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Abstract: A cataract is one of the most significant eye problems worldwide
that does not immediately impair vision and progressively worsens over time.
Automatic cataract prediction based on various imaging technologies has
been addressed recently, such as smartphone apps used for remote health
monitoring and eye treatment. In recent years, advances in diagnosis, pre-
diction, and clinical decision support using Artificial Intelligence (AI) in
medicine and ophthalmology have been exponential. Due to privacy concerns,
a lack of data makes applying artificial intelligence models in the medical field
challenging. To address this issue, a federated learning framework named CD-
FL based on a VGG16 deep neural network model is proposed in this research.
The study collects data from the Ocular Disease Intelligent Recognition
(ODIR) database containing 5,000 patient records. The significant features
are extracted and normalized using the min-max normalization technique. In
the federated learning-based technique, the VGG16 model is trained on the
dataset individually after receiving model updates from two clients. Before
transferring the attributes to the global model, the suggested method trains
the local model. The global model subsequently improves the technique after
integrating the new parameters. Every client analyses the results in three
rounds to decrease the over-fitting problem. The experimental result shows
the effectiveness of the federated learning-based technique on a Deep Neural
Network (DNN), reaching a 95.28% accuracy while also providing privacy to
the patient’s data. The experiment demonstrated that the suggested federated
learning model outperforms other traditional methods, achieving client 1
accuracy of 95.0% and client 2 accuracy of 96.0%.
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1 Introduction

A cataract is one lenticular opacity that obscures the transparent lens in a person’s eye. Usually,
the lens directs light toward the retina. Poor vision results from this light being blocked by the cataract
and not accessing the lens. The most significant eye problem worldwide that does not immediately
impair vision regressively worsens over time. However, with time, it can obstruct eyesight and even
result in loss of vision in persons over 40 [1,2]. Early detection may help patients prevent painful and
expensive operations and avert blindness depending on the cataract severity [2]. The National Eye
Institute estimates that 24.4 million Americans already have cataracts, which will rise to 38.7 million by
2030 [3]. The WHO (World Health Organization) reports around 285 million visually impaired persons
worldwide, including 246 million moderates to severe blinds and 39 million blinds [4]. According to
Flaxman et al. [5], in 2020, it was predicted that 38.5 million blind people would be globally, and
237.1 million MSVI (Moderate to Severe Vision Impairment) would suffer. 13.4 million (35%) and
57.1 million (24%) would suffer from cataracts. Comparing the findings of these reports demonstrates
that throughout the past decade, there has only been a marginal improvement in the eye care system
and the management of vision loss.

Early diagnosis and intervention can decrease the suffering of cataract patients and stop the
growth from vision impairment to blindness. Three factors make providing an automatic system to
detect cataracts challenging: the wide range of cataract lesions and human visual tones; the size, shape,
and position of cataracts; and the dependence on age, gender, and eye type. The most significant
blindness is caused by cataracts, glaucoma [6], corneal opacity, trachoma, and diabetic retinopathy
[7]. It is regarded as one of the primary causes of blindness [5]. Based on the location and region
in which it manifests, cataracts can be classified into three main categories nuclear cataracts [8],
cortical cataracts [9], and Posterior Sub Capsular (PSC) cataracts [10]. These three distinct types of
cataracts have all been attributed to aging, diabetes, and smoking, among other frequent causes [2].
Automatic cataract prediction based on various imaging technologies has been addressed recently
[11]. The automatic cataract identification and categorization systems typically use four image types:
retro illumination, slit lamp, ultrasonography, or fundus images. Because technologists or patients can
use the fundus camera easily, fundus images have drawn much attention in this field among different
imaging techniques [12,13]. In comparison, only ophthalmologists with extensive experience should
use slit-lamp cameras. Consequently, the shortage of qualified ophthalmologists prevents appropriate
treatments, particularly in underdeveloped countries [14]. Therefore, an automatic cataract diagnosis
method based on fundus images is crucial to streamlining early cataract screening. To identify eye
diseases, image processing and machine learning algorithms have been designed [15]. A computerized
ocular diagnostic system that can diagnose several severe diseases like keratoconus, glaucoma, or
diabetic retinopathy has also been proposed [16–19].

Similarly, smartphone apps have been utilized for health monitoring remotely, including remote
eye treatment. Smartphones are now being used to diagnose cataracts by utilizing the color and texture
of the lens [17,18,20]. Even though there have been several deep learning-based automatic cataract
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detection systems reported in the literature, they still have drawbacks, such as poor detection accuracy,
a large number of model parameters, and high computing costs [2,21,22]. Several techniques [6,16–18]
are used based on the smartphone to detect cataracts. The accuracy of detecting cataracts in these
studies is vulnerable to changes in smartphone models and environmental circumstances because these
studies mainly depend on smartphone camera sensor properties, ambient light, environmental factors,
and distance [20].

Motivation: The healthcare industry, like other industries, generates a ton of data. The information
era uses data mining, machine learning, and deep learning to transform data into knowledge for the
early identification of diseases. In recent years, advances in diagnosis, prediction, and clinical decision
support using AI in medicine and ophthalmology have been exponential. The utilization of digital data
has also ushered in demand for privacy-preserving systems to prevent threats like adversarial attacks
and to maintain patient confidentiality [23]. However, due to privacy concerns, a lack of data makes
applying artificial intelligence models in the medical field challenging. The need to protect image data
from malicious entities has risen exponentially as digital technology evolves. Image data varies from
textual data critically, including their vast data capacity, high redundancy, and significant correlation
among adjacent pixels, making it impossible for traditional text encryption techniques to work on
images. Since it is so easy for hackers to steal or modify data, whether on purpose or accidentally,
private data cannot be guaranteed to be protected using machine learning algorithms [24]. These
problems are addressed by Federated Learning (FL), which protects data privacy [25,26]. Artificial
intelligence-based systems can learn about specific data using federated learning without sacrificing
privacy [27–29]. By keeping their data private, end devices can take part in learning and disseminating
the prediction model while disclosing their information. Researchers are currently concentrating on
utilizing federated learning with health records [30–32]. Keeping in view the above limitations, this
paper makes the following contributions:

• The proposed approach initially trains the local model before sending the parameters to the
global model. After then, the global model combines the updated parameters and refines the
procedure while preserving the confidentiality of each client’s data.

• This study proposes a technique that utilizes the ocular disease recognition dataset (fundus
images) to detect and diagnose cataract disease via federated learning.

• The in-depth features are extracted from Fundus images using the VGG16 model, while the
min-max normalization technique normalizes the data.

• The experiment demonstrates that the federated learning model, based on a VGG16 deep neural
network model, offers client data safety and improves accuracy for cataract disease by 95.28%
compared to traditional methods.

The following sections comprise the structure of the paper: The work on machine learning, deep
learning, and federated learning techniques for identifying cataract disease and healthcare systems is
covered in Section 2. The proposed methodology is detailed in Section 3, including dataset selection,
data preparation, feature extraction, a federated learning framework, and model design. The results are
described and discussed in Section 4. The study’s conclusion and suggestions for additional research
are presented in Section 5. Table 1 provides the list of abbreviations.
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Table 1: List of abbreviations

No. Abbreviation Description

1 AI Artificial Intelligence
2 ODIR Oracal Disease Intelligence Recognition
3 DNN Deep Neural Network
4 WHO World Health Organization
5 MVSI Moderate to Serve Vision Impairment
6 PSC Posterior Sub Capsular
7 BPNN Back Propagation Neural Network
8 RF Random Forest
9 CNN Convolutional Neural Network
10 NB Naïve Bayes
11 SVC Support Vector Classifier
12 SVM Support Vector Machine
13 LPS Lens Partition Strategies
14 OCC Operating Characteristic Curve
15 SRD Standard Reference Diagnosis
16 FEA Federated Edge Aggregator
17 DP Distributed Protection
18 QDA Quadratic Discriminant Analysis
19 PCA Principal Component Analysis
20 DNN Deep Neural Network
21 AUC Area Under the Curve
22 GA Gestational Age
23 BW Birth Weight
24 VSS Vascular Severity Score

2 Related Works

This section provides the background of cataract disease using machine and deep learning
techniques. Additionally, included is background information on healthcare systems that use federated
learning.

Machine Learning Techniques: Machine learning and artificial intelligence are significant for the
earlier identification and detection of healthcare [33–35], including human neuropsychiatric disease
[36], behavioral abnormality [37], stress illness [38] and brain disorder [39,40]. Several techniques
[6,16–18] are used based on the smartphone to detect cataracts. The authors in [14] proposed
an ensemble learning-based technique, SVM and Back Propagation Neural Network (BPNN), to
increase diagnosis accuracy. The outcomes show a clear advantage for the ensemble classifier over
the individual learning model, highlighting the potency of the suggested strategy. Regarding average
accuracy for cataract identification, the ensemble classifier performs best, with a score of 84.5%.
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In a study [16], researchers looked into the viability of smartphone cataract detection. Using
a cutting-edge luminance-based feature extraction method, authors have suggested an accurate,
transportable healthcare solution to identify cataracts. Images taken from eye models were modeled
to duplicate different cataract diseases and healthy eyes. The suggested method sought to identify
condensation and chromatic aberration in the eye simulation as indicators of cataracts. Using various
smartphone images of 100 eye models, 50 of which suffered from cataracts and 50 of which were
healthy, the authors put the suggested strategy into practice. The suggested technique was assessed in
several scenarios to determine how proximity, light source, elevation, and various smartphone camera
parameters affected the research result. The technique was able to identify sick eyes significantly with
96.6% accuracy, 93.4% specificity, and 93.75% sensitivity from all the images provided in the system.

A practical method for diagnosing cataract disease utilizing smartphone brightness features was
proposed in [20]. In the beginning, smartphones take images of eyes and are cropped to isolate the lens.
The images are then preprocessed with a median filter and a watershed transformation to eliminate
extraneous background and noise. Then, a unique luminance conversion from the pixel brightness
approach is provided to extract lens image features. This stage allows for correctly acquiring various
cataract disease images’ luminance and textural characteristics. Finally, the classification algorithm
uses Support Vector Machines (SVM) to identify cataract eyes. The proposed method has a 96.6%
accuracy, 93.4% specificity, and 93.75% sensitivity for diagnosing damaged eyes from all the images fed
into the system. A smartphone-based android application was created utilizing the suggested approach
by the authors in [41], which can be used to identify the existence of a cataract in a person’s eye. The
proposed approach is developed using machine learning and image processing techniques like KNN
(K-Nearest Neighbor), SVM, and Naive Bayes. The proposed method has an 83.07% accuracy, an
83.18% specificity, an F-score of 82.97%, and an 82.7% recall for diagnosing cataracts.

Deep Learning Techniques: Deep learning has been utilized recently to analyze clinical data
across several sectors, and it excels in tasks like segmentation and recognition. Edge-detecting
filters and several mathematical methods are the foundation of the traditional approach to image
classification. Different deep learning-based automatic cataract detection systems were reported in
[2,21,22]. The authors in [2] suggested using a deep neural network called Cataract Net to detect
cataracts automatically in fundus images. Cataract Net has a much lower computing cost and a shorter
average operating time than certain pre-trained Convolutional Neural Network (CNN) algorithms.
According to experimental findings, the proposed approach performs better than the most advanced
cataract detection techniques, with 99.13% average accuracy.

Authors in [21] utilized convolutional neural networks to categorize cataract disease using an
accessible image dataset. In this experiment, the Tensor Flow object identification framework is used
to apply four distinct convolutional neural network (CNN) meta-architectures, including Xception,
InceptionResnetV2, InceptionV3, and DenseNet121. The study can diagnose cataract disease at the
cutting edge because of InceptionResnetV2. This framework accurately predicted cataract disease on
the dataset with 1.09% training loss, 99.54% training accuracy, 6.22% validation loss, and 98.17%
validation accuracy. This model’s sensitivity and specificity are 96.55% and 100%, respectively. The
model also significantly reduces training loss while improving accuracy. To enhance the transferability
of infantile cataract detection, the paper’s authors [22] created two Lens Partition Strategies (LPSs)
using deep learning Faster R-CNN and Hough transform. To assess the effectiveness of LPSs,
1,643 images of multicenter slit-lamp from five ophthalmology clinics are collected. By gradually
incorporating multicenter images into the training dataset, the transferability of Faster R-CNN for
testing and evaluation is investigated. The Faster R-CNN can achieve a mean intersection over union
for the abnormal and normal lens partitions of 0.9419 and 0.9107, respectively, with average precision
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more significant than 95%. The Faster R-CNN for opacity area evaluation’s sensitivity, accuracy, and
specificity is enhanced by 3.29%, 5.31%, and 8.09%, respectively.

Federated Learning Techniques: FL techniques provide data privacy [25,26]. The author in [30]
proposed the DEEP-FEL federated edge learning system, which permits medical devices in many
institutions to train a global model cooperatively without exchanging raw data. First, creates a
hierarchical ring topology to reduce the centralization of the traditional training framework. Next,
formulates the ring’s creation as an optimization problem that a robust heuristic algorithm can resolve.
Then, to create a new global model, develops an effective parameter aggregation technique for remote
medical institutions, where the amount of data transferred by N nodes is only 2/N times that of the
conventional approach. The proposed model accuracy varies between 0.72% to 0.75%. Additionally,
data security across various medical institutions is improved by incorporating artificial randomness
into the edge model.

The authors of [31] used FL, a technique for jointly training deep learning algorithms without
disclosing patient records, to distinguish between inter-institutional diagnostic patterns and disease
epidemiology in retinopathy of prematurity (ROP). From patient examinations in seven different
institutions’ newborn critical care units, 5,245 retinal images are acquired. Images are classified
using the bedside Clinical Grading (CL) of plus disease (no plus, pre-plus, plus), as well as the
clinical diagnosis and a Standard Reference Diagnosis (RSD) that has been agreed upon by three
graders wearing masks. It has been discovered that the performance of central trained models on
medical labels and federated learning models equals ROC by 0.93Â ± 0.06 vs. 0.95 ± 0.03, p = 0.0175.
To protect Smart Healthcare Systems at the edge from such privacy assaults, the authors in [32]
described a Federated Edge Aggregator (FEA) system with Distributed Protection (DP) employing
IoT technologies. The study uses artificial noise functions and an iterative Conventional Neural
Network (CNN) model to balance model performance with privacy protection.

In summary, various machine learning and deep learning techniques have been researched and
developed for predicting cataract disease. Nevertheless, they did not provide comforting proof of
improved accuracy, and they did not place a high priority on data security. In this study, we develop a
federated learning framework to protect data privacy that machine and deep learning models do not
consider. The federated learning study that was previously discussed focused on addressing numerous
healthcare challenges. The related work summary is provided in Table 2.

Table 2: Summary of related work

Ref. Techniques Results Limitations

[14] SVM and BPNN 84.5% accuracy Low performance and do not provide
privacy to patient data

[22] R-CNN 95% precision Do not provide privacy to patient data.
[30] DEEP-FEL 75% accuracy Low Performance
[32] FEA 90% accuracy Low performance
[41] ML techniques 83.07% accuracy Low performance and do not provide

privacy to patient data
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3 Proposed Methodology

This section details the proposed methodology, including dataset, data preprocessing, feature
extraction, federated learning framework, and model architecture. Fig. 1 represents the different steps
of the proposed methodology. In the first step, take the ocular disease recognition dataset, preprocess
the data by min-max normalization technique and extract the significant features in the second step.
The preprocessed dataset is divided into two windows for two clients in the next step. The preprocessed
dataset is then used to train the local model using a VGG16 deep neural network. In the last step, results
from both clients are combined and updated in the global model.

Figure 1: Overview of proposed methodology

3.1 Dataset Selection
An appropriate dataset with many samples must be used to improve validation and training for

deep learning-based classification. The ocular disease recognition dataset is used in this study and
is available on Kaggle. The organized ophthalmic database Ocular Disease Intelligent Recognition
(ODIR) contains information on 5,000 patients, including their age, the color of their fundus images
in both right and left eyes, and the keyword of their doctor’s diagnostic. This dataset is intended
to reflect a “real-life” collection of patient records that Shang gong Medical Technology Co., Ltd.
has gathered from various hospitals and medical facilities in China. These institutions use a variety
of cameras available on the market, including Kowa, Canon, and Zeiss, to acquire fundus images,
producing images with different qualities. Quality assurance management educates human readers to
assign labels to the annotations. Patients are divided into eight groups according to their diagnoses:
normal, diabetes, hypertension, glaucoma, cataract, age-related macular degeneration, pathological
myopia, and other illnesses/abnormalities. There are 6392 training data in total, including cataracts
and normal eyes. The dataset samples in Fig. 2 represent whether the human eye has cataracts. Because
this study uses two clients, each with its dataset, the dataset is split into two windows. The dataset is
divided between training and testing, with 75% of the data used to train the models and 25% used to
test the models.
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Figure 2: Samples of normal and cataract eye

3.2 Data Preprocessing and Feature Extraction
In machine learning, data preprocessing entails converting unstructured data into a format that

can be utilized to create and enhance machine learning models. The initial stage in machine learning
before building a model is data preprocessing. Data preparation is crucial in increasing data reliability
to extract valuable information. Actual data is frequently unreliable, inaccurate (contains outliers
or errors), incomplete, and devoid of particular attribute values or patterns. In this situation, data
preparation is essential because it makes it easier to organize, filter, and present raw data in a
format that machine learning models can use. The min-max normalization technique is used for data
preprocessing in this study.

Min-Max Normalization: The low variance, the ambiguous dataset is structured, and data
integrity is maintained using min-max scaling for normalizing the features. A model that relies on the
magnitude of values has to scale the input attributes. Because of this, normalizing describes the discrete
range of real-valued numerical properties between 0 and 1. Eq. (1) is being utilized to normalize the
data.

Ynorm = Yi − Ymin
Ymax − Ymin

(1)

After preprocessing, the dataset is split into two sections: a training dataset and a testing dataset,
with 25% of the dataset used as testing data to assess the proposed model and 75% used to train the
model.

Feature Extraction: The ocular disease recognition dataset is trained after data preprocessing.
The VGG16 deep neural network model extracts the critical features without human oversight.
Convolutional filters extract features from the training dataset following the benefit of deep learning.
The VGG16 deep neural network model is used in this study to classify different ocular types and
extract the finer details from an image. The extracted features are then sent to a VGG16 model with a
fully connected (FC) layer in the deep neural network model.
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3.3 Federated Learning Framework
A federated learning system comprises a client(s) and a server. The cloud-based federated learning

server analyses key data types for the target application and trains hyper-parameters like learning rate,
number of epochs, activation function, and Adam optimizer. Three crucial steps are included in the
federated learning paradigm. The initialization of training is the first step. Additionally, a global model
is first developed by the federated learning server.

The VGG16 deep neural network model has specified client requirements and multiple hyper-
parameters. It is important to note that the federated learning server determines the model’s epoch
and learning rate. Training the VGG16 deep neural network model at the second level is required.
Every client starts by acquiring updated information and modifying the (My

x) local model parameter,
which depends on the global model (Gy), where y is the index for the next iteration. Each client seeks
for the optimal situation to minimize the loss. Ultimately, provide the federated learning server with
the new parameters regularly. The global model’s integration is the third level. Once the results from
various clients have been combined on the server side, send the updated parameters to each client. The
global mean loss function is the primary objective of the federated learning server, which uses Eq. (2).

Loss (Gy) = 1
M

∑x=1

x=M
Loss (My

x) (2)

In Algorithm 1, firstly, take the ocular disease recognition dataset Ds as input and predict the
cataract. In the second step, the dataset is preprocessed Dp and partitioned as the training dataset for
two clients. Then extract the features fe using the VGG16 model and normalize the data using the min-
max normalization technique. The dataset is divided between training and testing, with 75% of the
data used to train the models and 25% used to test the models. Update the global model and initialize
the model weight w0. ti denotes the current round of the model, T is the total round of the local model.
ci is the current client, and C is the total clients. Update the local model for each client according
to the current iteration/round. Calculate the current iteration weight by the sum of the weight of the
client’s dataset and the current client iteration. The following model parameters, such as an epoch
value, activation function, and batch size, are used to calculate the loss of the local model of each
client. Update the local model by calculating the loss function Fi(w). The procedure is repeated until
the requisite accuracy is attained or the loss function is constantly minimized.

Algorithm 1: Proposed Federated Learning Framework for Cataract Image-based Disease Detection
1: Input: Ds(Ocular diseases recognition dataset)
2: Output: Cataract prediction
3: Dp(Data preprocessing)
4: fe(Feature extraction)
5: Ynorm = Yi-Ymin/Ymax-Ymin(data Normalization)
6: xtrain, xtest, ytrain, ytest ← train-test split dataset (dataset splitting)
7: function global model upgrade
8: weight initialization w0

9: for (ti = 1) to T do
10: for (ci = 1) to C do
11: wci

ti + 1 = local model upgrade (ci, wti)
12: wti + 1 =∑C

ci=1 wci
Ds ∗ wti

ci + 1

13: function local model upgrade (ci, wti)
14: for (Epoch = 1) to Ep do

(Continued)
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Algorithm 1 (continued)
15: for (Bs ∈ BatchSize) do
16: w = w − �Fi(w)
17: return w

3.4 Model Architecture
The VGG16 deep neural network model is used for cataract disease prediction. When simulating

the structure of neural networks, the neurons and the number of layers are essential. The number of
neurons utilized as input and output in a deep neural network model depends on the training data size.
A deep convolution neural network model with much success in computer vision is the VGG16. The
architecture of the VGG16 model is provided in Fig. 3. In general, the VGG16 model has three layers:
an input layer, several hidden layers (such as dropout, dense, flatten, etc.), and the output layer. The
sequential VGG16 model used in this study has a single input layer. The input layer has a shape of 224
and uses the relu activation function. The next layer is the hidden layer, consisting of four dense layers
and three dropout layers. The three dropout layers are employed to prevent the overfitting of the model.
The values of the dropout layers are 0.5, 0.2, and 0.1, respectively. The four dense layers comprise 256
and 128, and 1 unit and the activation functions are the relu and sigmoid. The flattened layer, typically
used in the transition from the convolution layer to the fully connected layer, is the next layer to reduce
the multidimensional input to one dimension. The output layer comes next; it is the fully connected
layer utilized for binary classification problems. The VGG16 model uses binary cross-entropy and
Adam as an optimizer to calculate and reduce the loss. To address the binary classification problem,
every dense layer uses relu and sigmoid activation functions along with a fully connected layer.

Figure 3: Proposed architecture of VGG16 model

4 Experimental Results and Discussion

This section presents the experimental results and an evaluation of the proposed methodology. The
study investigates the effects of broader approach technique parameters. The experiment is conducted
on the ocular disease recognition dataset containing the 6392 fundus images of both left and right
eyes. One server and two clients are involved in the experiment. The two clients use the ocular disease
recognition dataset to train the VGG16 deep neural network model.
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The ocular disease recognition image dataset trains the VGG16 deep neural network model and
constructs the random weight. The section regarding model architecture provides the basics of the
VGG16 deep neural network model. First, the study acquired 6392 fundus images from the ophthalmic
database Ocular Disease Intelligent Recognition (ODIR) and extracted the specific features that may
accurately identify cataracts. The dataset is divided into two portions: 25% is used for testing the model,
and 75% is utilized for training the model. All values are normalized using the min-max normalization
to fit inside the range [0, 1]. The label is translated into a machine-readable format using the label
encoder approach. The experiment utilizes a variety of evaluation criteria, including recall, f1-score,
precision, and accuracy, to evaluate the federated learning-based approach’s ability for prediction. The
results for each client are verified three times for loss prevention. The server end aggregates the client’s
results. The equations of the evaluation metrics are given below. The accuracy of the model is evaluated
by using Eq. (3). The precision of the model is assessed by using Eq. (4). The recall and f1-score of the
model are evaluated by Eqs. (5) and (6).

Accuracy = TP + TN
TP + FP + TN + FN

(3)

Precision = TP
TP + FP

(4)

Recall = TP
TP + FN

(5)

F1 = 2 ∗ TP
2 ∗ (TP + FP + FN)

(6)

4.1 Server-Based Training Using Log Data
The VGG16 deep neural network model is trained using data logged on servers. The server decides

which client or node is used at the initial level of the model training stage and accumulates any
modifications received. Before the training, all individually identifying information is eliminated from
the logs, and they are made anonymous. There are three rounds after the federated learning begins.
After initializing a few server-side parameters, we set the round count to three and evaluated the tests
three times. The federated learning model consists of two phases for each round: the fit round and the
evaluate round. During the fit-round, the clients transmit the learning outcomes to the server. Both
clients send the test results to the server when the findings are combined during the evaluation stage.
The VGG16 deep neural network model has the highest accuracy, rating 95.28%, according to the
server’s analysis of the information from N clients.

4.2 Client 1 Federated Training and Testing
Client 1 conducts the experiment using a sequential VGG16 deep neural network model with four

dense, three dropouts, and one flatten layer as hidden layers. The input shape of the input layer is 224
with the relu activation function. Adam optimizer calculates and reduces the loss; the VGG16 model
uses binary cross-entropy. Three rounds of experiments are executed by client 1, and the results are
provided in two rounds: the evaluation and the fit rounds. The VGG16 deep neural network model is
employed in this experiment, which includes three test rounds. The experiment evaluates evaluation
metrics in three rounds: recall, accuracy, precision, and f1-score. The experimental results for client 1
are shown in Table 3. The VGG16 model is employed in the study’s round 1 analysis, and the results
are successful in terms of accuracy, recall, precision, and F1-score. The VGG16 model provides 94.0%
accuracy, 91.0% precision, 96.0% recall, and 93.0% F1-score in the first round. Analyze the results to
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avoid the model overfitting once more. The accuracy, precision, recall, and F1-score for the VGG16
model in round 2 are 95.0%, 92.0%, 99.0%, and 95.0%, respectively. The VGG16 model achieves an
accuracy of 95.0%, a precision of 91.0%, a recall of 100.0%, and an F1-score of 95.0% in round 3.
Round 3 yields the best result for client 1.

Table 3: Proposed model result of client 1

Rounds Accuracy Precision Recall F1-score

Round 1 94.0% 91.0% 96.0% 93.0%
Round 2 95.0% 92.0% 99.0% 95.0%
Round 3 95.0% 91.0% 100.0% 95.0%

The highest results are illustrated in Fig. 4. The graph in Fig. 4a shows the training and validation
accuracy, with round 3 of client 1 attaining higher validation accuracy than training accuracy. A blue
line shows the training accuracy curve, while an orange line shows the validation accuracy curve. At the
1st epoch, the training accuracy is 0.99%; after various fluctuations between falls and gains, it reached
about 1.00% accuracy at the 5th epoch. At the 1st epoch, validation accuracy is 0.95%; it then fluctuates
between drops and gains before returning to that value at the 5th epoch. The training and validation loss
is depicted on the graph in Fig. 4b. During the training phase, the loss fluctuates at each epoch. The
blue line represents the training loss curve, while the orange line represents the validation loss in the
loss curve. Training loss initiated from 0.02% at the 1st epoch and decreased to 0.01 at the 5th. Validation
loss initiated from 0.19% at 1st epoch and increased to 0.32% at the 5th epoch. The Receiver Operating
Characteristic (ROC) is depicted in the graph in Fig. 4c. The experiment uses two classes, and the
proposed model performs better on the used dataset with ROC scores of 0.987%. The ROC curves
close to the top-left corner demonstrate better performance. Fig. 6a, which graphically illustrates the
proposed technique’s confusion matrix for client 1, gives a general concept of how a classification
algorithm functions. Because it has more continuous, better true positive and negative results and
fewer false positive and negative values, the proposed technique performs better. The proposed model
predicted 100% of cataract cases accurately for client 1.

Figure 4: Representation of client 1 highest-scoring results
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4.3 Client 2 Federated Training and Testing
Client 2 conducts the experiment using a sequential VGG16 deep neural network model with four

dense, three dropouts, and one flatten layer as hidden layers. The input shape of the input layer is 224
with the relu activation function. Adam optimizer calculates and reduces the loss; the VGG16 model
uses binary cross-entropy. Three rounds of experiments are executed by client 2, and the results are
provided in two rounds: the evaluation and the fit rounds. The VGG16 deep neural network model is
employed in this experiment, which includes three test rounds. The experiment evaluates evaluation
metrics in three rounds: recall, accuracy, precision, and f1-score. The experimental results for client 2
are shown in Table 4. The VGG16 model is employed in the study’s round 1 analysis, and the results
are successful in accuracy, recall, precision, and F1-score. The VGG16 model provides 94.0% accuracy,
90.0% precision, 97.0% recall, and 93.0% F1-score in the first round. Analyze the results to avoid the
model overfitting once more. The accuracy, precision, recall, and F1-score for the VGG16 model in
round 2 are 96.0%, 94.0%, 98.0%, and 96.0%, respectively. The VGG16 model achieves an accuracy of
95.0%, a precision of 90.0%, a recall of 100.0%, and an F1-score of 95.0% in round 3. Round 2 yields
the best result for client 2.

Table 4: Proposed model result of client 2

Rounds Accuracy Precision Recall F1-score

Round 1 94.0% 90.0% 97.0% 93.0%
Round 2 96.0% 94.0% 98.0% 96.0%
Round 3 95.0% 90.0% 100.0% 95.0%

The highest results are illustrated in Fig. 5. The graph in Fig. 5a shows the training and validation
accuracy, with round 2 of client 2 attaining higher validation accuracy than training accuracy. A blue
line shows the training accuracy curve, while an orange line shows the validation accuracy curve. At
the 1st epoch, the training accuracy is 0.97%; after various fluctuations between falls and gains, it
reached about 0.99% accuracy at the 5th epoch. At the 1st epoch, validation accuracy is 0.93%; however,
it fluctuates between drops and gains until reaching 0.96% accuracy at the 5th epoch. The training
and validation loss is depicted on the graph in Fig. 5b. During the training phase, the loss fluctuates
at each epoch. The blue line represents the training loss curve, while the orange line represents the
validation loss in the loss curve. Training loss initiated from 0.75% at 1st epoch and decreased to 0.03
at the 5th epoch. Validation loss initiated from 0.26% at 1st epoch and decreased to 0.17% at the 5th

epoch. The proposed model outperforms as training and validation loss is decreased at the final epoch,
enhancing the model’s performance. The Receiver Operating Characteristic (ROC) is depicted in the
graph in Fig. 5c. The experiment uses two classes, and the proposed model performs better on the
used dataset with ROC scores of 0.985%. The ROC curves close to the top-left corner demonstrate
better performance. Fig. 6b, which graphically illustrates the proposed technique’s confusion matrix
for client 2, gives a general concept of how a classification algorithm functions. Because it has more
continuous, better true positive and negative results and fewer false positive and negative values,
the proposed technique performs better. The proposed model diagnosed 97.78% of cataract cases
accurately for client 2.
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Figure 5: Visualization of client 2 highest-scoring results

Figure 6: Confusion matrices for both clients using the proposed method

The comparative analysis of the suggested approach with existing techniques [14,30,32,41] is
provided in Table 5. The comparison is provided regarding the accuracy, precision, recall, and F1-
score. The proposed approach outperforms as associated to the existing techniques.

Table 5: Comparison with existing techniques

References Techniques Accuracy Precision Recall F1-score

[14] SVM and BPNN 84.5% NA NA NA
[30] DEEP-FEL 75% NA NA NA
[32] FEA 90% NA NA NA
[41] ML techniques 83.07% NA 82.7% 82.97%
Proposed
approach

CD-FL
(VGG-16)

95.0% 91.0% 100.0% 95.0%
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4.4 Research Limitations
The sustainability of healthcare systems relies on using user data to train ML models while

raising severe privacy and security concerns. This research proposes an FL-based VGG16 model
to recognize and classify Cataract image-based disease to address this issue. Since FL prioritizes
protecting patient data, no direct data exchange occurs in this collaborative process. Although FL
permits more collaborative ML (with privacy protection at its core), it also presents many problems,
including those mentioned here. Communication is a significant hurdle in FL networks, as the data
created by each device is kept locally. Designing models that allow effective communication while
limiting the number of cycles to train a model using device-generated input is crucial. Although
FL’s privacy features are a big positive, they also prevent data analysts from seeing user data in its
unprocessed form. To detect missing data, eliminate extraneous information, and identify the data
points that the system should be trained on, they cannot clean up the data resulting in the system’s
poor performance. Additionally, it should incrementally communicate discrete model upgrades rather
than providing the complete data set during training.

5 Conclusion and Future Directions

A cataract is one of the most severe ocular diseases affecting people worldwide, which gradually
deteriorates over time without instantly impairing eyesight. Cataract disease is the most severe disease
for which a patient needs special care, including protecting the confidentiality of their medical records.
However, using artificial intelligence models in the medical industry is challenging due to privacy
concerns. Federated learning (FL), which protects data privacy, is proposed in this study to deal
with this issue using a VGG16 deep neural network model which detects and diagnoses cataract
disease. The study collects data from the Ocular Disease Intelligent Recognition (ODIR) database
containing 5,000 patient records. The significant features are extracted and normalized using the min-
max normalization technique. Because this study uses two clients, each with its dataset, the dataset is
split into two windows to construct the training model. The VGG16 model is trained on two clients,
and the aggregate server end accuracy is 95.28%. Each client reviewed the results three times to reduce
the over-fitting element. The best result of round 3 of client 1 was obtained with a 95.0% accuracy, and
client 2 of round 2 obtained the best result with a 96.0% accuracy. The VGG16 model’s ROC curve
average of 0.985% demonstrates the proposed method’s excellent performance on the tested dataset.
The research results demonstrated that federated learning effectively protects client data privacy.
According to a system efficiency study, side training times and storage costs favor medical devices
with constrained resources. Furthermore, it enables concurrent model training on each piece of data
while storing the patient data in several locations. Compared to training on a personal processor,
researchers may train more quickly while requiring less computing or storage capacity from each
location. In the future, we plan to investigate this trend more thoroughly by training more systems
using various smartphone device combinations and expanding our research by applying new deep
learning algorithms with multiple datasets and employing different statistical tests, such as Wilcoxon
and ANOVA, to ensure the quality of the proposed algorithm.

Acknowledgement: The authors extend their appreciation to the Deputyship for Research & Innova-
tion, Ministry of Education in Saudi Arabia, for funding this research work through Project Number
959.



1748 CSSE, 2023, vol.47, no.2

Funding Statement: The authors extend their appreciation to the Deputyship for Research & Innova-
tion, Ministry of Education in Saudi Arabia, for funding this research work through Project Number
959.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. Rana and S. M. Galib, “Cataract detection using smartphone,” in 2017 3rd Int. Conf. on Electrical

Information and Communication Technology (EICT), IEEE, Khulna, Bangladesh, pp. 1–4, 2017.
[2] M. S. Junayed, M. B. Islam, A. Sadeghzadeh and S. Rahman, “Cataractnet: An automated cataract

detection system using deep learning for fundus images,” IEEE Access, vol. 9, pp. 128799–128808, 2021.
[3] N. NIH, “Eye disease statistics,” National Eye Institute, 2019. [Online]. Available: https://www.nei.nih.gov/
[4] D. Allen and A. Vasavada, “Cataract and surgery for cataract,” Bmj, vol. 333, no. 7559, pp. 128–132, 2006.
[5] S. R. Flaxman, R. R. Bourne, S. Resnikoff, P. Ackland, T. Braithwaite et al., “Global causes of blindness

and distance vision impairment 1990–2020: A systematic review and meta-analysis,” The Lancet Global
Health, vol. 5, no. 12, pp. e1221–e1234, 2017.

[6] S. Hu, X. Wang, H. Wu, X. Luan, P. Qi et al., “Unified diagnosis framework for automated nuclear cataract
grading based on smartphone slit-lamp images,” IEEE Access, vol. 8, pp. 174169–174178, 2020.

[7] L. Qiao, Y. Zhu and H. Zhou, “Diabetic retinopathy detection using prognosis of microaneurysm and
early diagnosis system for non-proliferative diabetic retinopathy based on deep learning algorithms,” IEEE
Access, vol. 8, pp. 104292–104302, 2020.

[8] Y. C. Liu, M. Wilkins, T. Kim, B. Malyugin and J. S. Mehta, “Cataracts,” The Lancet, vol. 390, no. 10094,
pp. 600–612, 2017.

[9] C. Niya and T. Jayakumar, “Analysis of different automatic cataract detection and classification methods,”
in 2015 IEEE Int. Advance Computing Conf. (IACC), IEEE, Banglore, India, pp. 696–700, 2015.

[10] B. Raju, N. Raju, J. D. Akkara and A. Pathengay, “Do it yourself smartphone fundus camera–diyretcam,”
Indian Journal of Ophthalmology, vol. 64, no. 9, pp. 663, 2016.

[11] A. R. Javed, F. Shahzad, S. ur Rehman, Y. B. Zikria, I. Razzak et al., “Future smart cities requirements,
emerging technologies, applications, challenges, and future aspects,” Cities, vol. 129, pp. 103794, 2022.

[12] W. Fan, R. Shen, Q. Zhang, J. J. Yang and J. Li, “Principal component analysis based cataract grading
and classification,” in 2015 17th Int. Conf. on E-Health Networking, Application & Services (HealthCom),
IEEE, Boston, MA, pp. 459–462, 2015.

[13] C. Costanian, M. J. Aubin, R. Buhrmann and E. E. Freeman, “Interaction between postmenopausal
hormone therapy and diabetes on cataract,” Menopause, vol. 27, no. 3, pp. 263, 2020.

[14] J. J. Yang, J. Li, R. Shen, Y. Zeng, J. He et al., “Exploiting ensemble learning for automatic cataract detection
and grading,” Computer Methods and Programs in Biomedicine, vol. 124, pp. 45–57, 2016.

[15] F. Grassmann, J. Mengelkamp, C. Brandl, S. Harsch, M. E. Zimmermann et al., “A deep learning algorithm
for prediction of age-related eye disease study severity scale for age-related macular degeneration from color
fundus photography,” Ophthalmology, vol. 125, no. 9, pp. 1410–1420, 2018.

[16] B. Askarian, J. W. Chong and F. Tabei, “Diagnostic tool for eye disease detection using smartphone,” IEEE
Journal of Translational Engineering in Health and Medical, uS Patent 10,952,604, vol. 9, 3800110, 2021.

[17] B. Askarian, F. Tabei, G. A. Tipton and J. W. Chong, “Novel keratoconus detection method using
smartphone,” in 2019 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), IEEE,
Bethesda, MD, USA, pp. 60–62, 2019.

https://www.nei.nih.gov/


CSSE, 2023, vol.47, no.2 1749

[18] B. Askarian, F. Tabei, A. Askarian and J. W. Chong, “An affordable and easy-to-use diagnostic method
for keratoconus detection using a smartphone,” in Medical Imaging 2018: Computer-Aided Diagnosis, vol.
10575. SPIE, pp. 238–243, 2018.

[19] J. Tekli, “An overview of cluster-based image search result organization: Background, techniques, and
ongoing challenges,” Knowledge and Information Systems, pp. 1–54, 2022.

[20] B. Askarian, P. Ho and J. W. Chong, “Detecting cataract using smartphones,” IEEE Journal of Translational
Engineering in Health and Medicine, vol. 9, pp. 1–10, 2021.

[21] M. K. Hasan, T. Tanha, M. R. Amin, O. Faruk, M. M. Khan et al., “Cataract disease detection by using
transfer learning-based intelligent methods,” Computational and Mathematical Methods in Medicine, vol.
2021, 2021.

[22] J. Jiang, S. Lei, M. Zhu, R. Li, J. Yue et al., “Improving the generalizability of infantile cataracts detection
via deep learning-based lens partition strategy and multicenter datasets,” Frontiers in Medicine, vol. 8, pp.
664023, 2021.

[23] J. S. Lim, M. Hong, W. S. Lam, Z. Zhang, Z. L. Teo et al., “Novel technical and privacy-preserving
technology for artificial intelligence in ophthalmology,” Current Opinion in Ophthalmology, vol. 33, no.
3, pp. 174–187, 2022.

[24] F. A. KhoKhar, J. H. Shah, M. A. Khan, M. Sharif, U. Tariq et al., “A review on federated learning towards
image processing,” Computers and Electrical Engineering, vol. 99, pp. 107818, 2022.

[25] A. R. Javed, M. A. Hassan, F. Shahzad, W. Ahmed, S. Singh et al., “Integration of blockchain technology
and federated learning in vehicular (IOT) networks: A comprehensive survey,” Sensors, vol. 22, no. 12, pp.
4394, 2022.

[26] A. Rehman, I. Razzak and G. Xu, “Federated learning for privacy preservation of healthcare data from
smartphone-based side-channel attacks,” IEEE Journal of Biomedical and Health Informatics, 2022.

[27] S. AbdulRahman, H. Tout, A. Mourad and C. Talhi, “Fedmccs: Multicriteria client selection model for
optimal IOT federated learning,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4723–4735, 2020.

[28] O. A. Wahab, A. Mourad, H. Otrok and T. Taleb, “Federated machine learning: Survey, multi-level
classification, desirable criteria and future directions in communication and networking systems,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1342–1397, 2021.

[29] S. AbdulRahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi et al., “A survey on federated learning:
The journey from centralized to distributed on-site learning and beyond,” IEEE Internet of Things Journal,
vol. 8, no. 7, pp. 5476–5497, 2020.

[30] Z. Lian, Q. Yang, W. Wang, Q. Zeng, M. Alazab et al., “Deep-fel: Decentralized, efficient and privacy-
enhanced federated edge learning for healthcare cyber physical systems,” IEEE Transactions on Network
Science and Engineering, 2022.

[31] A. H. Hanif, C. Lu, K. Chang, P. Singh, A. S. Coyner et al., “Federated learning for collaborative clinical
diagnosis and disease epidemiology in retinopathy of prematurity,” Investigative Ophthalmology & Visual
Science, vol. 63, no. 7, pp. 2329–2329, 2022.

[32] M. Akter, N. Moustafa and T. Lynar, “Edge intelligence-based privacy protection framework for iotbased
smart healthcare systems,” in IEEE INFOCOM 2022-IEEE Conf. on Computer Communications Workshops
(INFOCOM WKSHPS), IEEE, New York, NY, USA, pp. 1–8, 2022.

[33] P. Monga, M. Sharma and S. K. Sharma, “A comprehensive meta-analysis of emerging swarm intelligent
computing techniques and their research trend,” Journal of King Saud University-Computer and Information
Sciences, 2021.

[34] U. G. Mohammad, S. Imtiaz, M. Shakya, A. Almadhor and F. Anwar, “An optimized feature selection
method using ensemble classifiers in software defect prediction for healthcare systems,” Wireless Commu-
nications and Mobile Computing, vol. 2022, pp. 14, 2022.

[35] M. Sharma, “Design of brain-computer interface-based classification model for mining mental state of
COVID-19 afflicted marinerâs,” International Maritime Health, vol. 71, no. 4, pp. 298–300, 2020.



1750 CSSE, 2023, vol.47, no.2

[36] M. Sharma, “Research and google trend for human neuropsychiatric disorders and machine learning: A
brief report,” Psychiatria Danubina, vol. 33, no. br. 3, pp. 354–357, 2021.

[37] P. Monga, M. Sharma and S. K. Sharma, “Performance analysis of machine learning and soft computing
techniques in diagnosis of behavioral disorders,” in Electronic Systems and Intelligent Computing: Proc. of
ESIC 2021, Springer, Cham, pp. 85–99, 2022.

[38] S. Sharma, G. Singh and M. Sharma, “A comprehensive review and analysis of supervised-learning and
soft computing techniques for stress diagnosis in humans,” Computers in Biology and Medicine, vol. 134,
pp. 104450, 2021.

[39] R. Gautam and M. Sharma, “Prevalence and diagnosis of neurological disorders using different deep
learning techniques: A meta-analysis,” Journal of Medical Systems, vol. 44, no. 2, pp. 49, 2020.

[40] S. Alsubai, H. U. Khan, A. Alqahtani, M. Sha, S. Abbas et al., “Ensemble deep learning for brain tumor
detection,” Frontiers in Computational Neuroscience, vol. 16, pp. 14, 2022.

[41] V. Agarwal, V. Gupta, V. M. Vashisht, K. Sharma and N. Sharma, “Mobile application based cataract
detection system,” in 2019 3rd Int. Conf. on Trends in Electronics and Informatics (ICOEI), IEEE,
Tirunelveli, India, pp. 780–787, 2019.


	CD-FL: Cataract Images Based Disease Detection Using Federated Learning
	1 Introduction
	2 Related Works
	3 Proposed Methodology
	4 Experimental Results and Discussion
	5 Conclusion and Future Directions
	References


