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Abstract: Artificial Intelligence (AI) technology has been extensively
researched in various fields, including the field of malware detection. AI
models must be trustworthy to introduce AI systems into critical decision-
making and resource protection roles. The problem of robustness to
adversarial attacks is a significant barrier to trustworthy AI. Although various
adversarial attack and defense methods are actively being studied, there is a
lack of research on robustness evaluation metrics that serve as standards
for determining whether AI models are safe and reliable against adversarial
attacks. An AI model’s robustness level cannot be evaluated by traditional
evaluation indicators such as accuracy and recall. Additional evaluation
indicators are necessary to evaluate the robustness of AI models against
adversarial attacks. In this paper, a Sophisticated Adversarial Robustness
Score (SARS) is proposed for AI model robustness evaluation. SARS uses
various factors in addition to the ratio of perturbated features and the size
of perturbation to evaluate robustness accurately in the evaluation process.
This evaluation indicator reflects aspects that are difficult to evaluate using
traditional evaluation indicators. Moreover, the level of robustness can be
evaluated by considering the difficulty of generating adversarial samples
through adversarial attacks. This paper proposed using SARS, calculated
based on adversarial attacks, to identify data groups with robustness
vulnerability and improve robustness through adversarial training. Through
SARS, it is possible to evaluate the level of robustness, which can help
developers identify areas for improvement. To validate the proposed method,
experiments were conducted using a malware dataset. Through adversarial
training, it was confirmed that SARS increased by 70.59%, and the recall
reduction rate improved by 64.96%. Through SARS, it is possible to evaluate
whether an AI model is vulnerable to adversarial attacks and to identify
vulnerable data types. In addition, it is expected that improved models can be
achieved by improving resistance to adversarial attacks via methods such as
adversarial training.
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1 Introduction

As accessibility to and processing power for large amounts of data improves, AI that can efficiently
leverage it is being extensively researched. AI research covers many fields, including security, self-
driving cars, smart factories, natural language processing, etc. Despite the promising advancements in
AI, challenges remain in ensuring its trustworthiness in the real environment. Transparency, technical
robustness, and safety have been identified by the EU as key requirements to be met for trustworthy
AI [1]. “Robustness” means attack response to AI systems such as adversarial attacks, minimizing
unintended consequences and operational errors. For trustworthy AI, the robustness of AI models
needs to be measured and evaluated.

AI models collect and process data to learn and provide their intended functionality. Collecting a
sufficient quantity and quality of data to cover all possible inputs is impractical. Therefore, data bias
and overfitting problems may occur in AI models due to the nature of the dataset. Additionally, it
becomes difficult to trust AI models trained on past data in environments where constantly evolving
and newly generated data, such as malware, persistently.

Most newly detected malware is generated by slightly modifying existing malware to evade
detection systems [2,3]. Similarly, Adversarial attacks induce the misclassification of AI models by
creating slight variations in the original data. Evaluating and reporting how robust AI models are
against these variant attacks should be possible.

Deep neural networks are vulnerable to adversarial attacks [4–6]. Goodfellow et al. argue that
the high-dimensional linearity of deep neural networks leads to spaces where adversarial samples
can be generated in the classification space [7]. An adversarial attack is a technique that deceives AI
models into predicting different labels by injecting a slight perturbation into the original data [8].
Accuracy, precision, recall, and F1 score, which are widely used as evaluation indicators of AI models,
are insufficient to evaluate the robustness of AI models [9]. The F1 score is a metric calculated as
the harmonic mean of precision and recall. An AI model designed to detect DGA can be deceived
by adversarial attacks that make malicious domains appear normal [10]. If we cannot evaluate an
AI model’s robustness against adversarial attacks, it will limit our ability to make significant strides
toward trustworthy AI.

Although various adversarial attack and defense methods are actively being studied, there is a lack
of research on robustness evaluation indicators that serve as standards for determining whether AI
models are safe and trustworthy against adversarial attacks. To develop a safe and trustworthy model,
it is necessary to have robustness evaluation indicators that indicate the level of robustness required
to consider the model safe. There are cases where the robustness of AI models is evaluated, but they
simply use metrics such as the success rate of attacks or the distance between original and adversarial
samples [9,11–13]. However, these measures cannot be universally used for accurate evaluation, as the
number of features used, and the size of the values handled by AI models vary. For trustworthy AI, it
is necessary to evaluate it through appropriate indicators to evaluate the robustness of an AI model.
In this paper, we propose a Sophisticated Adversarial Robustness Score (SARS) as an indicator of
robustness evaluation based on the difficulty of adversarial attacks. To evaluate the robustness of AI
models in detail, various factors including adversarial attack success rates are used. Furthermore, we
propose a method using the proposed indicator to identify and improve data groups that have weak
robustness, as identified by the proposed indicator, in the models’ training data.
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The main contributions of this paper are as follows:

• The need for a new evaluation indicator to assess the robustness of AI models against
adversarial attacks is emphasized, and SARS is proposed as a solution.

• Experiments and analysis on a malware dataset are conducted in this paper to demonstrate the
effectiveness of the proposed method.

• This paper expects that the proposed SARS will contribute to developing a universal robustness
evaluation indicator and trustworthy AI.

The structure of the paper is as follows: Section 2 introduces related works on adversarial attacks
and robustness evaluation and improvement methods. Section 3 proposes adversarial attack-based
robustness evaluation and improvement methods for trustworthy AI. Section 4 presents the robustness
evaluation and improvement results of the AI model trained using the malware dataset. Finally,
Section 5 presents conclusions and future research directions.

2 Related Work

2.1 Adversarial Attacks
An adversarial attack refers to an attack with the goal of maliciously manipulating the behavior of

an AI model to produce incorrect results. There are four main types of adversarial attacks: poisoning
attack, in which an attacker intentionally injects malicious training data to undermine the model [14];
inversion attack, in which an attacker analyzes the confidence vector generated by querying the model
numerous times to extract the data used for training [15,16]; model extraction attack, in which an
attacker analyzes the confidence vector to extract a model that is similar to the actual AI model [17,18];
and evasion attack, in which an attacker deceive the machine learning model [19]. This paper focuses
on the perspective of whether AI models can be trusted and emphasizes evasion attacks.

There is a method of generating an adversarial sample to induce misclassification by an AI model,
for instance, by generating a malware variant to evade a detection system. These adversarial samples
are generated by adding small amounts of indistinguishable noise to the original data. As shown in
Fig. 1, it is impossible visually to discern the difference between the original data and the adversarial
sample. However, it can be confirmed that the adversarial sample has succeeded in misclassification
by obtaining an utterly different prediction through a slight perturbation. Fig. 2 presents a simplified
description of how adversarial samples are generated. Adversarial attacks consist of finding the
optimal δ, a very slight perturbation that crosses the decision boundary of the AI model from the
original data. Several technologies to implement such adversarial attacks are being developed and
continue to evolve. Adversarial attack techniques have the same goal of finding an optimally slight
perturbation, which can be classified according to the process of optimization and determination
process, as well as the environment in which it is performed.

Figure 1: Example of an adversarial attack [7]
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Figure 2: Example of generating adversarial samples

The attack methods can be categorized into white-box and black-box attacks depending on
whether they utilize the internal information of the AI model or not. Fast Gradient Sign Method
(FGSM) [7] is an adversarial attack technique that computes gradient using weight values within
the model and manipulates input values to generate adversarial samples. Projected Gradient Descent
(PGD) [20], an attack technique developed from FGSM, repeats as many steps as specified and finds
an adversarial sample via the L-infinity norm, namely the largest value of a set vector element,
which regulates the changed data so that it does not exceed the maximum permissible value. In
image classification, most images contain more than one object, so the image needs to be divided
into regions and each region needs to be classified individually. To perform effective and efficient
adversarial attacks on such segmentation models, an attack technique called SegPGD [21], which
is an improvement of PGD. DeepFool [22] is a technique that attacks nonlinear neural network
structures through repetitive queries, projecting perpendicular to the decision boundary at several
points and adding an appropriate amount of noise rather than using a gradient calculation like FGSM.
Jacobian-based Salience Map Attack (JSMA) [23] is an attack technique that creates adversarial
samples by changing inputs so that the model misclassifies by mapping the changes of inputs to outputs
into a matrix. ZOO attack (Zeroth Order Optimization-based black-box attack) [24] approaches the
optimization problem like the gradient-based attack technique. However, it is an optimization method
in which the gradient is estimated and used by assuming a black-box situation in which the information
within the model is unknown. Carlini & Wagner’s attack (C&W) [25] does not directly solve the
problem of finding adversarial samples but carries out optimization by approximation with another
objective function. In adversarial attack research, many experiments have been conducted using PGD
and C&W attacks.

Methods to defend against adversarial attacks are also being studied. To defend against white-box-
based attacks that use information internal to the model, such as FGSM and PGD attacks, a gradient
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masking method can be used that hides the internal gradient. In addition, input pre-processing is a
method that reduces the effect of noise through noise filtering and pre-processing of the input. Also,
as shown in Fig. 3, the adversarial training approach reduces the perturbation effect by including
adversarial samples in the training dataset. In Fig. 3a, the adversarial sample succeeded in attacking
the traditionally trained model. However, as shown in Fig. 3b, it can be confirmed that the attack failed
in the model that conducted adversarial training [26]. This involves training with adversarial samples
in advance to solidify the decision boundary and make it difficult for adversarial attacks to succeed. In
the case of gradient masking, if an attack technique does not use a gradient, it is impossible to respond
to the attack. Also, in the case of input pre-processing, there may be a problem with the performance
of the AI model due to special processing. Adversarial training can also improve robustness by making
it challenging to generate adversarial samples.

Figure 3: Example of adversarial training [26]

2.2 Robustness Evaluation of AI Models
2.2.1 Traditional Evaluation Indicators of the AI Model

Accuracy, precision, recall, and F1 score are widely used as traditional evaluation indicators of
AI models. AI models are evaluated based on how accurate they are in performing their intended
function. To operate a malware detection system using AI, malware must be detected in a situation
where most of the files are normal. If the AI model predicts that all files are normal, the accuracy
will be high because most are normal files. However, not all malware files have been detected so the
recall will be calculated as very low. In this environment, the recall will be used as a more important
evaluation indicator of AI model performance than accuracy. So, it is necessary to select and evaluate
performance indicators suitable for the goals and purposes of the AI model. As such, in addition to
the indicators that implement the target performance, indicators are needed to evaluate whether they
are safe from adversarial attacks [9].

2.2.2 Robustness Evaluation Indicators of AI Model

Some indicators can evaluate the performance of AI models, such as accuracy and recall, but
the robustness of a model cannot be evaluated using only traditional evaluation methods. Therefore,
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a new evaluation indicator that can evaluate the robustness of AI models is needed [27]. In Fig. 4,
“unmodified” denotes the original data, while C&W, PGD, and FGSM, which are types of adversarial
attack techniques, denote samples created through each attack. As seen in Fig. 4, even if the recall is
high for general data, it is significantly reduced by adversarial attacks. The high recall does not mean
that successful adversarial attacks are challenging for normal data. Therefore, there is a need for an
indicator that can specifically evaluate robustness.

Figure 4: Comparison of recall for original data and adversarial samples by attack type [9]

Several studies have been conducted to evaluate the level of robustness of AI models.
Chang et al. propose a scoring method to evaluate the robustness of AI models [28]. Using APIs
provided by Adversarial Robustness Toolbox [29], Foolbox [30], CleverHans [31], and so on, 13 attack
techniques have been applied to attack AI models, with the variance calculated based on each attack’s
success rate. The calculated variance is used as an indicator of robustness.

Berghoff et al. propose a verification scheme to evaluate robustness. The evaluation was conducted
by subdividing the robustness into several factors [32]. Robustness is evaluated in four categories:
robustness to image noise, such as Gaussian noise, robustness to pixel modulation, robustness to
geometrical transformations, such as rotation and scaling, and robustness to hue and color trans-
formations. Experiments are conducted while increasing the modulation magnitude for each category,
and the degree of accuracy deterioration is evaluated.

Hartl et al. proposed an Adversarial Robustness Score (ARS) as a robustness evaluation indicator
for AI models [9]. ARS is a number that indicates how resistant a model is to adversarial attacks. Eq. (1)
represents the ARS calculation formula:

ARS = 1
�N/2�

∑
s∈S

ds (1)

where S denotes the set of all samples, s denotes a specific sample, and N is the total number of samples.
Moreover, d means the distance between the adversarial sample and the original data, and the distance
for unsuccessful samples is replaced by ∞. Thus, ARS is approximately the average distance no greater
than the median. If an attack is less than 50% successful, the AI model is judged to be robust.

Robustness against adversarial attacks can be seen as more robust as the difficulty of generating
adversarial samples through adversarial attacks increases. The more difficult it is to generate adver-
sarial samples, the higher the degree of modulation becomes. As a result, ARS, which measures the
distance from the original, also increases so that the level of robustness can be evaluated based on the
difficulty of sample creation.
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3 Proposed Method

3.1 Overview
AI technology is being actively studied in various fields due to its excellent usability. However,

for introduction into real environments, the development of trustworthy AI models is required. It is
necessary to verify robustness against adversarial attacks, which is the cause of the unreliability of AI
models but is challenging to evaluate with traditional evaluation indicators such as accuracy and recall
[9]. Therefore, a separate evaluation indicator to evaluate the level of robustness of the AI model and
a method to improve insufficient robustness are needed.

This paper proposes an indicator to evaluate robustness based on adversarial attacks for develop-
ing trustworthy AI models. The robustness level is analyzed through the proposed evaluation indicator,
and a method to improve the robustness of the data group that lacks robustness is proposed.

Fig. 5 shows the overall structure of our approach to evaluating and improving the robustness of
AI models. We measure robustness based on the difficulty of generating adversarial samples through
adversarial attacks to evaluate robustness. Then, robustness is improved through adversarial training
after identifying vulnerable data groups through robustness evaluation for each data group. Finally,
based on the proposed evaluation indicator, we confirm that robustness is improved by comparing
robustness before and after adversarial training.

Figure 5: Adversarial attack-based robustness evaluation and improvement method

3.2 Robustness Evaluation Method
The rationale for evaluation robustness based on the difficulty of generating adversarial samples

is that accurate evaluation is impossible with traditional indicators such as precision and recall. An
adversarial attack aims to deceive an AI model with a slight perturbation that is difficult to perceive. As
such, the robustness of AI models against adversarial attacks can be evaluated through the difficulty
of generating adversarial samples.
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ARS [9] uses the Euclidean distance between the sample and the original data to determine the
difficulty of generating adversarial samples. However, this does not consider the number of features
used in the input value of the AI model and the scale for each feature, and it is difficult to evaluate
with the same criteria in different environments. Moreover, to evaluate the difficulty of generating
adversarial samples, a detailed evaluation is required that considers the ratio of perturbated features,
the amount of probability change, and so on.

In this paper, we consider different AI model environments for general use and propose SARS
indicators for precise measurement. The method proposed in this paper can be computed using only
the targeted AI model, original data, and adversarial samples. The robustness of an AI model against
adversarial attacks can be evaluated based on the difficulty of the adversarial attack.

Evaluating the difficulty of adversarial attacks with a single criterion such as the distance between
the original and adversarial samples, or the success rate of attacks may be inappropriate. The results
can vary greatly depending on the parameters set when attempting the attack. if the allowable range
of perturbation is greatly increased, the attack success rate may increase, but the distance between the
original and adversarial samples will also increase. In addition, differences may occur depending on
the type of the data used by the AI. For example, in the case of images, it is difficult to detect small
adjustments made to all pixels, but if some pixels are changed by a large amount, it can be easily
identified visually. Injecting a perturbation of 10 to all pixels in an image with 1,024 pixels that have
values between 0 and 255, and inverting 128 of 80 pixels, will be evaluated equally due to the same
amount of perturbation. Therefore, to establish a standardized evaluation indicator, it is necessary to
consider various factors in the evaluation criteria.

The difficulty of adversarial attacks can be determined by considering the attack’s success rate,
the size and rate of application of perturbations required to change the label, and the probability
of changes caused by the perturbations. As the attack’s success rate decreases and the size of
the perturbations required to change the label increases, the difficulty of the adversarial attack
increases. Furthermore, if even small perturbations cause significant changes in the AI’s probability
for adversarial samples, the difficulty of the adversarial attack decreases. Finally, if changing only
a few features is sufficient to change the label instead of changing all features, the difficulty of the
adversarial attack decreases. To evaluate robustness, adversarial attacks on the training dataset must
be performed. However, the resources and time required for this vary depending on the experimental
environment, so these factors cannot be included in robustness evaluations for general use. Based on
these factors, the robustness can be evaluated sophisticatedly. Eq. (2) represents the SARS calculation
formula:

SARS = AVG
(∑

d(X , X ′)
) 1

S
, d (X , X ′) =

L0rate
√∑n

i=1

(xi ,x
′
i)

2

ri

�P(X , X ′)
(2)

where X represents the original data, X ′ represents an adversarial sample of X , S represents the success
rate of an adversarial attack, i represents the feature index, xi represents the value of the i-th feature
of X , and r represents the size of each feature scale. For example, if the value of feature A can range
between −5 and 5, r becomes 10. L0rate represents the percentage of features perturbated by adversarial
attacks. �P(·) is the change in probability predicted by the AI model from the original data to the
adversarial sample.

Eq. (2) was derived by referencing Eq. (1). SARS is configured to be calculated as a higher value as
the difficulty of generating an adversarial sample increase. The attack’s success rate and the change in
probability have an inversely proportional relationship with SARS. In contrast, the ratio of perturbated
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features and the perturbation size are directly proportional. The lower the attack success rate, the
more difficult it is to create adversarial samples. A small change in probability denotes that the AI
model’s judgment change is small due to an adversarial attack, indicating that it is challenging to create
an adversarial sample. From the perspective of the number of perturbated features, comparing an
adversarial sample whose label changes only when 90% of the features are perturbed and an adversarial
sample whose label changes even if only one feature is perturbed, it can be seen that the difficulty of
generating the adversarial sample is naturally higher in the former. The larger the perturbation size of
the adversarial sample, the greater the difficulty of generating the adversarial sample. It is possible to
measure robustness through SARS by considering these indicators for sophisticated robustness level
evaluation. And, by using r to generalize the diversity of the feature range and L0rate to reduce the
influence of the number of used features, it makes it possible to compare different AI models with
different inputs using a single evaluation indicator.

3.3 Robustness Improvement Method
In this paper, we evaluate and improve the robustness of AI models based on adversarial attacks.

The process of improving the robustness of the AI model is shown in the adversarial training segment
of Fig. 5. After training the AI model with the training dataset, the training dataset is divided into
groups, and an adversarial attack is performed against each group. Based on the generated adversarial
samples, SARS is used to evaluate the robustness of each data group. Afterward, the robustness is
improved by identifying a data group with vulnerable robustness and performing adversarial training
for that data group. This is based on the assumption that adversarial training can improve robustness.
We aim to indirectly compare the robustness of adversarial attacks by comparing the recall change
and ARS and SARS separately, as a direct comparison between ARS and SARS is not possible.

The adversarial attack technique to be used in the proposed model uses a PGD attack from the
attack techniques introduced above. In line with the position of an expert developing a trustworthy
AI model, the attack is performed through PGD, a white-box-based attack that can query the AI
model internally. the robustness level is then evaluated based on the general adversarial samples to
identify data groups vulnerable to attacks. To improve the robustness of the vulnerable data group,
adversarial training is performed by adding adversarial samples for the identified data group to the
existing training dataset. The adversarial attack is performed again on the model after the completion
of adversarial training. Robustness improvement is confirmed through robustness evaluation and
comparison based on the generated samples before and after adversarial training.

4 Experimental Results

4.1 Experimental Dataset
In this paper, an experiment was conducted using the 2019 KISA Data Challenge [33] malware

dataset. The configuration of the dataset is shown in Table 1. The dataset was classified based on the
AVClass of the malware. AVClass is a tool used for malware classification and clustering, which is
used to group and label malicious code samples based on their analysis. There are about 800 types of
AVClass of malware in the dataset, of which the top five detected were set as experimental subjects:
“autoit”, “ramnit”, “scar”, “winactivator”, and “zegost.” The AVClass configuration of the dataset is
shown in Table 2. After learning the AI model, we proceeded with adversarial attacks for each data
group, identifying vulnerable groups and conducting adversarial training to confirm that robustness
was improved.
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Table 1: 2019 KISA data challenge malware dataset

Dataset Malware Normal Total

Train 17,562 11,568 29,130
Test 4,518 4,513 9,301

Table 2: Top five AVClass configuration

Dataset autoit ramnit scar winactivator zegost Total

Train 517 369 281 288 198 1,653
Test 171 57 17 56 37 338

4.2 Experimental AI Model
Information for executing an executable file is recorded in the portable executable structure.

Feature extraction proceeds through static analysis of the portable executable file. Information on
the header, DLL, API, section entry, string, and entry point of the portable executable file is analyzed
and used as features.

In the portable executable header, 37 features considered meaningful are extracted and used. The
37 features used are shown in Table 3. This feature analyzes the data distribution characteristics for
each header value of malware and normal files and allocates a different feature value according to the
distribution. DLL and API each proceed with hashing after extraction. After hashing, each number
is counted by mapping to 512 values through a modulo operation. DLL and API are each mapped
to 512 hash maps and use a total of 1,024 features. The string is used by extracting 525 features after
mapping to a hash map by performing hash and modulo operations in units of string length selected
through feature analysis by string length. Fifty bytes are extracted from the entry point, setting 1 byte
as one feature for a total of 50 features. A total of 1,764 features were extracted and used through the
static analysis process of these portable executable files.

Table 3: Feature extraction target in the header information

No. Feature No. Feature

1 SizeOfInitializedData 20 IMAGE_FILE_BYTES_REVERSED_HI
2 DllCharacteristics 21 IMAGE_FILE_BYTES_REVERSED_LO
3 MajorImageVersion 22 IMAGE_FILE_RELOCS_STRIPPED
4 CheckSum 23 MajorLinkerVersion[H1]
5 NumberOfSections 24 MinorLinkerVersion[H1+L1]
6 Known_Sections_por 25 MinorOperatingSystemVersion[H2]
7 Unknown_Sections_por 26 SizeOfUninitializedData
8 Rdata_VirtualSize_por 27 AddressOfEntryPoint_size
9 Text_VirtualSize_por 28 RawSize
10 Reloc_VirtualSize_por 29 VirtualSize
11 Subsystem 30 PointerToLinenumbers

(Continued)
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Table 3 (continued)

No. Feature No. Feature

12 AddressOfEntryPoint 31 IMAGE_SCN_CNT_UNINITIALIZED_DATA
13 ImageBase 32 SectionEntropy
14 e_lfanew 33 IMAGE_SCN_CNT_CODE
15 Characteristics 34 IMAGE_SCN_CNT_UNINITIALIZED_DATA
16 MajorLinkerVersion 35 IMAGE_SCN_LNK_NRELOC_OVFL
17 MajorOperatingSystemVersion 36 IMAGE_SCN_MEM_DISCARDABLE
18 MajorSubsystemVersion 37 IMAGE_SCN_MEM_WRITE
19 SizeOfStackReserve

Next, scaling is performed for each feature group, and 1,764 pieces of 1-dimensional data are
converted into 42 ∗ 42 two-dimensional image data blocks for use. Each block has a value between
0 and 1. The AI model was trained using Convolutional Neural Networks (CNN), which are widely
used in processing image data. The training results for the AI model are shown in Table 4.

Table 4: 2019 KISA dataset training results with CNN model

Accuracy Precision Recall F1 score

0.9767 0.9770 0.9767 0.9767

4.3 Adversarial Attack and Robustness Evaluation of AI Model
To identify data groups with vulnerable robustness, an adversarial attack is performed for each

data group in the training dataset. Based on the generated adversarial sample, the difficulty of
generating the adversarial sample is then evaluated by SARS. The data group with the lowest SARS
is identified, and robustness improvement is performed.

In this experiment, a white-box-based PGD attack is applied by assuming an environment where
the model can be easily accessed from the perspective of developing a robust model. The parameters
of the PGD attack used to attack the CNN model are shown in Table 5. The PGD attack for each
data group in the training dataset was repeated three times to generate 4,959 adversarial samples for
1,653 original data. Fig. 6 compares the recall of the AI model predicting the original data and the
adversarial samples. Although the AI model shows an almost perfect detection rate for the original
data, it can be seen that recall has significantly decreased due to adversarial attacks. This is not
problematic at the moment but indicates that the AI model is very vulnerable to possible attacks in
the future, demonstrating that the robustness of AI models cannot be adequately assessed with typical
evaluation indicators such as recall.

Table 5: Parameters used for PGD attack

Parameter Value

Norm 2
Eps 0.01

(Continued)
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Table 5 (continued)

Parameter Value

Epx_step 0.00001
Max_iter 10,000
Num_random_init 5

Figure 6: Comparison of recall as reduced by adversarial attacks

Using SARS, we try to identify the data groups that are most vulnerable in terms of robustness.
Table 6 shows the robustness evaluation indicators for each data group. When comparing the changes
in the recall, it can be seen that ramnit was the most vulnerable to attack, while scar showed the highest
resistance. The change in the recall can indirectly show the success rate of adversarial attacks and,
thus, the difficulty of generating adversarial samples. It is impossible to directly compare ARS and
SARS since there is no standardized evaluation indicator. We would like to indirectly confirm the
appropriateness of the robustness evaluation of ARS and SARS by comparing the trend of the change
in the recall by each data group.

Table 6: Comparison of robustness evaluation indicators by data group

autoit ramnit scar winactivator zegost

Recall change 0.7911 0.9593 0.3488 0.7488 0.8578
ARS 0.223638 0.217001 0.229269 0.260872 0.218290
SARS 0.000199 0.000102 0.000219 0.000165 0.000134

Since there are substantial differences in the values calculated for each evaluation indicator, we
convert and compare the figures through min-max scaling for each evaluation indicator. Fig. 7 shows
the result of converting each evaluation index through min-max scaling and comparing them. The
ramnit, in which recall decreased the most, yielded the lowest robustness scores for both ARS and
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SARS. However, in the case of the scar with the minor decrease in the recall, SARS evaluated the
robustness as the highest, but ARS evaluated the winactivator as the most robust, while the scar was
evaluated as very low. The overall change in recall was consistent with SARS rather than ARS. This
means that SARS, calculated through several variables in addition to perturbation size, evaluates the
level of robustness more accurately. Through SARS, it was confirmed that it is necessary to improve
the robustness of ramnit, which was the most vulnerable.

Figure 7: Comparison of robustness evaluation indicators and recall results

4.4 Improving Robustness Through Adversarial Training
Having confirmed through previous experiments that ramnit had the lowest SARS value, adver-

sarial training is conducted to improve the vulnerable robustness of ramnit. The data added to the
training dataset for adversarial training predicted malware as normal after a successful adversarial
attack targeting the original data using the ramnit malware AVClass. A total of 1,107 samples were
generated by attacking three times with 369 original data. Among these, the labels of 1,062 samples
whose labels were changed after successful attacks are changed back to the malware versions and
added to the training dataset before proceeding with training. Training the existing CNN model is
performed in the same way to create a new, improved model. Learning results for the improved AI
model are shown in Table 7.

Table 7: Training results for the improved AI model

Accuracy Precision Recall F1 score

0.9767 0.9770 0.9767 0.9767

Next, the PDG attack was performed three times using the same parameters as before, again
targeting the ramnit of the improved AI model. Comparing the change in the recall due to adversarial
attacks of the AI model before and after improvement, it can be seen that resistance to adversarial
attacks has increased, as shown in Fig. 8. Of the 1,107 attacks, 1,062 attacks succeeded in the AI
model before improvement. However, only 664 attacks succeeded in the improved AI model, reducing
the attack success rate from 95.9% to 62.3%. SARS also improved from 0.000102 to 0.000174.
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After adversarial training, SARS increased by 70.59%, and the recall reduction rate improved by
64.96%. On the other hand, as shown in Fig. 9, the improvement rate of ARS is relatively very low
compared to recall and SARS. This is because SARS evaluated the difficulty of adversarial attacks by
comprehensively evaluating various factors. Through this experiment, it is possible to evaluate whether
an AI model is vulnerable to adversarial attacks and to identify vulnerable data types based on SARS.
After adversarial training, it was confirmed that SARS also increased. It is expected to contribute to
establishing more objective and reliable standards for robustness evaluation based on various factors
that can evaluate the difficulty of adversarial attacks.

Figure 8: Robustness improvement before and after adversarial training

Figure 9: Improvement rate by robustness evaluation indicator after adversarial training

5 Conclusions and Future Work

As AI technology advances and its role expands, the need for trustworthy AI is underscored.
Robustness issues may arise due to the nature of AI models, which are dependent on the training
dataset and can be biased by its quality and representativeness; it is impossible to include in the dataset
all kinds of inputs that may occur in the real environment or to be sure that the AI model can respond
to adversarial attacks without errors. In the case of malware, most attacks are caused by attackers
who mass-produce variants of existing malware to evade detection systems. Adversarial attacks also
generate adversarial samples in the form of slight perturbations to the original data to induce AI
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misclassification. Although various adversarial attack and defense methods are actively being studied,
there is a lack of research on robustness evaluation indicators that serve as standards for determining
whether AI models are safe and trustworthy against adversarial attacks. It is impossible to evaluate
robustness against these attacks accurately with traditional AI evaluation indicators such as accuracy
and recall, so robustness evaluation and improvement methods are needed. These problems manifest
as limitations in trusting and using AI.

This paper proposes an adversarial attack-based robustness evaluation and improvement method
for trustworthy AI. via elaborate evaluation through SARS, proposed as a measure of the robustness
of AI models that cannot be evaluated with traditional AI evaluation indicators, the robustness level
of each data group can be evaluated and improved through adversarial training for data groups with
vulnerable robustness.

To verify the effectiveness of the method proposed for trustworthy AI development in this paper,
an experiment was conducted using the 2019 KISA malware dataset. As a result of training the AI
model for malware detection, the recall was calculated as high as 0.9767, but the recall was easily
decreased due to adversarial attacks. This means that traditional evaluation indicators cannot be used
to evaluate the robustness of AI models.

The robustness of an AI model can be evaluated through the difficulty of adversarial attacks.
This paper proposes SARS to evaluate the robustness by comprehensively considering various factors
such as attack success rate, perturbation size and ratio, and probability variation. Through SARS, it
is possible to identify whether an AI model is vulnerable to adversarial attacks and the vulnerable
data type. It is expected that improved AI models can be operated through robustness enhancement
methods such as adversarial training.

Through eXplainable Artificial Intelligence (XAI), it is possible to identify features that have
contributed significantly to the AI model predicting the data. The attacker could utilize this informa-
tion to focus on high-contributing features and perform effective adversarial attacks by perturbating
them. In future research, we will study adversarial attack methods using XAI and methods to defend
against them.
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