and k represents one thousand FLOPs.

Table 7: Computational complexity and parameter quantity comparison of the models

Model FLOPs Total parameters

ResNet18 [36] 11.18 m 11.18 m
VGG16 [37] 1135.44 m 1,135.42 m
Xception [38] 20.86 m 20.87 m
CNN [39] 8.16 m 8.16 m
CNN-LSTM [40] 474.78 k 464.82 k
Ours 312.98 k 249.12 k
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As seen from Table 7, ResNet18, VGG16, and Xception are all neural networks with millions of
computations and parameters. CNN [39] has 8.16 m parameters and requires 8.16 m operations in
one training turn. CNN-LSTM [40] has 464.82 k parameters and requires 474.78 k operations in one
training turn. Our proposed model has 249.12 k parameters and only requires 312.98 k operations in
one training turn. Our model has minor total parameters, the smallest amount of operations, the lowest
complexity, and the best performance compared with the previous network. This also shows that the
model’s performance does not necessarily increase with the increase of network layers. Appropriately
increasing the number of network layers can improve the network’s performance, but a too-deep
network may lead to overfitting or a local minimum.

4.5.6 Compared with Other Publicly Data Sets

To compare the generalization ability of our model, we contrast CNN [39], CNN-LSTM [40], and
our method on four public datasets: WESAD [41], MAHNOB-HCI [42], DEAP [43], and SEED [44].

The WESAD dataset collects physiological signals such as PPG, ECG, and EDA of 15 subjects
through wrist and chest-worn sensors and labels arousal, valence, and three emotions: neutral,
stress, and entertainment. The MAHNOB-HCI dataset recorded EEG, eye movement, face and body
video, and peripheral physiological signals generated by 27 subjects while viewing images and videos.
The data are annotated with emotion keywords, arousal, valence, dominance, and predictability.
The DEAP dataset recorded EEG and peripheral physiological signals including PPG from 32
participants while they watched forty 1-min music video clips. The data are labeled with arousal,
valence, like/dislike, dominance, and familiarity. The SEED dataset used 15 movie clips to stimulate
the subjects’ three emotions, positive, neutral, and negative. It contained the EEG and eye movement
signals generated by the 15 subjects while watching the movie clips. However, our dataset focuses on
video learning scenarios. We select instructional videos as stimulus materials, select eye movement
and PPG signals that can be collected in a non-contact method, and collect the physiological signals
of 68 subjects. The data are labeled with arousal and four emotions: interest, boredom, happiness, and
confusion.

We use two recent approaches in Table 6 to compare with our model. In WESAD, MAHNOB-
HCI, and DEAP datasets, we performed four classifications of high/low valence and high/low
arousal. In the SEED dataset, we performed three classifications: positive, neutral, and negative. The
comparison results are shown in Table 8.

Table 8: Comparative experiments on WESAD, MAHNOB-HCI, DEAP, and SEED

Data sets Modalities Accuracy

CNN [39] CNN-LSTM [40] Ours

WESAD PPG 74.98% 74.83% 76.41%
MAHNOB-HCI Eye movement, video 47.13% 50.41% 52.50%
DEAP PPG, video 35.27% 41.83% 46.08%
SEED Eye movement, video 70.21% 76.63% 83.76%

In the WESAD data set, there is little difference in the accuracy of the three methods, indicating
that the three methods have extracted deeper features in PPG. On MAHNOB-HCI, DEAP, and SEED
data sets, the accuracy of CNN-LSTM is higher than that of CNN, and the accuracy of our method is
higher than that of CNN-LSTM, which indicates that LSTM extracts the temporal information that
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CNN does not extract. The TCN we use better integrates the spatiotemporal information and deep
representation extracted by CNN and LSTM and obtains a better recognition effect.

The accuracy gap on different data sets may be because different data sets process data differently,
and different processing methods also lead to different data set quality. For example, our data set filters
the data to remove the data with low calibration accuracy so that the data in our data set has higher
quality. The annotation granularity of emotion also affects accuracy. WESAD, MAHNOB-HCI, and
DEAP are all classified using the level of valence and arousal, and coarse-grained annotation may lead
to many samples being misclassified. In addition, the other three datasets, except SEED, are four-class
classifications, and the SEED dataset is three-class classifications, which may be the reason why the
SEED dataset has the highest accuracy.

5 Discussion

This paper proposes a construction method based on continuous MMTF and a multimodal video
learning emotion recognition CLA-TCN model based on knowledge enhancement.

For the MMTF input form we proposed, we compared it with the commonly used raw data input
form and feature input form. The MMTF input form we proposed as the input obtained significantly
better results than the other two input forms. This is because the MMTF input form we proposed
is to extract the features of physiological signals in a short time window and connects the feature of
multiple continuous time windows as input. This form of input not only extracts the emotion-related
features, discards the emotion-independent information in raw data, but also preserves the temporal
nature of raw data, which makes MMTF more suitable for temporal data. However, the selection of
the number of continuous time windows in MMTF may be different due to different data quality,
so MMTF can be combined with optimization algorithms to continue to improve the generalization
ability of MMTF in the following work.

For our proposed knowledge enhancement method, considering that the stimulation of instruc-
tional video generates the emotion of learners in the video learning scene, most of the current research
only focuses on the use of learners’ external performance for emotion recognition while ignoring the
impact of instructional video on learners’ emotion. We extract a series of knowledge such as hue,
brightness, saturation, the click-through rate of videos, and emotion generation time as knowledge-
based features to enhance the process of emotion recognition from physiological signals. Because the
stimulation of instructional video generates learners’ emotions, the content and color of instructional
video will have an intuitive impact on learners’ emotions, so after using the method of knowledge
enhancement, the recognition accuracy of our model has been significantly improved, which indicates
that there is complementary information between knowledge-based features and physiological signal
features, and the addition of knowledge-based features can enhance the ability of the model to
distinguish between the four emotions. In addition to significantly improving the accuracy of emotion
recognition, the method of knowledge enhancement can also ensure that the model can still have a
specific recognition ability even when the physiological signal is lost, or the noise is too large. However,
this paper only considers the image features in the instructional video, and the audio and semantic
information are not considered, which may achieve better results if such knowledge is added.

For the CLA-TCN model we proposed, we use CNN and LSTM to extract deep features and
spatiotemporal information. MHA is used to make the model focuses more on crucial information.
TCN is used to fuse physiological signals with information in knowledge-based features, and the
fully connected layer is used to classify emotions. According to the comparative experiment, CNN
and LSTM extracted the deeper emotional representation and spatiotemporal information from
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the temporal features of physiological signals. The emotional recognition results have significantly
improved compared to only shallow features. The addition of MHA also makes the model pay
more attention to the global and local critical information, effectively improving the recognition
accuracy. The addition of knowledge-based features also significantly enhances the recognition results.
In addition, we have carried out comparative experiments on DEAP, MAHNOB-HCI, SEED, and
WESAD data sets, and our methods have obtained good results on four public data sets.

6 Conclusions and Future Work

This paper proposes a multimodal emotion recognition method in video learning based on
knowledge enhancement, which uses knowledge-based features to enhance the emotion recognition
process of physiological signals. To be specific, we propose a construction method based on continuous
MMTF. We extract the combination of hue, brightness, and saturation in instructional videos, the
click-through rate of videos, and the time of emotion generation as knowledge-based features and
use the CLA-TCN model for knowledge-enhanced emotion recognition. The experimental results
show that the proposed multimodal temporal feature construction method extracts the emotion-
related representation from the raw data and effectively preserves the time relationship between the
data. Compared with the raw data as input and the features as input, the recognition accuracy is
increased by more than 19%. The extracted knowledge-based features contain a wealth of emotional
information. Compared with only using physiological signals for emotion recognition, the recognition
accuracy of the four kinds of emotions and the overall emotion recognition accuracy is significantly
improved after knowledge enhancement. The CLA-TCN model we proposed entirely extracts the
deeper emotional representation and the spatiotemporal information contained in the shallow features
and pays attention to the local and global information simultaneously. When using the deep features
and knowledge-based features for emotional recognition, TCN also fully uses the information in
the deep features and knowledge-based features and complements them. The accuracy has reached
97.51%.

This experiment uses knowledge to guide the emotion recognition process of physiological signals.
Therefore, a series of knowledge-based features are extracted from the instructional video to enhance
the emotion recognition results of physiological signals. However, in this experiment, we only used the
video features of the stimulus material and did not use the audio of the stimulus material. In future
work, we can consider using audio and more knowledge forms to enhance the emotion recognition
process. Furthermore, this paper adopts a direct concatenate method for fuse eye movement features,
PPG features, and knowledge-based features. In the subsequent work, we can try more fusion methods,
such as feature fusion according to the amount of information contained by different modalities,
the amount of noise contained by different modalities, or the degree of complementarity between
modalities. In addition, although non-contact methods can collect eye movement data and PPG
signals, the PPG signals used in this paper are obtained by contact sensors. Therefore, if we want to
extend the proposed method to practical applications, we need to replace PPG with rPPG. However,
rPPG still needs to improve with low recognition accuracy. Improving the recognition accuracy of
rPPG is also a problem we need to consider in the next step.
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