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Abstract: With the rapid development of urban road traffic and the increasing
number of vehicles, how to alleviate traffic congestion is one of the hot issues
that need to be urgently addressed in building smart cities. Therefore, in this
paper, a nonlinear multi-objective optimization model of urban intersection
signal timing based on a Genetic Algorithm was constructed. Specifically,
a typical urban intersection was selected as the research object, and drivers’
acceleration habits were taken into account. What’s more, the shortest average
delay time, the least average number of stops, and the maximum capacity of the
intersection were regarded as the optimization objectives. The optimization
results show that compared with the Webster method when the vehicle speed
is 60 km/h and the acceleration is 2.5 m/s2, the signal intersection timing
scheme based on the proposed Genetic Algorithm multi-objective optimiza-
tion reduces the intersection signal cycle time by 14.6%, the average vehicle
delay time by 12.9%, the capacity by 16.2%, and the average number of
vehicles stop by 0.4%. To verify the simulation results, the authors imported
the optimized timing scheme into the constructed Simulation of the Urban
Mobility model. The experimental results show that the authors optimized
timing scheme is superior to Webster’s in terms of vehicle average loss time
reduction, carbon monoxide emission, particulate matter emission, and vehi-
cle fuel consumption. The research in this paper provides a basis for Genetic
algorithms in traffic signal control.

Keywords: Multi-objective GA optimization; traffic light timings; average
delay time; the average number of stops; traffic capacity; SUMO simulation

1 Introduction

In recent years, urban road traffic problems have gradually received more and more attention
due to rapid urban development and the increasing number of vehicles. Signalized intersections are
network hubs formed by the intersections of roads. These intersections usually bring together several
turning flows, which are controlled by traffic signals. In addition, Left-turning and straight-through
traffic, Motor, and non-automatic vehicles are mixed, which makes road congestion far more likely to
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occur than on normal road sections. Several researchers [1,2] have pointed out that traffic congestion is
mainly caused by high traffic volume, high traffic density, low traffic speed, mixed traffic disturbance,
high accident rate, and driver behavioral habits. Many factors can disrupt traffic flow. However, most
of the current research is dedicated to environmental traffic flow through traffic light control. In [3],
the main work is to optimize the traffic signal timing. To reduce practical costs, traffic simulation
simulators are often used to evaluate the performance of algorithms. Meanwhile, some strategies
(selecting running times, the number of stops, waiting for queue lengths, etc.) are often taken as the
evaluation metrics of the optimization objectives. Recently, more and more researchers have shown
great interest not only in optimizing traffic light timings to improve traffic efficiency but also in
reducing vehicle emission performance. These two aspects are beneficial to the reduction of energy
consumption, which can provide sustainable economic and social development. Furthermore, due to
the complexity of traffic flows at intersections, it should be analyzed on the applicability of different
optimization objectives and multi-objective optimization [4].

Based on the current state of traffic congestion, researchers have proposed various strategies. To
minimize delay, Webster first proposed a Traffic and Road Research Laboratory (TRRL) approach
to signal timing optimization [5]. Akcelik added a stopping compensation factor to TRRL and
developed a bi-objective time series model of the delay and stopping factors [6]. Lu et al. added a
microsimulation simulator with constraints applicable to emergency vehicles and used an improved
Genetic Algorithm (GA) to optimize the optimal vehicle queuing sequence [7]. Guo et al. used
multiple linear regression to analyze the link between environment and vehicle flow and considered the
optimization of traffic signal timing by comprehensively considering the types of urban intersections,
driving behavior, weather factors, and vehicle types [8]. Meanwhile, Peng proposed an improved GA
based on the time-varying vehicle path optimization problem [9]. With the development of algorithms,
many algorithms [10–12] have been introduced to solve the dynamic vehicle routing problem, such as
tabu search, ant colony algorithms, genetic algorithms, and Particle Swarm Optimization (PSO). In
addition, intelligent control of signals at intersections is also an effective method to alleviate traffic
congestion. Webster first proposed to optimize the traffic light [5], which used an approximation
method to verify the optimal position of traffic lights at fixed time intervals. Rojas et al. improved
the Webster algorithm and applied it to various traffic lights [13–15]. In recent years, researchers have
tried with GA to optimize signals [16–18]. Pappis et al. made the first attempt to apply fuzzy logic
to traffic control. Although the GA method is effective in solving signal timing problems at general
intersections [19], it has limitations for signal timing at complex traffic flow and complex junctions.

To better solve the above problems, a new GA optimization algorithm for multi-objective signal
timing was presented here that was suitable for signal timing at complex traffic flow and complex
junctions, based on the measured traffic flow data at junctions, and fully considered the impact of
vehicle start acceleration on vehicle start delay. To better verify the results, we take the average delay
of the vehicle at junctions, the average number of vehicle stops, and the traffic passing line capacity as
evaluation indexes. The Webster and the multi-objective GA algorithms were compared at a speed of
60 km/h and an acceleration of 2.5 m/s2. The experimental results showed that the multi-objective GA
algorithm is better than Webster in signal timing including average lost time, average CO emission,
average PM emission, and average fuel consumption.
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2 Build a Multi-Objective GA Optimization Model

2.1 Selection of Optimization Objectives
The key objectives of junctions include delay, number of stops, capacity, saturation, vehicle queue

length, fuel consumption, and pollutant emissions. Specifically, signal intersection delay is the loss of
vehicle travel time due to discontinuous traffic flow due to signal control at the intersection, including
uniform, random, and ignoring the impact of over-saturation delays. Delay is an important indicator
to evaluate the level of service at the intersection. Traffic capacity refers to a section of the road in a
unit of time through the maximum number of vehicles. The number of stops is generated by the signal
control of vehicles passing through the intersection. To improve the efficiency of the intersection, this
paper will select the evaluation indexes of average delay, capacity, and the average number of stops of
vehicles at the intersection as the optimization objectives and construct a GA-based multi-objective
signal timing optimization model.

2.2 Average Vehicle Delay Model
The Webster model is a signalized intersection delay model, and its delay formula is given in Eq. (1)

[20].

d = C (1 − λ)

2 (1 − y)
+ x2

2q (1 − x)
(1)

where d is the delay of the junction, λ is the green letter ratio, C is the duration of the signal cycle,
y denotes the ratio of actual traffic to saturation flow, x is the saturation level and q represents the
actual traffic volume.

To better understand the traffic state, the state of the phase is first defined. Phase 1 represents the
east-west entrance straight ahead. Phase 2 stands for the east-west entrance left turn. Phase 3 represents
the south entrance while turning left and going straight. Phase 4 represents the north entrance while
turning left and going straight. According to the Webster delay formula, the average delay per vehicle
in phase 1 is given in Eq. (2) [20].

di =
∑

j

C (1 − gei/C)
2

2
[
1 − (gei/C) xij

] +
∑

j

xij
2

2qij

(
1 − xij

) (2)

where di denotes the average delay of vehicles in phase 1, gei is the effective green time for phase 1, qij

represents the actual volume of traffic arriving in the inlet lane at phase 1 and xij denotes the saturation
of the first inlet lane at phase 1, respectively. Therefore, the average vehicle delay at an intersection
during a cycle is given in Eq. (3).

C =

4∑
i=1

diqi

4∑
i=1

qi

(3)

where C is the average vehicle delay at an intersection during a period.
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2.3 Model for Average Number of Vehicles Stops
The number of vehicle stops refers to the number of times the vehicle is stopped by the signal

control while passing the intersection, which is given in Eq. (4) [21].

hi =
∑

j

0.9
1 − gei/C

1 − (gei/C) xij

(4)

where hi is the number of vehicle stops in phase i and gei is the effective green time in phase i, C is
the duration of the signal cycle and xij is the saturation of the jth inlet lane in phase i, so the average
number of vehicles stops at an intersection in a cycle is shown in Eq. (5).

C =
∑

i

hiqi/
∑

i

qi (5)

where C is the average number of vehicles stopping at an intersection during a cycle.

2.4 Vehicle Traffic Capacity Model
Road traffic capacity is the maximum number of vehicles or pedestrians that can cross a section

of a road in a unit of time under certain road and traffic conditions. The capacity of a single lane is
given in Eq. (6) [22].

Qij = Sij · gi

C
(6)

where Qij is the capacity of lane j in phase i, Sij is the saturation flow in lane j in phase i, gi is the
effective green time in phase i and C is the intersection signal period, respectively.

Therefore, the intersection capacity which is the sum of the intersection lane capacities is given in
Eq. (7).

Q =
n∑

i−1

m∑
j−1

Sij

gi

C
(7)

where Q is the cross-building capacity, n is the number of phases and m is the number of lanes
corresponding to each phase.

3 Methodology

3.1 Webster Timing Optimization Algorithm
Intersection signal timing is calculated by starting loss time, braking loss time, and four-phase

total loss time respectively. In the authors experiments, we set the intersection speed limit Vt to
60 km/h. Meanwhile, taking into account the different habits of drivers in starting acceleration,
different acceleration sizes, and different starting loss times, we set the starting phase for uniform
acceleration motion, and the time used to accelerate the vehicle speed from 0 to Vt is given in Eq. (8).

t1 = vt./a (8)

where vt is a scalar and a is a vector. The physical meaning of the expression vt./a is the scalar vt divided
by each element of the vector a to get a vector.

Uniformly accelerated motion gives the distance the vehicle moves in time t1 is given in Eq. (9).

S = 0.5a. ∗ t1.∧2 (9)
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where the physical meaning of the expression t1.∧2 represents each element of the vector t1 squared
separately. The physical meaning of the expression a.∗t1.∧2 represents each element of the vector a
multiplied by each element of the vector t1.∧2 separately.

Therefore, the time taken by the vehicle to move at a constant speed of vt for a distance of S is
given in Eq. (10).

t2 = S
vt

(10)

The start-up loss time per phase of the tis vehicle is expressed in Eq. (11).

tis = t1 − t2 (11)

So, the total four-phase start-up loss time of the vehicle is expressed in Eq. (12).∑
tis = 4(t1 − t2) (12)

In the braking loss calculation, considering the actual traffic situation, the braking loss time is
generally 0.5∼1 s, in the authors experimental setup, the driving speed is 60 km/h, the workshop
distance is 30 m, and the braking loss time of each phase is tib is 1 s. As a result, the total braking
loss time of the four phases of the vehicle is expressed in Eq. (13).∑

tib = 4tib (13)

In the calculation of the total four-phase lost time, the total four-phase lost time L is expressed in
Eq. (14), which considers there is no all-red traffic light time for the actual phase.

L =
∑

tis +
∑

tib (14)

where L is the total four-phase lost time, including start-up lost time and braking loss time.

When vt = 60 km/h and acceleration is classified as 4.5, 4.0, 3.5, 3, 2.5, 2, and 1.5 m/s2, the
corresponding four-phase total loss times L are shown in Table 1.

Table 1: The relationship between the total loss time L and acceleration a

a (m/s2) 4.5 4 3.5 3 2.5 2 1.5

L (s) 11.41 12.33 13.52 15.11 17.33 20.67 26.22

The total flow rate at the intersection is shown in Eq. (15).

Y =
n∑

i=1

yi (15)

From the equation shown in Eq. (15), we can derive the flow rate in phase i in Eq. (16).

yi = max
(

qij

Sij

)
(16)

where yi is the flow ratio in phase i, qij is the capacity of lane j in phase i and Sij is the saturation flow
in lane j in phase i.
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In this model, the optimization objective is to minimize the total delay at the intersection, and the
optimal cycle duration of the timing signal is given by Eqs. (14), and (15), respectively. The optimal
signal period C0 can be determined in Eq. (17) [5].

C0 = 1.5L + 5
1 − Y

(17)

where C0 is the signal optimum cycle duration, so the green light duration gi for each phase is given in
Eq. (18).

gi = yi

Y
(C0 − L) (18)

where gi is the green light duration for each phase in Eq. (18).

3.2 Genetic Algorithm
The GA was proposed by John Holland in the USA in the 1970s [23] and is a computational model

that simulates the evolution of natural selection and genetics mechanisms in Darwinian biological
evolution and is a heuristic algorithm for finding the global optimal solution by simulating the natural
evolutionary process. In general, better optimization results can be obtained more quickly when
solving more complex combinatorial optimization problems. It can handle multiple individuals in the
population simultaneously. Evaluate multiple solutions in the search space to avoid getting stuck in
a local optimum solution, it adopts a probabilistic search method, which can automatically obtain
and guide the search space for optimization without definite rules and adaptively adjust the search
direction [24].

3.3 Objective Function Model of the Genetic Algorithm
In this paper, according to the actual traffic demand, the minimum average vehicle stopping delay,

the minimum average number of stops, and the maximum capacity of the intersection are used as the
objective function, and the green time and cycle duration of each phase of the signal cycle are used
as constraints to find the minimum value of the objective function. Considering the different traffic
flow, the intersection’s average vehicle delay, the average number of stops, and capacity have various
impacts on the comprehensive benefits of junctions, thus we introduce a, b, and c as weighting factors,
due to the requirement is the minimum value of the objective function, so the delay and the number
of stops should be as small as possible, the greater the capacity should be the objective function. The
inverse of the capacity taken in the objective function is shown in Eq. (19).

min f (x) = min

⎧⎪⎪⎨
⎪⎪⎩

∑
i

∑
j

[
a · qijdij

]
∑

i

∑
j

qij

D0 +
∑

i

∑
j

[
b · qijhij

]
∑

i

∑
j

qij

N0 + c · 1

sij · gi

C

Q0

⎫⎪⎪⎬
⎪⎪⎭

(19)

where min f(x) is the Multi-objective GA Optimization of the objective function. The objective
function of Eq. (19) consists of three components, including normalized intersection delay, normalized
intersection stopping times, and normalized intersection capacity. The fitness function in the GA, D0,
N0, Q0 are normalized initial values, and a, b, and c are used as weighting factors. a is the stopping delay,
b is the stopping factor, c is the capacity, and the sum of a, b, and c is 1, with the constraint shown in
Eq. (20).



CSSE, 2023, vol.47, no.2 1907

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C =
n∑

i=1

gi + L

gi min ≤ gi ≤ gi max

Cmin ≤ C ≤ Cmax

a + b + c = 1

(20)

where Eq. (20) is Binding Conditions of Eq. (19).

The parameters of GA are initialized as shown in Table 2.

Table 2: Genetic algorithm parameter settings

Parameter Value

Number of iterations 50
Population size 50
Cross-sectional probability selection 0.7
Probability of variation selection 0.001

3.4 Experimental Program
Simulation of Urban Mobility (SUMO) is a microscopic, multimodal traffic simulation developed

by the German Aerospace Center, an open-source traffic simulation software that can visually study
the changing characteristics of a vehicle or traffic flow and can better simulate the movement process
of vehicles, including the length and width of vehicles, the acceleration, and deceleration process of
vehicles, and the interaction between vehicles. It is therefore widely used by scholars who study traffic
simulation. This paper builds a simulation model based on SUMO software and uses the control
variable method to investigate the relationship between the capacity of junctions and factors such
as vehicle speed, acceleration, green letter ratio, and widened lane length respectively to provide a
corresponding theoretical basis for the improvement of junctions in real life.

Our experimental scenario is shown in Fig. 1. According to the actual intersection physical
conditions including phase situation, lane number situation, right-turn green light situation, the actual
signal timing situation, and the actual traffic flow, and the different starting acceleration habits of the
drivers, the Webster algorithm and the multi-objective GA optimization are respectively imported.
The average junction delay, junction capacity, junction stopping times, and junction signal periods
of the two algorithms are obtained and compared, and the conclusion is that the GA-based multi-
objective optimization timing scheme performs significantly better than the Webster timing scheme.
The existing timing scheme, the Webster timing scheme, and the GA-based multi-objective optimized
timing scheme are then imported into the SUMO simulation model for experimental validation. Using
the vehicle travel information from the SUMO simulation experiment, different timing schemes were
obtained in terms of total lost time, CO emissions, PM emissions from solid particulate matter, and
vehicle fuel consumption, and conclusions were drawn from these comparisons.
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Figure 1: Experimental flow chart

4 Case Study

4.1 Experimental Area and Dataset
We selected the intersection of Huaishun Middle Road and Dongshan East Road in Tianjia’an

District of Huainan City, Anhui Province, China. Huaishun Middle Road is the second major north-
south road that runs through the old and new urban areas of Huainan City and connects directly to
Huainan High-Speed Railway South Station to the south. Crossing the railway to the north, it enters
the main urban area. The intersection leads east to the Datong district of Huainan City and west to
Dongshan Middle Road and Dongshan West Road, which lead to several other counties in the city.
Due to the particularity of this intersection, the intersection is 400 m to the north (needing to cross the
railway), and it is a three-way intersection leading to the old city, and the road widening in this direction
is limited. At the same time, the traffic flow of people and vehicles at the intersection is very heavy,
especially during the morning and evening rush hours, and congestion often occurs. It is planned to
first model and optimize a single intersection and then model and optimize two neighboring junctions.

The following assumptions are made: (1) Ignore the effect of right-turning traffic on the capacity
of the intersection. (2) Ignore the effect of pedestrians and non-motorized vehicles on the intersection
capacity. (3) Ignore the effect of primary and secondary roads at the intersection. (4) Ignore the railroad
underpass structure in the northern section of the intersection.

Since the four directions of this intersection are right-turn green, the impact of right-turn vehicles
on this intersection can be ignored as long as the traffic rules are observed. The intersection signal
timing table is shown in Table 3. Which indicates that there are four phases at the intersection.
Specifically, the first phase is east or west. The second phase is the east left turn, and west left turn.
The third phase is the south left turn, south straight ahead. The fourth phase is a north left turn, north
straight ahead; the signal cycle of the intersection is 140 s, the yellow time is 3 s, and there is no all-red
time. The green time for phase 1 is 25 s with a green signal ratio of 17.86%, phase 2 has a green time
of 25 s with a green signal ratio of 17.86%, phase 3 has a green time of 42 s with a green signal ratio
of 30.00% and phase 4 has a green time of 36 s with a green signal ratio of 25.71%.
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Table 3: Measured intersection signal timing table

Phase 1 2 3 4

Phase state
Greenlight time (s) 25 25 42 36
The time between green
lights (s)

3 3 3 3

Greenlight signal ratio 17.86% 17.86% 30.00% 25.71%
Signal cycle duration (s) 140

The measured data for this junction is the actual junction traffic information during the evening
peak hours of 17:30 to 18:30 on September 7, 2022. The measured data for each direction of traffic
flow, lane information, traffic flow information, and traffic volume information when ignoring right-
turning traffic at the intersection are shown in Table 4.

Table 4: Actual traffic flow measurement data at the junction

Import
road

Direction of
flow (pcu/h)

Number of
lanes

Small car
traffic (pcu/h)

Bus traffic
volume
(pcu/h)

Traffic volume
(pcu/h)

Total traffic
volume (pcu/h)

Ignore the
traffic volume
on the
right-turning
traffic (pcu/h)

East
import

Turn right 1 180 12 204 1636 1432

Straight ahead 4 1040 24 1088
Turn left 2 320 12 344

West
import

Turn right 1 240 12 264 1964 1700

Straight ahead 3 1080 24 1128
Turn left 2 560 6 572

South
import

Turn right 1 240 12 264 1846 1582

Straight ahead 3 1230 24 1278
Turn left 2 280 12 304

North
import

Turn right 1 144 6 156 1498 1342

Straight ahead 3.5 950 24 998
Turn left 1.5 320 12 344

Since the following assumptions were made in this paper: ignoring while ignoring the effect of
right-turning vehicles at junctions on intersection capacity, ignoring the effect of pedestrians and non-
motorized vehicles on intersection capacity, and ignoring the effect of primary and secondary roads
at junctions, data related to assumptions are not recorded in Table 4.
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4.2 Experimental Performance Comparison of Various Algorithms
The junction conditions and road speed limit are fixed. The braking loss time and the road speed

limit are set to 1 s and 60 km/h, respectively. Considering the different starting acceleration habits of
drivers, we set starting acceleration as 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 m/s2 variables to observe the effect
of changes in starting acceleration on starting loss time. Meanwhile, the average delay, total capacity,
number of stops, and signal period were calculated by using the Webster algorithm and the multi-
objective GA, respectively. The results of junction delays between Webster and multi-objective GA are
shown in Table 5 and Fig. 2.

Table 5: Comparison of junction delays between Webster and multi-objective GA

Acceleration (m/s2) L (s) Delays of Webster (s) Delays of
multi-objective GA (s)

Delay relative
change

1.5 26.2 60.4674 35.1928 41.80%
2 20.7 52.0061 31.7268 38.99%
2.5 17.3 46.9337 24.5026 47.79%
3 15.1 43.555 26.9104 38.22%
3.5 13.5 41.1435 36.8358 10.47%
4 12.3 39.3361 30.7428 21.85%
4.5 11.4 37.9313 23.6622 37.62%

Figure 2: Comparison of average delay between Webster and multi-objective GA

As shown in Table 5 and Fig. 2, when the driver’s starting acceleration gradually decreases and
the total loss time L gradually increases, the average delay in junction obtained by the Webster
algorithm timing scheme increases significantly, while the average delay in junction obtained by multi-
objective GA becomes larger, and the effect is better than Webster algorithm. In summary, in the multi-
objective GA compared to the Webster algorithm, the maximum delay in junction is 47% reduction,
the minimum delay in junction is 10.5% reduction, and the average delay in junction is 34.8% reduction.
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The impact of the Webster algorithm and multi-objective GA timing results on junction capacity
is shown in Table 6 and Fig. 3.

Table 6: Comparison of junction capacity between Webster and multi-objective GA

Acceleration (m/s2) L (s) Capacity of Webster
(pcu/h)

The capacity of
multi-objective GA (s)
(pcu/h)

Capacity
relative change

1.5 26.2 329.3061 367.4277 10.38%
2 20.7 317.4049 379.8204 16.43%
2.5 17.3 307.9357 522.9109 41.11%
3 15.1 300.2215 409.9889 26.77%
3.5 13.5 293.8159 357.8306 17.89%
4 12.3 288.4124 328.0607 12.09%
4.5 11.4 283.7929 468.2982 39.40%

Figure 3: Comparison of junction capacity between Webster and multi-objective GA

As shown in Table 6 and Fig. 3, when the driver’s start acceleration gradually decreases and
the total loss time L gradually increases, the junction capacity obtained by the Webster algorithm
timing scheme does not change much, while the junction capacity obtained by the multi-objective GA
becomes larger, and the effect is better than Webster algorithm. In summary, in the multi-objective GA
compared to the Webster algorithm, the maximum capacity in junction capacity is a 41% increase, the
minimum capacity in junction capacity is a 10.4% increase, and the average capacity is a 25.2% increase.

The impact of the Webster algorithm and multi-objective GA timing results on the number of
intersection stops is shown in Table 7 and Fig. 4.

As shown in Table 7 and Fig. 4, when the driver starts acceleration gradually decreases and the
total loss time L increases, the number of junction stops obtained by the Webster algorithm timing
scheme does not change much, while the number of junctions stops obtained by the multi-objective
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GA becomes fewer, and the effect is slightly better than Webster algorithm. In summary, in the multi-
objective GA compared to the Webster algorithm, the maximum number of stops is 14.4% reduction,
the minimum number of stops is 2.6% reduction, and the average number of stops is 6.45% reduction.

Table 7: Comparison of the junction stops between Webster and the multi-objective GA

Acceleration (m/s2) L (s) Stops of Webster (s) Stops of
multi-objective GA (s)

Stops relative
change

1.5 26.2 0.8431 0.8212 2.60%
2 20.7 0.8499 0.8141 4.21%
2.5 17.3 0.8553 0.7321 14.40%
3 15.1 0.8597 0.7968 7.32%
3.5 13.5 0.8634 0.8267 4.25%
4 12.3 0.8665 0.8438 2.62%
4.5 11.4 0.8692 0.785 9.69%

Figure 4: Comparison of the junction stops between Webster and multi-objective GA

The impact of the Webster algorithm and the multi-objective GA timing results on the traffic
signal cycle is shown in Table 8 and Fig. 5.

As shown in Table 8 and Fig. 5, when the driver’s start acceleration gradually decreases and the
total loss time L gradually increases, the junction signal cycle obtained by the Webster algorithm timing
scheme changes faster, while the junction signal cycle obtained by the multi-objective GA changes
more slowly, and the effect is better than Webster algorithm. In summary, in the multi-objective GA
compared to the Webster algorithm, the maximum Cycle is 42.8% reduction, the minimum Cycle is
2.8% reduction, and the average Cycle is 22.8% reduction.
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Table 8: Comparison of cycle between Webster’s algorithm and multi-objective GA

Acceleration (m/s2) L (s) Cycle of Webster (s) The cycle of
multi-objective GA (s)

Cycle relative
change

1.5 26.2 157.9986 90.4064 42.78%
2 20.7 128.1587 85.9056 32.97%
2.5 17.3 110.2541 83.832 23.96%
3 15.1 98.3179 71.2221 27.56%
3.5 13.5 97.8126 94.3336 3.56%
4 12.3 83.3976 81.7334 2.00%
4.5 11.4 78.4243 74.8289 4.58%

Figure 5: Comparison of cycle between Webster’s algorithm and multi-objective GA

4.3 Simulation Verification
Our SUMO simulation model is based on the Krauss model of vehicle motion [25] and uses the

following five parameters.

a: Maximum acceleration during vehicle acceleration (m/s2).

b: Maximum acceleration during the braking phase of the vehicle, with b being a negative value
(m/s2).

Vmax: The maximum speed allowed for the vehicle to travel (km/h).

l: Vehicle length (m).

KDP: The driver’s driving proficiency, a smaller value indicates a more proficient driver.

The model uses Eq. (21) in the calculation of safe vehicle speeds.

Vsafe = VB (t) + g (t) − VB (t) TDR

(VB (t) + v (t))
2b

+ TDR

(21)
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where VB (t) is the speed before the moment t, v(t) is the speed of that car at the moment t, g (t) is the
shop distance between the car in front and behind at the moment t and TDR is the driver’s reaction time.

In SUMO simulation software, we use Eq. (22) to complete this model experiment.

vs = −TDR ∗ b +
√

(TDR ∗ b)
2 + VB

2 + 2b ∗ g (t) (22)

4.4 Intersection Simulation
In this simulation experiment, the version of SUMO is sumo-win64-1.14.0. A 5 ∗ 5 road network

model was constructed in SUMO’s own Netedit road network editing software. Specifically, the
distance between nodes was 1000 m. According to the parameters of the actual intersection, the road
network model of the actual intersection is constructed in the road network model. In the vehicle
simulation parameter settings, the maximum acceleration of the vehicle when accelerating is a =
2.5 m/s2, the maximum acceleration of the vehicle when braking is b = −4.5 m/s2, the maximum
speed allowed for the vehicle is Vmax = 16.67 m/s2, the body length: l = 5 m, and the driver’s driving
proficiency: KDP = 0.5.

The field survey data and the optimized timing scheme were input into each module of the
SUMO simulation software. The SUMO simulation process was based on the existing geometric
characteristics, signal timing scheme, and measured traffic demand values of the intersection of
Dongshan Road and Huaishun Avenue North, and the simulation program was established, and the
simulation results are shown in Fig. 6.

Figure 6: SUMO simulation of an actual intersection

4.5 Analysis and Comparison of Simulation Results
To compare the effect of the timing scheme before and after optimization, average lost time,

average carbon monoxide (CO) emissions, average particulate matter (PM) emissions of particulate
matter, and average fuel consumption were selected as evaluation indicators to be presented in Table 9.
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Table 9: Comparison of SUMO simulation results

Evaluation index Before Webster Our Relative change
between before
and Webster

Relative change
between before
and GA

Relative change
between
Webster and
GA

Average Time
Loss/s

37.45 33.11 32.41 11.59% 13.46% 2.11%

Average CO
Emissions/g

7208 6480 6402 10.10% 11.18% 1.20%

Average PM
Emissions/g

7.18 6.9 6.89 3.90% 4.04% 0.14%

Average fuel
consumption/ml

175.87 171.26 171 2.62% 2.77% 0.15%

According to the experimental results of the SUMO simulation model in Table 9, the average loss
time is 33.11 s after applying the Webster algorithm, which is 11.59% shorter than the status quo. The
average CO emission is 6480 g, which is 10.10% less than the status quo. The average PM emission
is 6.9 g, which is 3.9% less than the status quo. The average fuel consumption is 171.26 ml, which is
2.62% less than the status quo. The average fuel consumption is 171.26 ml, which is 2.62% lower than
the status quo.

From Table 9, we can also get that the average loss time of GA multi-objective optimization is
32.42 s, which is 13.46% shorter than the status quo and 2.11% shorter than Webster’s algorithm; the
average CO emission of GA multi-objective optimization is 6402 g, which is 11.18% shorter than the
status quo and 1.2% shorter than Webster’s algorithm. The average PM emission of particulate matter
is 6.89 g, which is 4.04% less than the status quo and 0.14% less than the Webster algorithm. The
average fuel consumption of GA multi-objective optimization is 171 ml, which is 2.77% less than the
status quo and 0.15% less than the Webster algorithm.

Therefore, from Table 9, the following conclusions can be drawn: (1) The simulation results of both
the Webster algorithm and the GA multi-objective optimization are better than the pre-optimization
solution. (2) The GA multi-objective optimization based on the Webster algorithm is slightly better
than the Webster algorithm.

5 Conclusion

Since the conclusions in this paper were obtained while ignoring the effect of right-turning vehicles
at junctions on intersection capacity, ignoring the effect of pedestrians and non-motorized vehicles
on intersection capacity, and ignoring the effect of primary and secondary roads at junctions, the
conclusions obtained were somewhat limited.

In this paper, taking the shortest average delay time, the least average stops, and the maximum
capacity of the intersection as the objective function of our GA multi-objective optimization, a
nonlinear multi-objective optimization model of urban intersection signal timing based on our GA
multi-objective optimization is constructed. The study results show that our GA multi-objective
optimization is significantly superior to the Webster algorithm in optimization variables of average
junction delay time, junction capacity, number of junction stops, and signal cycle duration. The
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correctness of our GA multi-objective optimization algorithm was verified at SUMO. The simulation
results show that our GA multi-objective optimization is the best, Webster is the second best, and the
pre-optimization solution is the worst in performance metrics including the average lost time, average
CO emission, average particulate PM emission, and average fuel consumption.
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