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Abstract: Human recognition technology based on biometrics has become a
fundamental requirement in all aspects of life due to increased concerns about
security and privacy issues. Therefore, biometric systems have emerged as a
technology with the capability to identify or authenticate individuals based
on their physiological and behavioral characteristics. Among different viable
biometric modalities, the human ear structure can offer unique and valuable
discriminative characteristics for human recognition systems. In recent years,
most existing traditional ear recognition systems have been designed based
on computer vision models and have achieved successful results. Nevertheless,
such traditional models can be sensitive to several unconstrained environmen-
tal factors. As such, some traits may be difficult to extract automatically but
can still be semantically perceived as soft biometrics. This research proposes
a new group of semantic features to be used as soft ear biometrics, mainly
inspired by conventional descriptive traits used naturally by humans when
identifying or describing each other. Hence, the research study is focused on
the fusion of the soft ear biometric traits with traditional (hard) ear biometric
features to investigate their validity and efficacy in augmenting human iden-
tification performance. The proposed framework has two subsystems: first, a
computer vision-based subsystem, extracting traditional (hard) ear biometric
traits using principal component analysis (PCA) and local binary patterns
(LBP), and second, a crowdsourcing-based subsystem, deriving semantic
(soft) ear biometric traits. Several feature-level fusion experiments were con-
ducted using the AMI database to evaluate the proposed algorithm’s perfor-
mance. The obtained results for both identification and verification showed
that the proposed soft ear biometric information significantly improved the
recognition performance of traditional ear biometrics, reaching up to 12% for
LBP and 5% for PCA descriptors; when fusing all three capacities PCA, LBP,
and soft traits using k-nearest neighbors (KNN) classifier.
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1 Introduction

Human recognition is one of the most growing domains of today’s society, as it relates to numerous
aspects of daily life, including forensics, surveillance and security systems, border crossing, law enforce-
ment, access control to mobile devices, and so on. Due to the comprehensiveness and importance of the
domain, the problem of accurately recognizing a person’s identity is becoming continuously a major
necessity. Therefore, biometric systems have emerged as an effective technology that can identify or
authenticate individuals based on their physiological (face, iris, ear, and fingerprints) and behavioral
(gait, voice, and signature) characteristics [1]. Generally, these traditional (hard) biometrics must
satisfy as much as possible some of the fundamental requirements, such as permanence, uniqueness,
universality, collectability, and measurability, to provide more secure solutions [2].

Alphonse Bertillon (a French criminologist) was deemed as the first to use biometrics to identify
convicted criminals in 1879 [3]. Recently and compared to other biometric modalities, ear biometrics
has seen a somewhat steady rise in popularity and interest, where the ear as a biometric trait has
beneficial characteristics in individual recognition [4], as shown in Fig. 1; this comprises: unique
visible biological location for individuals [5]; invariant shape slowly increases in size with age [6,7];
not affected by makeup, various expressions, or sunglasses compared to face biometrics; enabling
passive identification could be at a distance without involving the person of interest [8]; very difficult
to be faked with plastic surgery; one can use any camera (as widespread cheap sensors) to capture ear
images; and helpful as a non-intrusive contactless biometric form suited to avoid disease/virus spread.

Figure 1: Different samples of ear images exhibit the observable differences between human ears, where
each has unique and distinct characteristics in each part of the outer-ear structure

However, most traditional ear recognition systems are based on computer vision and deep learning
models and have achieved good results [4]. Nevertheless, these models still suffer in unconstrained
environments where performance results can be significantly affected by pose, illumination, variation
of sensors, and occlusion [9–11]. Moreover, imposters can circumvent some of these systems using
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spoof attacks due to the high dependence on the complex geometrical shape of the ear, which often
being obscured by hair, hoodies, tattoos, and similar [12]. Hence, they might sometimes fail to meet
the high-security accuracy requirements. Given such situations, some traits can be difficult to extract
automatically, while can still be perceived semantically using soft biometrics.

Thus, soft biometrics appeared later as a new form of biometric traits for identification, which
concerns descriptive nameable attributes used naturally by humans to identify and describe each
other. Also, such soft traits can offer supplementary information to augment the identity information
provided by traditional/hard biometric traits [13]. Furthermore, one of the main advantages of
soft biometric traits is their robustness against environmental variation (such as pose, illumination,
background clutter, and so on), unlike hard biometrics [14]. Examples of soft biometrics that are
extracted from a human body include height, weight, age, eye color, etc. Few studies have shown that
when combining soft biometrics with traditional (hard) biometrics, these traits can have practical usage
and significant importance in improving recognition performance [15–17].

As a matter of fact, the soft ear biometrics field has attracted little attention. To the best of
our knowledge, very few studies have used or combined soft features with traditional ear features.
Besides, an extended analysis to exploit the capabilities of detailed soft ear biometrics, as fine-grained
high-level semantic features of the ear, to improve the performance of traditional computer vision-
based ear biometrics is yet to be adopted and investigated. To this end, this paper investigates the
viability of a novel set of proposed ear-based soft biometrics and fuses them with other traditional
(hard) ear biometric features, thus bridging the semantic gap between humans and machines in the
ear recognition task. This can pave the way for broader ear recognition enforcement in various
unimodal/multimodal biometric applications for different purposes. Such proposed soft ear biometrics
can be used in isolation or fusion with traditional ear biometrics. Our main contributions of this paper
can be summarized as follows:

• Proposing a novel set of detailed semantic attributes of the human ear to be used as soft ear
biometrics.

• Using these soft ear biometrics for augmenting and improving the performance of traditional
vision-based models for ear recognition.

• Offering a suited fusion algorithm for efficiently integrating the proposed soft ear biometrics
and traditional ear features for augmented human identification and verification.

• Analyzing the proposed semantic attributes and their performance using different statistical
and analytical tests to investigate and select the most significant subset of soft ear biometrics
achieving the highest performance.

The remainder of this paper is organized as follows. Section 2 shows a literature review of
traditional ear recognition approaches, earlier studies on the feature-level fusion of different ear
biometrics, and related work concerning the fusion of ear biometrics with other soft biometrics. The
proposed system framework and research methodology are described in Section 3. While Section 4
provides results and discussion. Finally, Section 5 offers conclusions and potential future work.

2 Related Works

This section gives a brief overview of state-of-the-art approaches in the context of ear recognition,
either for identification or verification purposes, which reviews the most relevant studies to our work.
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2.1 Traditional Ear Recognition Approaches
Recently, most current studies focused on deep learning methods and used pre-trained models to

retrain and synthesize them with ear images because they were found to give better results, whereas
others utilized local feature descriptors. Also, many other studies explored different ways to expand
an existing dataset or invent a new one suitable for identifying the ears since deep learning requires a
considerable number of images to achieve the desired efficacy of deep-based learning.

In deep learning, the transfer learning process is a pre-trained neural network that can be used
as input to another deep learning model to extract discriminative features for a different task.
Alshazly et al. [18] proposed various demonstration methods of the ear recognition task based on
transfer learning. They analyzed different configurations of the Visual Geometry Group (VGG)
network, then used the best models that highlight significant regions of the ear images to construct
ensembles of models with varying weights to boost the accuracy. It has been observed that the fine-
tuning models had demonstrated their effectiveness compared to other models. The experiments
revealed excellent results, with 97.50% on the AMI dataset and an accuracy of 93.21% and 79.08% on
the AMIC, and WPUT ear datasets, respectively. Another recent study also used the transfer learning
technique [19], in which the authors used three pre-trained networks, including AlexNet, GoogleNet,
and ResNet50, and applied two IAMI and IT Delhi datasets. PCA is used for feature reduction. The
Ensemble classifiers achieved good results for the AMI database. Similarly, in [20], the researchers
also studied the effect of domain adaptation by fine-tuning pre-trained deep CNNs models. Various
datasets, such as AWE, AMI, WPUT, IITD, UERC train, and multi-PIE Ear, were used. Furthermore,
they fused the two best-performing models and achieved a maximum of 67.53% test accuracy.

Due to the limited size of the ear dataset, the authors in [21] present a new dataset called USTB-
HelloEar of ear images taken in an unconstrained environment. Then, they fine-tuned and modified
five well-trained deep models: VGG, ResNet, VGG face, Google Net, and AlexNet, to deal with the
arbitrary size of input data, where this was done by replacing the last pooling layer of the CNN with
a spatial pyramid pooling layer (SPP), which can be utilized to obtain multi-scale information. The
experimental results showed that the modified VGG-face model performed better than other CNN
models. Recently, EarVN1.0 was presented in [22] as an unconstrained dataset for experimental study
in the ear recognition field. They employed eight pre-trained CNN models. Then they applied a fine-
tuned technique to each model using custom size inputs and reported that the ResNeXt101 model
achieved the highest recognition accuracy of 93.45%. Moreover, to improve the performance result of
the ResNeXt101 model, they applied the ensemble learning process, attaining a higher performance
of 95.85% accuracy compared to their other examined techniques. However, they do not utilize other
databases to validate how generalized their proposed method is, in contrast to the earlier comparable
studies in the literature.

Hassaballah et al. [23] proposed a new variant descriptor of LBP, termed robust local oriented
patterns (RLOP), for ear recognition. This method is utilized to derive local structure information
using edge ear features. The extracted features are supposed to be robust against illumination and
rotation. They evaluate the approach on AMI, AWE, and IITD-II databases. The descriptor works
effectively and yields good results, but performance decreases in unconstrained environments.

2.2 Feature-Level Fusion of Different Ear Biometrics
Feature-level fusion has become an important research aspect and has been variously proven to

improve recognition performance, as combining different collaborative features can provide comple-
mentary information. For instance, in [24], they proposed a framework combining handcrafted and
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CNN-based learned features using landmark detection to perform the ear recognition task and address
related issues. The handcrafted-based features were extracted using various descriptors: histograms
of oriented gradients (HOG), binarized statistical image features (BSIF), rotation invariant LPQs
(RILPQ), local phase quantization features (LPQ), patterns of oriented edge magnitudes (POEM),
dense scale-invariant feature transform (DSIFT), LBP and Gabor wavelets. Their experiment was
conducted on five different datasets: IIT, WPUTE, AWE, UERC, and ITWE. They conducted
multiple experiments using their approach with various combinations of feature fusion and proved
that handcrafted and learned features complement each other for enhanced recognition. Moreover,
CNN and HOG outperformed all compared techniques and achieved 75.6% as the best fusion to
improve performance.

Different from CNN-based deep features, in [25–28], authors have focused on combining local
descriptors features and studying the importance of the handcrafted features fusion to recognize ear
images. The study in [25] used the Gabor-Zernike operator (GZO) to extract global features and
the LPQ method to extract local features, combined using a genetic algorithm to find the optimal
feature set. USTB, IIT Delhi-1, and IIT Delhi-2 databases were also tested using the nearest neighbor
classifier with Canberra distance. Accuracies of 100%, 99.2%, and 97.13% were obtained, respectively.
Also, another research study proposed a different approach for ear recognition problems based on
local discriminative feature fusion [26]. Hence, they conducted their experiments on five popular ear
datasets, AWE, IIT Delhi II, USTB I, and USTB II. The local features (geometric and appearance-
based) have been extracted from aligned and non-aligned ear images using LPQ, HOG, LBP, POEM,
BSIF, and Gabor. They described the ear with geometric and appearance-based features. They claimed
that the geometric features suffer from variations in illumination, scaling, rotation, or occlusion. At the
same time, the appearance-based features that extract the intensity, directional, and spatial-temporal
information can be successful complementary information for other local features. Therefore, feature-
level fusion can lead to recognition performance improvement. Their fusion was done using the
discriminant correlation analysis (DCA) algorithm, while the support vector machine (SVM) was
used for the classification step. Their experimental results showed that the fusion techniques achieved
higher recognition rates on non-aligned images than on aligned images. Jiddah et al. [27] proposed
dividing the human ear into four quarters, then examining each section individually to identify
the most critical region in the ear image. They used an LBP descriptor to extract geometric-based
features and the Laplacian filter for texture feature extraction. Finally, they fused the geometric and
texture features to demonstrate the effectiveness of their feature combinations. The features fusion
of the upper left quarter of the divided right ear image achieved the best recognition rate, yielding
80% accuracy. In recent research [28], authors developed a feature-level fusion scheme of PHOG
and LDP local descriptors. PHOG represents the spatial shape information, and LDP encodes the
local texture information of ear images. PCA is utilized for reducing the dimensions. The kernel
discriminant analysis (KDA) method was used to extract nonlinear discriminant features based on the
KNN classifier. The experimental results show that the performance of the proposed method achieved
97.34% accuracy and 2.47 ERR on the UND-E dataset.

2.3 Fusion of Ear Biometrics and Other Soft Biometrics
Significantly few research studies have utilized the capabilities of soft biometrics in the human

ear identification field. Soft biometrics alone is not anticipated to be sufficient information for highly
competitive performance, whereas they can play an essential role in complementing other traditional
biometrics and augmenting recognition performance. In [29], they proposed an approach for newborn
babies’ recognition using the fusion of ear biometric and body-based soft biometrics like gender, blood
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group, weight, and height. They collected a new dataset containing 2100 ear images of 210 children.
The features were extracted from ear images using well-known algorithms: Fisher Linear Discriminant
Analysis (FLDA), Independent Component Analysis (ICA), Geometrical Feature Extraction (GF),
HAAR, and PCA. The HAAR algorithm obtained an identification accuracy of 90.72% after fusion
with soft biometrics. Another study proposed a system using soft biometrics in the context of ear
identification [30]. The proposed system consists of three modules: traditional ear recognition, soft
biometrics, and feature fusion. Therefore, this study used local Gabor binary pattern (LGBP) and
BSIF in the traditional feature extraction module. The soft biometrics module was inferred for skin
color, hair color, and mole location. Eventually, the Bayesian framework carried out the fusion of
traditional and soft biometrics. Their experimental results showed that the attained improvement of
identification performance reached 54.20% by utilizing soft biometrics.

Although some researchers in the field of human ear recognition have been interested in studying
the capabilities of deep learning and machine learning, and very few of them have been interested in
other soft biometrics of the body, the exploitation of human vision capabilities in analyzing ear images
and extracting detailed semantic features of the ear, as fine-grained soft ear biometrics, has not been
investigated in it yet; this may help bridge the semantic gap and improve performance of traditional-
based methods effectively.

3 The Proposed Method

Our proposed ear recognition system framework consists of four main modules: vision-based ear
biometric features extraction, soft ear biometric features extraction, feature-level fusion, and person
recognition (identification/verification), as depicted in Fig. 2. Initially, the mathematical analysis of
images (AMI) ear dataset has been used as an ear image input, where images have been taken in an
indoor environment, including pose, illumination, and occlusion as covariates. In the vision-based
subsystem, and as a preprocessing step, all images are cropped for ear segmentation, then converted
into grayscale representations. Afterward, the traditional (hard) ear feature vectors are extracted using
LBP- and PCA-based methods and normalized using min-max normalization. On the other hand,
the soft ear biometric subsystem takes all ear images into the crowdsourcing annotation platform to
derive a corresponding semantic label dataset. Then, for all subjects in the dataset, it infers normalized
average semantic label per trait for each subject to be used together as a feature vector of soft
ear biometrics. In the fusion module, feature-level fusion is enforced via several combinations of
traditional and soft biometrics to verify their capabilities and robustness in augmenting traditional
computer-vison-based biometrics and outperforming by all means the recognition performance of
using traditional ear traits alone. Finally, the KNN or SVM classifier recognizes the person’s identity
and compares the algorithms’ performance in different ranks.

3.1 Ear Images Dataset
To evaluate the performance of the proposed ear recognition algorithms and test the validity and

invariance properties of the proposed soft biometrics, we conduct our experiments on the mathematical
analysis of images (AMI) benchmark ear dataset [31]. The database was compiled at the University
of Las Palmas from 100 subjects (aged 19–65 years) comprising students, teachers, and other campus
staff. Each subject has seven images, five of them for the right-side profile (right ear) with different
head poses: face forward (FRONT), looking up, down, left, and right (UP, DOWN, LEFT, RIGHT).
The sixth one is also of the right profile but has a different camera focal length (ZOOM). Last image
of the left side profile (the left ear) with a forward pose (BACK), for a total of 700 images. All photos
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were taken indoors under the same lighting conditions, mild occlusion, and some accessories. Further,
they have the same JPEG format and resolution of 492 × 702 pixels. A few sample images of the AMI
dataset are shown in Fig. 3. In our experiments, we need to use the same samples for training and
testing in both parts of the proposed system to extract different hard and soft features. For this purpose,
we divided the dataset manually into two disjoint sets; based on a 70:30 proportion for training and
testing, respectively. Specifically, for each subject, we assign five samples (BACK, DOWN, FRONT,
LEFT, and UP) for training and two (ZOOM and RIGHT) for testing; Table 1 shows the distribution
of the AMI dataset.

Figure 2: Overview of the proposed system framework

Figure 3: Sample images of the AMI ear dataset

Table 1: AMI data distribution

Data distribution Training Testing

Number of images 500 200
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3.2 Soft Ear Biometric Traits
3.2.1 Fine-Grained Soft Ear Attributes

This research proposes a novel group of 33 semantic attributes introduced in understandable,
visible, and reliable ways compatible with human perception for ear recognition. All these traits
are structural and comprehensive to the ear’s parts only, unlike other existing research studies that
combined the features of the ear with some facial features, hair, or around the ear [32]. These
attributes are divided into groups based on the ear zones and different ear characteristics, which
are Scapha, Helix, Earlobe, Tragus, Ear Hair, Ear Skin, the ear shape in general, and if there are
any accessories. Furthermore, an appropriate set of categorical or relative labels is given for each
attribute to be semantically described. The categorical (absolute) labels may be binary or multi-class
absolute (or nominal) descriptions, such as (Normal–Abnormal) or (Black–White–Gray–Blonde–
Brown), respectively. In contrast, the relative labels are measurable (or ordinal) descriptions used to
describe the degree of presence, such as (Small–Medium–Large). In addition, the label (can’t see) is
included in case there is any occlusion or obscureness in the image to avoid any mental inferences.
However, each categorical/relative label is represented by an integer value. The categorical labels are
randomly assigned ordered integer values 1-N in consistent distribution. On the other hand, most
of the relative bipolar label sets take values of a five-point scale (ranging from 1 to 5) to reflect the
degree of strength, whereas the others are designed to take only a three-point scale (ranging from 1
to 3) to avoid uncertainty and overestimate such traits [33]. Table 2 shows the proposed list of soft ear
biometrics with their semantic labels derived from a human ear, as shown in Fig. 4.

Table 2: Proposed soft ear attributes and corresponding semantic labels

Ear zone No. Soft attributes Semantic labels Label form

General F1 Ear shape [Very simple–simple–
medium–complex–very
complex]

Relative

F2 Width to length ratio [Much lower–lower–similar–
higher–much higher–can’t
see]

Relative

F3 Ear coverage [None–slight–fair–most–all] Relative
F4 Ear abnormality [Normal–abnormal] Categorical

Scapha F5 Scapha size [Very small–small–medium–
large–very
large]

Relative

F6 Scapha shape [Flat–convex–other] Categorical
F7 Scapha piercing [Yes–no–can’t see] Categorical
F8 Scapha holes [None–single–double–

multiple]
Categorical

Helix F9 Helix shape [Bent–flat] Categorical
F10 Antihelix shape [Prominent–normal–flat] Categorical
F11 Helix piercing [Yes–no–can’t see] Categorical
F12 Helix holes [None–single–double–

multiple]
Categorical

(Continued)
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Table 2 (continued)

Ear zone No. Soft attributes Semantic labels Label form

Earlobe F13 Earlobe length [Very short–short–average–
long–very
long]

Relative

F14 Earlobe size [Small–medium–large] Relative
F15 Earlobe holes [None–single–double–

multiple]
Categorical

F16 Earlobe connected
with face

[Yes–no–can’t see] Categorical

F17 Earlobe piercing [Yes–no–can’t see] Categorical
Tragus F18 Space between

tragus and antitragus
[Small–medium–large] Relative

F19 Tragus thicknesses [Thin–average–thick] Relative
F20 Tragus shape [Curved–straight–other] Categorical
F21 Tragus piercing [Yes–no–can’t see] Categorical

Ear hair F22 Hair density [None–little–some–much–
very
much]

Relative

F23 Hair color [None–black–white–gray–
blonde–brown–red–brunette]

Categorical

Skin F24 Skin mole [None–very
few–few–many–too many]

Relative

F25 Skin spots [None–minimal–fair–marked–
prominent]

Relative

F26 Skin crusts [None–minimal–fair–marked–
prominent]

Relative

F27 Skin tone [Very light–light–medium–
dark–very
dark]

Relative

F28 Skin color [White–oriental–tanned–
brown–black]

Categorical

F29 Skin texture [Smooth–wrinkles–can’t see] Categorical
F30 Pre-auricular skin

tag
[Yes–no–can’t see] Categorical

F31 Pre-auricular vertical
lines

[Yes–no–can’t see] Categorical

Accessories F32 Tattoos [Yes–no–can’t see] Categorical
F33 Earphone presence [Yes–no–can’t see] Categorical
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Figure 4: (a) Attributes extracted from the structure of the outer ear, (b) types of pre-auricular attribute

3.2.2 Ear Image Data Annotation and Soft Ear Biometrics Derivation

This research used the Appen crowdsourcing platform [34] for ear image data annotation for
further soft ear biometric derivation of all subjects in the database. The Platform provides high-quality
data assurance techniques to acquire trustworthy annotations resulting in informative and reliable soft
biometric data. Thereby, we designed a web-based form enabling detailed attribute descriptions based
on the main zones of the outer ear, shown in Fig. 5, and other features to simplify and organize the user
annotation’s view, as shown in Fig. 6. Then, a group of experienced and highly accurate contributors
was invited to annotate a maximum of five ear images of different subjects after they passed quality
pre-test questions. The annotation task involves selecting the most appropriate semantic label for
each of the 33 soft ear traits (attributes) listed in Table 2. As a result, the required annotated dataset
was collected from 2900 trusted respondents, where five judgments were collected for each training
sample from random annotators and two judgments for each test sample. Table 3 summarizes the
crowdsourced soft label data for this study.

Figure 5: The main zones/parts of outer ear for soft attribute annotation
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Figure 6: Designed annotation form for semantic labeling acquisition

Table 3: Summary of collected soft ear biometric data

Soft ear biometrics data summary Quantity

Annotations per training image 5
Annotations per test image 2
Total annotations for training samples 2500
Total annotations for test samples 400
Total semantic labels (33 labels per annotation) 95700
Maximum annotations allowed per annotator 5
Total number of annotators 666

3.2.3 Significance Analysis of Soft Traits

Each proposed soft trait is aimed not only to describe the human ear meaningfully but also to
provide discriminative information to better differentiate between subjects in the database. Therefore,
one-way analysis of variance (ANOVA) is used as a statistical method for significance hypothesis
tests to assess the acquired soft traits and determine which of them effectively influences recognition
performance [35]. The best soft traits can be deduced and ordered by F-ratio as a significance score
computed as follows:

Fratio = total between − group variance
total within − group variance

=
∑

i ni(X i − X)2/(K − 1)∑
ij(Xij − X)2/(N − K)

(1)

where Xij denotes the jth annotations of the soft ear biometric trait of the ith subject, and ni represents
the number of annotations of the ith subject. X i is the mean of the ith user’s annotations, while X
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represents the mean across all subject’s annotations. N is the number of soft ear traits, and K is the
number of subjects. As large as the F-ratio value is, the inter-class variance is larger than the intra-class
variance; therefore, this given trait is a more significant and useful measure of identity. Table 4 reports
the results of the ANOVA test for all soft ear traits, where a higher F-ratio indicates a more significant
soft trait to identity. Interestingly, it can be observed that the ‘earlobe’ region provides more distinctive
features in identification than the other ear regions. This is because human annotators can easily and
consistently describe those traits of the earlobe area. Also, some traits, such as tattoos, earrings of
helix and trugs, and others, did not significantly impact the accuracy of identification; due to the
nature of the current database, where the participating subjects are a group of professors, students,
and university employees. While if the dataset contains more public wild images, the importance of
these features will vary.

Table 4: Ordered F-ratios deduced by ANOVA of the proposed soft ear biometric traits

ID Trait F-ratio ID Trait F-ratio

F16 Earlobe piercing 49.72549 F27 Skin tone 1.32E-13
F17 Earlobe holes 20.871758 F25 Skin spots 2.67E-10
F22 Hair density 10.916861 F20 Tragus shape 7.24E-10
F31 Skin lines 6.246135 F6 Scapha shape 1.23E-08
F15 Earlobe connected 5.713584 F7 Scapha piercing 5.15E-08
F1 Shape of ear 5.331377 F19 Tragus thickness 7.51E-06
F29 Skin texture 4.9263 F4 Normality 1.38E-05
F13 Earlobe length 4.884691 F33 Earphone 7.96E-03
F2 Width to length 4.594378 F8 Scapha holes 2.60E-02
F23 Hair color 4.406566 F21 Tragus piercing 7.55E-02
F5 Scapha size 4.127217 F11 Helix piercing 8.23E-02
F3 Ear coverage 3.76522 F9 Helix shape 9.34E-02
F14 Earlobe size 3.496534 F30 Skin tag 1.20E-01
F28 Skin color 3.420498 F12 Helix holes 1.25E-01
F26 Skin crusts 3.162418 F10 Antihelix shape 1.74E-01
F18 Tragus space 3.078179 F32 Tattoos 5.38E-01
F24 Skin moles 2.988547

3.3 Vision-Based Ear Biometric Traits
3.3.1 Preprocessing

Since the original AMI images were captured in different head poses and contained the other
head-side parts in the profile images, thus, we manually cropped all images to reduce the influence
of these parts and focus only on the ear as the area of interest. This resulted in a new set of AMI
datasets with the same number of images and subjects. After removing unwanted areas, produced
images have different dimensions; as a result, all images were resized into the same resolutions of
64 × 64 pixels, where further reduction will lead to performance degradation. Lastly, the resulting
cropped and resized color images were converted to grayscale normalization. These preprocessing
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steps, shown in Fig. 7, aim to extract the hard vision-based features of only the ear zone with fewer
computational requirements.

Figure 7: Preprocessing steps of AMI dataset

3.3.2 Extracting Vision-Based Hard Ear Features

In the literature, among a wide range of practical vision-based feature extractors for ear recogni-
tion purposes, LBP and PCA are well-established methods and have often been proven as powerful
and highly discriminative features for a variety of pattern recognition applications. Accordingly, in this
initial research study, as a proof of concept, LBP and PCA are used to extract hard ear feature vectors
to be then fused and augmented by the newly proposed fine-grained soft ear biometrics with a view to
analyzing, evaluating, and comparing capabilities and performance in isolation and in fusion.

• LBP Features

LBP operators are used here to describe each ear image’s texture and extract their features. The
operator works on a grayscale image’s fixed-size (i.e., 3 × 3) local block. Next, it labels the center pixel
for each local block by considering the correlation among its neighboring pixels [36]. The mathematical
expression for computing the LBP descriptor is given by Eq. (2):

LBP =
∑p−1

i=0
s (ni − Gc) 2i, where s (x) =

{
1, if x > 0
0, otherwise

(2)

The gray level of the center pixel c = (x, y) is used to threshold the P neighboring pixels forming a
binary number. The ith neighbor ni is assigned 1 or 0 depending on whether its gray level is greater than
or less than the gray level of the center pixel (Gc). Then the value of the center pixel is replaced with the
corresponding decimal value. After the decimal values are computed for all pixels, a histogram feature
vector of size 2P is created to form the LBP texture descriptor. This descriptor is robust to changes in
grayscale levels and able to operate effectively at a reduced computational cost. Fig. 8 shows the visual
representation of an ear image after applying the LBP descriptor for feature extraction.

• PCA Features

PCA is a widely used feature extraction method based on dimensionality reduction. It is a way to
compact the input dataset and remove redundancy without losing the primary relevant information
in computationally efficient and high-performing machine learning models. Each image in the dataset
is represented in a lower dimension by projecting them into a common eigenspace (eigenvectors and
eigenvalues). These eigenvectors are represented in interrelated variables by arranging them into linear
combinations, ranked from most important to least with the greatest variation (principal components).
The overall variation equals the sum of variances of all individual principal components [37]. Fig. 9,
shows a 64 × 46 pixels image with 4096 (features/dimensions), where PCA projection is represented
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with different numbers of components, showing that even with only 10 principal components, ear
details are identifiable.

In the currently used AMI ear dataset, we can estimate the appropriate number of principal
components by calculating the cumulative explained variance ratio function. We found that the first
20 components contain around 80% of the variance, while we need about 90 components to explain
nearly all the variances.

Figure 8: Normalized grayscale ear image (left), and its corresponding LBP image (right)

Figure 9: Sample ear image representation with different numbers of principal components

3.3.3 Feature Vectors Normalization

Normalizations are may necessary in feature-level fusion, where the feature vectors extracted
independently by LBP and PCA descriptors are incompatible in form, range, and distribution. As
such, LBP produces a vector of 4096 features for each 64 × 64 ear image, whereas PCA composes a
feature vector of 90 features for the same image. However, to overcome such variation problems, we
use min-max normalization, which relatively rescales values of feature vectors to the range of (0–1)
maintaining their relative magnitude within the feature vector. Suppose X = {x1, x2, x3, . . . , xn} is a
feature vector, where the normalized feature vector X́ can be calculated by the following Eq. (3) [38]:

X́ = xi − min (X)

max (X) − min (X)
(3)

3.4 Fusion
Fusion of different features is an effective technique frequently utilized in biometrics systems and

can be carried out at the feature level, score level, sensor level, or decision level [39]. Our proposed
approach is based on the feature-level fusion technique, which concatenates hard and soft feature
vectors of the same person to form a single fused feature vector of image information for person
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recognition. The primary advantage of feature-level fusion is that it occurs at the lowest level, allowing
the analysis of the correlated feature values generated from different feature extractor algorithms to
preserve the more discriminative and robust information of subject identity that improve recognition
accuracy under various conditions [40]. Therefore, we can still exploit our proposed soft ear features
to combine with traditional ones at this fusion level.

3.5 Recognition
To investigate the validity and potency of the fusion of soft and hard ear biometrics, we use a

KNN-based classifier to achieve the recognition task of the proposed framework. Moreover, a support
vector machine (SVM) classifier was also used and compared with the KNN in performance results.
Note that KNN is ideally suited for performance evaluation and comparison of identification and
verification in the current research work context. The idea of KNN is based on assigning the test
feature vector to the most frequent matching class from the k closest neighbors. This is done by
comparing the distances between a test feature vector and the training vectors utilizing the Euclidean
distance of the image histograms. In our experiments, k = 1 yielded the best results [41]. Suppose p and
q are represented by feature vectors; q = (q1, q2, . . . , pn) and p = (p1, p2, . . . , pn), where n is the number
of values in each of p and q feature vectors. Then the Euclidean distance is computed by Eq. (4) as
follows:

d (q, p) =
√

(q1 − p1)
2 + (q2 − p2)

2 + · · · + (qn − pn)
2 =

√∑n

i=1
(qi − pi)

2 (4)

4 Experimental Work

In this section, we thoroughly explain the evaluation metrics and analyze the experimental results
to ascertain the soft ear features’ ability to improve the performance of the ear recognition system. All
our experiments were conducted using Dual-Core Intel Core i5 CPU @ 2.3 GHz with an 8 GB RAM
system. PYTHON was used to implement these feature extraction experiments.

4.1 Evaluation Metrics
Different benchmark quantitative evaluation metrics are used in this experimental work to assess

the performance of augmented recognition by proposed soft ear traits and explore to what extent
they can improve the standard (traditional) models in identification and verification tasks. For
identification and verification performance evaluation, the confusion matrix is inferred over multiple
thresholds between the genuine and importer distributions to determine per threshold the values of
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). Accordingly,
further measurements can be calculated as follows:

• Accuracy: is the ratio of the total number correctly predicted samples.

Accuracy = TP + TN
TP + TN + FP + FN

× 100 (5)

• Precision: is the ratio of the correctly predicted samples to the total number of positive
predictions.

Precision = TP
TP + FP

× 100 (6)

• Receiver Operating Characteristic (ROC): is a verification measure (as one-to-one matching)
based on the aggregate statistics of match scores corresponding to all biometric samples and
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can be expressed by the tradeoff between the false accept rate (FAR) and the false reject rate
(FRR) [42] as follows:

ROC = P (x|positive)
P (x|negative)

(7)

• Equal Error Rate (EER): is the lowest error point on the ROC curve in which FAR equals FRR,
where the lower value refers to better performance and can be defined as follows:

FAR = False Positive Rate = FP
FP + TN

(8)

FRR = False Negative Rate = FN
FN + TP

(9)

EER = Equal Error Rate = FAR + FRR
2

(10)

• Area Under Curve (AUC): is the area located under the ROC curve ranging between 0 and 1,
where the greater AUC value indicates better performance.

• Cumulative Match Characteristic (CMC): is a measure that expresses the performance of
biometric identification (as one-to-many matching) based on the relative ranking of match
scores for each biometric sample to return a ranked list of enrolled candidates from the dataset.

4.2 Experiments and Results
Our present work conducted all experiments on the AMI publicly available ear dataset [31],

using the two feature extraction methods (PCA and LBP) with KNN and SVM classifiers. Initially,
we tested the performance of the traditional LBP and PCA in isolation as a baseline, where the KNN
achieved the highest accuracy results at about 74% and 81.50%, respectively. The accuracies obtained
by the SVM classifier were 68% and 76% for LBP and PCA, respectively. Therefore, we relied on
the KNN classifier to assess our experiments, while the SVM results were for comparison. Then,
we contributed two scenarios of feature-level fusion to compare the fusion results with the primary
outcome to reach the optimal pattern result of fusion.

A) First Fusion Scenario

We applied the augmented fusion based on the 33 soft ear feature vectors with each of the LBP and
PCA feature vectors separately to validate the feasibility of the proposed soft ear traits in increasing
discrimination and improving the recognition performance of standard descriptors alone. Since the
number of extracted and used hard ear features per vector is much larger than soft ear features
per vector, traditional biometrics may dominate the matching judgment and mitigate the valuable
capabilities of the soft ear biometric information. Therefore, we empirically assigned effective weight
coefficients for the soft traits. Note that the optimal coefficients of soft features achieving the best
results were 1.92 and 1.6 when augmenting LBP and PCA, respectively. The obtained accuracy result
was 79.50% and 83% for LBP and PCA, respectively, offering a remarkable improvement. Moreover,
we investigated the fusion of all three capacities of LBP, PCA, and Soft biometric features and achieved
more significant improvement with 86% accuracy.

B) Second Fusion Scenario

We repeated the experiments on the most influential characteristics based on feature significance
deduced via ANOVA (illustrated in Section 3.2.3). Consequently, we found that the LBP features are
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best augmented by at least of the top effective 26 soft ear traits to maintain the highest result. At the
same time, the PCA features are maximally augmented by only the top 17 soft ear traits to achieve
the highest recognition result of 92.53% precision and 84.50% accuracy, increasing the standard
PCA features precision and accuracy by 1.53% and 3%, respectively. Then we fused these 17 traits
(as the most functional and discriminative traits) with both LBP and PCA features, and we attained the
highest overall performance result of 86.50%. Accordingly, we supplemented the performance of the
fused traditional LBP and PCA approaches and raised their accuracy by 12.5% and 5%, respectively.

These results show that the capabilities of the proposed soft ear biometrics can further be
devoted to extended fusion and increased performance surpassing the performance of traditional traits
in isolation. Table 5 provides all experimental results for different soft-based fusion vs. traditional
features, presenting SVM results for comparison. Note that the SVM classifier also increased all
recognition rates, where the accuracy of the LBP was 68% and 76% for PCA, then after fusing them
with the soft ear features, the accuracy rose to 84.50%, confirming that fusion approaches can achieve
promising ear recognition rates.

Table 5: Precision and accuracy of standard vision-based models and augmented models by soft ear
traits
Approach Precision (%) Accuracy (%) Weight coefficient

KNN SVM KNN SVM

LBP 87.00 88.32 74.00 68.00 -
PCA 91.00 87.00 81.50 76.00 -
LBP + soft traits 88.94 89.30 79.50 75.50 1.92
PCA + soft traits 91.44 89.17 83.00 79.00 1.60
LBP + PCA + soft traits 92.60 92.32 86.00 84.00 2.74
LBP + soft traits (top 25 via ANOVA) 88.49 89.30 79.50 75.50 1.92
PCA + soft traits (top 17 via ANOVA) 92.53 89.55 84.50 79.50 1.59
LBP + PCA + soft traits (top 17 via ANOVA) 92.84 92.97 86.50 84.50 2.98

Therefore, upon closer inspection of Fig. 10, it becomes clear how soft ear biometrics show
remarkable performance improvement in identification and verification based on ROC and CMC
analyses, where LBP_PCA_Soft was superior, achieving 100% in Rank-110. For identification metrics,
the CMC curve shows the Correct Classification Rate (CCR) as the top score (rank = 1) and the CMC
average-sum scores of 30 and 50. While for verification metrics inferred by the ROC curve implied by
FRR against FAR for various threshold values (expressed by AUC and ERR), Table 6 accordingly
presents the corresponding identification/verification performance metric.

On the other hand, to prove the efficiency of augmented traditional ear recognition systems
with the proposed soft biometrics, Table 7 presents and compares the identification accuracy (rank 1)
of our fine-grained soft ear biometrics with two similar works from the literature (Section 2.3),
where they used soft biometrics on improving the ear recognition rate. Note that several possible
comparison aspects are not applicable here due to the differences in the experimental scenarios,
databases, augmented hard traits, and the soft features used, as no study until now used such fine-
grained soft ear features.
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Figure 10: Performance evaluation and comparison of soft ear biometric identification and verification

Table 6: CMC/ROC metrics of traditional models and when augmented by soft ear trait

Approach Identification Verification

CCR/Rank 1 Rank 30 Rank 50 AUC ERR

LBP 0.740 0.907 0.928 0.90 0.155
LBP + soft traits (top 25 via ANOVA) 0.795 0.923 0.944 0.92 0.125
PCA 0.810 0.930 0.943 0.93 0.120
PCA + Soft Traits (top 17 via ANOVA) 0.850 0.949 0.963 0.94 0.096
LBP + PCA + soft traits (top 17 via ANOVA) 0.860 0.954 0.966 0.96 0.071

Table 7: Comparison between our work and other studies concerning ear and soft biometrics

Ref. Feature
extractor

Dataset Soft biometrics Rank-1
before soft
biometrics

Rank-1
after soft
biometrics

Improvement
ratio (%)

[29] HAAR New proposed
dataset

Gender, blood group,
height, weight

0.851 0.907 5.6%

[30] LGBP AWE Skin color, hair color,
mole location

0.542 0.595 5.3%

Our LBP + PCA AMI 33 fine-grained soft ear
biometrics

LBP: 0.740
PCA: 0.810

0.860 LBP: 12%
PCA: 5%
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5 Conclusions

This paper proposes a group of fine-grained soft ear biometric traits describing different parts of
the outer human ear. Then it investigates their feasibility in fusion for supplementing traditional (hard)
ear biometric traits. All experiments were conducted on the AMI dataset, comprising 100 subjects
with a total of 700 ear images. Human annotations were used to extract soft ear traits using the Appen
crowdsourcing platform, while the LBP and PCA descriptors were used to extract the hard ear features.
ANOVA was used to explore the most significant and influential soft ear traits in increasing the
accuracy of the traditional ear features and improving the identification and verification performance.
The traditional ear recognition approaches were used as a baseline for testing and comparisons,
resulting in 74% and 81.50% accuracy for the LBP and PCA, respectively, using KNN. The augmented
versions by soft biometrics increased these accuracies to 79.50% and 83% using feature-level fusion.
Furthermore, we obtained 86.50% as the highest accuracy when fusing LBP and PCA with the top-17
soft features based on the ANOVA ordering. Different weight coefficients were assigned to the soft ear
traits when combined with traditional features for more effective fusion and accurate recognition. We
noted that the extent to which soft features aid traditional features varies depending on the dataset and
the coefficients assigned to soft traits. Despite that, the performance results were raised by up to 12.5%
for KNN, and the SVM also increased the accuracy of the traditional results to 16.5%. Therefore, our
proposed model demonstrated that the fusion of soft and hard ear features outperforms by all means
the hard features in isolation. Thus, we proved that the proposed soft ear biometric traits could be
supplemental for the (hard) ear biometric information and help bridge the semantic gap between
humans and machines to improve performance in the ear recognition domain. This study’s main
limitation is the dependence on extracting soft ear biometric features by human-based annotation,
which is desired to be replaced with reliable computer vision-based annotation emulating human
capabilities as possible. Whereas to the best of our knowledge, this is the first study that extensively
exploits the capabilities of fine-grained soft ear biometrics, and we are here most focused on the
feasibility of these traits. Therefore, proceeding from this initial research as future work, developing
algorithms that exploit the most influential proposed soft ear biometrics to be automatically annotated
and used for human recognition with more challenging datasets can pave the way for new ear biometric
applications. In addition, this study may establish other research tracks to be undertaken by researchers
as multimodal recognition based on the ear and side of the human body, further enhancing the human
recognition systems.
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