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Abstract: Rockburst is a phenomenon in which free surfaces are formed during
excavation, which subsequently causes the sudden release of energy in the
construction of mines and tunnels. Light rockburst only peels off rock slices
without ejection, while severe rockburst causes casualties and property loss.
The frequency and degree of rockburst damage increases with the excavation
depth. Moreover, rockburst is the leading engineering geological hazard in
the excavation process, and thus the prediction of its intensity grade is of
great significance to the development of geotechnical engineering. Therefore,
the prediction of rockburst intensity grade is one problem that needs to be
solved urgently. By comprehensively considering the occurrence mechanism
of rockburst, this paper selects the stress index (σθ/σc), brittleness index
(σc/σt), and rock elastic energy index (Wet) as the rockburst evaluation indexes
through the Spearman coefficient method. This overcomes the low accuracy
problem of a single evaluation index prediction method. Following this, the
BGD-MSR-DNN rockburst intensity grade prediction model based on batch
gradient descent and a multi-scale residual deep neural network is proposed.
The batch gradient descent (BGD) module is used to replace the gradient
descent algorithm, which effectively improves the efficiency of the network
and reduces the model training time. Moreover, the multi-scale residual
(MSR) module solves the problem of network degradation when there are
too many hidden layers of the deep neural network (DNN), thus improving
the model prediction accuracy. The experimental results reveal the BGD-
MSR-DNN model accuracy to reach 97.1%, outperforming other comparable
models. Finally, actual projects such as Qinling Tunnel and Daxiangling
Tunnel, reached an accuracy of 100%. The model can be applied in mines and
tunnel engineering to realize the accurate and rapid prediction of rockburst
intensity grade.
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1 Introduction

Rockburst is a sudden geological disaster that can cause significant damage within a short time
period [1], including damage to engineering equipment, disturbing the construction progress, and
threatening the personal safety of workers [2]. South African gold mines frequently suffer rockburst
disasters. From 1975 to 1993, more than 3,000 workers died in rockburst accidents [3]. In recent
years, nearly 200 coal mine projects have potentially experienced rockburst in China, more than 50 of
which are ultra-deep coal mines above 800 m [4]. The rockburst frequency and damage degree increase
with the mining depth [5]. The rockburst intensity grade determines the degree of damage caused by
rockburst disasters. However, the complexity and suddenly of rockburst currently prevent the accurate
prediction of the occurrence intensity. Therefore, numerous scholars have placed much attention on
the prediction of the rockburst intensity grade [6–8].

Research on the prediction of rockburst intensity grade generally employs the single evaluation
index prediction method and the comprehensive evaluation indexes prediction method. The most
popular single evaluation index prediction methods include the E. Hoek method, the Turchaninov
method, the Russenes criterion, etc. [9]. However, this approach only considers a few influencing
factors and has the disadvantage of inaccurate prediction results. The comprehensive evaluation
indexes prediction method was proposed for the complex mechanism of rockburst formation and
has shown strong applicability in predicting the intensity grade of rockburst [10]. More and more
scholars have applied machine learning and deep learning to predict the rockburst intensity grade [11–
13]. Chen et al. [14] used the variable weight theory to optimize the weight of the prediction index
and calculated the grade variable interval via the Matter-element extension theory, providing a new
method for rockburst prediction in underground engineering. Pu et al. [15] relabeled original data
following dimensionality reduction using an unsupervised learning method and subsequently applied a
trained support vector classifier (SVC) model to output the rockburst intensity grade. Li et al. [16] used
the kernel principal component analysis method and the improved support vector machine (SVM)
to process the rockburst prediction indicators and perform sample training, achieving an accurate
prediction effect. Ahmad et al. [17] designed an adaptive boosting classifier model for rockburst
intensity classification through the AdaBoost algorithm. Li et al. [18] combined deep learning and
ensemble models to propose a deep forest model with an outstanding predictive ability for rockburst
disasters. Li et al. [19] proposed a rockburst intensity estimation method based on the improved
entropy weight method-similar cloud model (IEWM-SCM), solving the inaccurate objective weight
problem of the traditional entropy weight method.

In recent years, deep neural networks have been widely adopted in the prediction of rockburst
intensity grade. Yin et al. [20] established an integrated model based on DNN, discussed the impact
of unbalanced data sets on model accuracy and the fitting effect, and demonstrated the unique
advantages of the ensemble model when dealing with imbalanced datasets. Gong et al. [21] proposed
a prediction model based on the dropout and improved the Adam-based deep neural network (DA-
DNN), which avoids the problem of determining the indicator weights, is entirely data-driven, reduces
the influence of human factors, and can achieve deep relational learning in noisy, limited datasets.
Cao et al. [22] proposed a deep neural network based on knowledge and data fusion, FDNet,
which solves the multi-index screening problem of microseismic mining data with a high accuracy
and robustness. Zhang [23] combined a DNN with Internet of Things technology to design a new
multi-parameter monitoring platform for CM-induced rockburst, providing a new approach for the
application of the rockburst industry.
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Although the aforementioned rockburst intensity grade prediction methods have made much
progress in the research field, they are generally associated with long training times and low accuracy.
The length of model training time determines the progress of prediction research, and the accuracy of
model prediction is more important. The consequences caused by false alarms in actual engineering
are unimaginable, not only causing property damage but also endangering the personal safety of
workers. To solve these two limitations, the current paper proposes and establishes the BGD-MSR-
DNN rockburst intensity grade prediction model based on batch gradient descent and multi-scale
residual deep neural network [24,25]. More specifically, the three rockburst evaluation indexes of stress
index (σθ/σc), brittleness index (σc/σt), and rock elastic energy index (Wet) are selected as the input of
the model through the Spearman coefficient method [26]. The model is then trained and tested. Finally,
the model’s performance is tested in the Qinling Tunnel and Daxiangling Tunnel.

2 Methodology

2.1 Model Implementation Process
The implementation process of the BGD-MSR-DNN rockburst intensity grade prediction model

includes data pre-processing, model establishment, and model prediction, as shown in Fig. 1.

Figure 1: Model implementation process
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The data pre-processing part takes typical rockburst sample data worldwide as data sets, selects
the optimal based on multiple rockburst evaluation indexes, and normalizes the training samples
before inputting them into the model. This step saves the time cost of the rockburst intensity grade
and helps improve the accuracy of predicting the rockburst intensity grade. The model establishment
part builds and trains the BGD-MSR-DNN model, calculates the Accuracy and Loss indicators of
the model, and determines whether the two indicators meet the requirements. If the requirements
are met, the model enters prediction step. If not, the model is retrained. The model predictions part
solidifies the model, ensuring it meets the requirements. It inputs the rockburst sample data to be tested
into the model and outputs the rockburst intensity grade.

2.2 The BGD-MSR-DNN Model
Fig. 2 presents the overall framework of the BGD-MSR-DNN rockburst intensity grade predic-

tion model established in this paper.

Figure 2: The overall framework of the BGD-MSR-DNN model

The BGD-MSR-DNN model adds an MSR module to the hidden layer of the DNN. Different
connection methods in the module can make al jump to the next layer or several layers to achieve the
purpose of conveying information to deeper layers. The BGD module is included to optimize the model
algorithm, and Softmax is adopted as the activation function. Following this, 10-fold cross-validation
is employed to output the prediction results of the model. The specific steps of model prediction are
as follows:

Step 1: Take the rockburst evaluation indexes as the model input, normalize the data, improve
gradient descent efficiency to determine the optimal solution, and accelerate the convergence speed.
The specific equation is as follows:

x′
n = xn − xmin

xmax − xmin

(1)

where xn is the original data; x′
n is the normalized data; xmax and xmin are the maximum and minimum

values in the original data sets.

Step 2: In the DNN forward propagation algorithm, parameter xi is used as the input and σ(z) is
the activation function. Assuming that there are m neurons in the l−1 layer and n neurons in the l layer,
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the linear coefficient wi of l layer consists of an n × m weight coefficient matrix W l. Bias parameter b
of the l layer forms an n × 1 bias vector Bl, output a of the l − 1 layer forms an m × 1 vector al−1, and
the l layer is Before activation, the linear output z forms an n × 1 vector zl, and the output a of the l
layer forms an n × 1 vector al. The linear relationship between each layer z , the output of the l layer
al is described as:

z =
m∑

i=1

wixi + b (2)

al = σ
(
zl
) = σ

(
W lal−1 + Bl

)
(3)

To improve the convergence speed of the model, this paper uses the BGD module to optimize the
backpropagation algorithm and selects the cross-entropy loss function. Then the loss function L and
the gradient δl of the output layer are expressed as:

L = −1
n

∑
x

[y ln a + (1 − y) ln(1 − a)] (4)

δl = ∂J
(
W , b, al, y

)
∂zl

= −y
1
al

(
al

) (
1 − al

) + (1 − y)
1

1 − al

(
al

) (
1 − al

) = al − y. (5)

where n is the total number of samples, x is the degree of the prediction vector, y is the label on the
corresponding x dimension, and a is the prediction label. When cross-entropy loss function is used,
the relationship between gradient δl and δl+1 is deduced by mathematical induction as:

δl = ∂J
(
W , b, al, y

)
∂zl

=
(

∂zl+1

∂zl

)T
∂J

(
W , b, al, y

)
∂zl+1

=
(

∂zl+1

∂zl

)T

δl+1 (6)

Obtaining
∂zl+1

∂zl
= W l+1diag

(
σ ′ (zl

))
through Eq. (2), The relationship between δl and δl+1 can be

obtained as:

δl = (
W l+1

)T
δl+1 � σ ′ (zl

)
(7)

where � is the Hadamard product, The gradient δl+1 of layer l+1 can be found by formula (7), the
learning rate is then set as α, and the gradients of W l and Bl of the l layer are updated as follows:

W l = W l − α

m∑
i=1

δl
(
al−1

)T
(8)

Bl = Bl − α

m∑
i=1

δl (9)

Step 3: In a deep neural network, the more network layers, the larger the function space. In
theory, the model’s performance will improve as the neural network’s depth deepens. Therefore, when
constructing a DNN structure, as the number of network layers increases, the extracted features will
be more prosperous and more abstract, and the classification accuracy will be higher [27]. However,
the network’s performance does not improve with the increase of network layers. On the contrary,
there will be a phenomenon of network degradation in which the accuracies of the training and test
sets decrease. This results in problems such as decreased model accuracy and low generalization ability
[28]. In this paper, MSR module is added to the model to solve the problem of network degradation
when there are too many hidden layers in the DNN. In the multiscale residual module, al can skip one
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or several hidden layers to pass information to deeper layers of the neural network. Fig. 3 depicts the
MSR module structure in the model.

Figure 3: The MSR module structure

Step 4: The rockburst intensity grade prediction is a multi-classification problem, and thus the
output component of the proposed model employs the Softmax activation function [29], which is
described as follows:

sl
j = exp

(
zl

j

)
n∑

i=1

exp
(
zl

i

) (10)

In Eq. (10), n is the number of neurons in the l layer of the output layer; and sl
j is the output of the

j neuron in the output layer.

Step 5: To improve the model’s generalization ability, this paper first adopts a 10-fold cross-
validation method [30] to randomly divide the rockburst sample data into 10 parts, nine of which are
for training, and one is for verification. The training and verification process is performed 10 times
and the optimal of the 10 prediction results Y is taken as the output.

3 Rockburst Dataset Setup

3.1 Database Sources
To verify the performance of the BGD-MSR-DNN model, this paper collected 350 sample data

of rockburst from global research related to rockburst, including 149 data from [31], 129 data from
[32], 68 data from [33], and 4 data from [34] (Table 1), including projects related to mine engineering,
deep tunnels, and large underground caverns worldwide. The data includes the maximum tangential
stress of the surrounding rock of the cave wall (σθ), the uniaxial compressive strength of the rock
(σc), the uniaxial tensile strength of the rock (σt), the elastic energy index of the rock (Wet), and the
corresponding rockburst intensity grade. The rockburst intensity grade is divided into four categories:
none rockburst; light rockburst; moderate rockburst; and strong rockburst, represented by letters N,
L, M, and S, respectively.

Among the 350 rockburst samples, there were 51 cases (14.6%) of none rockburst, 104 cases
(29.7%) of light rockburst, 138 cases (39.4%) of moderate rockburst, and 57 cases of strong rockburst
(16.3%). The proportion of samples of each category is shown in Fig. 4. The data quantity of the
moderate rockburst sample is significantly higher than that of the other three sample data. This results
in an unbalanced sample category, which leads to inaccurate experimental results. To reduce the impact
of this phenomenon on the experiment, this paper uses random undersampling to randomly select
samples from the moderate rockburst category to form data sets [35].
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Table 1: Sample data of rockburst

Number σθ σc σt σθ/σc σc/σt Wet Rockburst
intensity grade

1 13.9 124 4.22 0.112 29.4 2.04 N
2 46.2 105 5.3 0.436 19.7 2.3 L
3 81.4 110 4.5 0.74 24.4 6.31 S
4 43.4 123 6 0.35 20.5 5 M
...

...
...

...
...

...
...

...
348 60 149.19 9.3 0.402 16.04 3.5 L
349 18.8 171.5 6.3 0.11 27.22 7 N
350 57.2 80.6 2.5 0.71 32.2 5.5 S

Figure 4: The proportion of samples of each category

3.2 Selection of Rockburst Evaluation Indexes
Rockburst occurrence is a function of numerous factors and its formation mechanism is complex.

Table 2 reports the rockburst intensity grade criteria proposed by scholars based on the factors
affecting rockburst [36], where σθ max is the tangential stress of the cavity, σL is the axial, tangential
force, and σ1 is the maximum principal stress.

Table 2: The rockburst intensity grade criteria

Proposer Evaluation index None rockburst Light rockburst Moderate
rockburst

Strong
rockburst

E. Hoek σθ/σc 0.34 0.42 0.56 >0.7
Turchaninov (σθ max + σL) /σc ≤0.3 0.3∼0.5 0.5∼0.8 >0.8
Russenes σθ/σc <0.2 0.2∼0.3 0.3∼0.55 ≥0.55
Wang et al. σθ/σc <0.3 0.3∼0.5 0.5∼0.7 ≥0.7
Tao σc/σ1 >14.5 5.5∼14.5 2.5∼5.5 <2.5
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It can be seen from Table 2, all the proposed approaches use a single evaluation index, and thus
their prediction effect is not ideal. Due to the complex mechanism of rockburst and many influencing
factors, the correlation between evaluation index will affect the prediction results of rockburst intensity
grade. In order to improve the prediction performance of the model, this paper uses the Spearman
coefficient method to obtain and analyze the correlation coefficient between the evaluation index, as
shown in Table 3.

Table 3: Correlation coefficient between evaluation index

Evaluation index σθ σc σt σθ/σc σc/σt Wet

σθ 1.000000 0.270631 0.223349 0.465565 −0.005229 0.432230
σc 0.270631 1.000000 0.589064 −0.211152 0.053792 0.577806
σt 0.223349 0.589064 1.000000 0.043740 −0.666967 0.301045
σθ/σc 0.465565 −0.211152 0.043740 1.000000 −0.199570 0.093426
σc/σt −0.005229 0.053792 −0.666967 −0.199570 1.000000 0.082682
Wet 0.432230 0.577806 0.301045 0.093426 0.082682 1.000000

The correlation coefficient indicates the degree of linear correlation between each index in the
rockburst sample data. Table 3 reveals that the majority of the correlation coefficients between each
index are below 0.5 after the analysis using the Spearman coefficient method, with a moderate, weak,
very weak, or no correlation. To further improve the accuracy of model prediction, this paper selects
σθ/σc, σc/σt, and Wet with the lowest correlation coefficients as the optimal rockburst evaluation
indexes.

3.3 Data Pre-Processing
According to the optimal rockburst evaluation indexes selected in Section 3.2, with σθ/σc as the

X-axis, σc/σt as the Y-axis, and Wetas the Z-axis, 350 groups of rockburst sample data are used to
create a three-dimensional distribution graph for analysis (Fig. 5). The rockburst intensity grade is
observed to increase with the value of each index. However, there is no apparent linear relationship,
and the boundary distinction between none rockburst, light rockburst, moderate rockburst, and strong
rockburst is not obvious. This is particularly true for the difference between minor and moderate
rockburst. As the data between these two grades account for a large proportion of the total data, the
difficulty of predicting the rockburst intensity grade is consequently increased.

To further evaluate the rockburst sample data, outliers were detected using boxplots of the
three evaluation indexes σθ/σc, σc/σt, and Wet are shown in Fig. 6. Each evaluation index exhibits
outliers, which were replaced or deleted from the sample data in the previous rockburst intensity
grade prediction work [37]. However, due to the complex mechanism of rockburst, outliers in actual
engineering applications often require special attention, and thus the outliers were not processed in
the experiment. Instead, outliers and the original sample data were input into the model to focus on
the experiment and analysis.
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Figure 5: A three-dimensional distribution graph of rockburst sample data

Figure 6: (Continued)
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Figure 6: Box plot of rockburst evaluation indexes

4 Experiments

This article is coded in Python in PyCharm software, using TensorFlow-1.14.0 as the deep learning
framework. The main libraries used are SKlearn-0.19.1 and Numpy-.19.5. The second is the primary
experimental parameter settings in the experiment. The type of multi-classification is set to 4, the total
training batch is 1000, the printing batch interval is 4, the number of hidden layer nodes is 10, the
learning rate of the model is 0.06, and the loss function is cross-entropy loss function.

4.1 Model Evaluation Metrics
This paper uses several evaluation metrics to evaluate the comprehensive performance of the

proposed model, including Accuracy, Precision, Recall, and F 1-score [38]. The higher the evaluation
metrics, the better the test model’s performance. The formula and descriptions of each indicator are
described in Table 4.

Table 4: Evaluation metrics

Evaluation metrics Formula Significance

Accuracy Accuracy = TP + TN
N

TP is the number of positive
samples predicted as positive classes
TN is the number of negative
samples predicted as negative classes
FP is the number of negative
samples predicted to be positive
FN is the number of positive
samples predicted as negative classes
N is the total number of samples in
the test sets

Precision Precision = TP
TP + FP

Recall Recall = TP
TP + FN

F 1-score F1 = 2 ∗ Accuracy ∗ Precision
Accuracy + Precision
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4.2 Comparison Study
To verify the effectiveness of the BGD-MSR-DNN model in the prediction of rockburst intensity

grade, this paper first divides the rockburst sample data into training and test sets at a ratio of 9:1.
These sets are input into the k-nearest neighbors (KNN) model, probabilistic neural network (PNN)
model, SVM model, particle swarm optimization-support vector machine (PSO-SVM) model, DNN
model, and BGD-MSR-DNN model for training. The test sets are then used to evaluate the prediction
performance of each model. Fig. 7 presents the confusion matrix derived from the prediction results
of each model.

Figure 7: Confusion matrix: (a) KNN model; (b) PNN model; (c) SVM model; (d) PSO-SVM model;
(e) DNN model; (f) BGD-MSR-DNN model



1998 CSSE, 2023, vol.47, no.2

Fig. 7 shows the distribution of the real category and the predicted category when each model
predicts. The darker the color of the diagonal line of the confusion matrix, the more the number
of predicted categories is the same as the real category. It can be seen that the BGD-MSR-DNN model
predicts the best results. The model evaluation metrics detailed in Section 4.1 are employed to analyze
the prediction results. Accuracy, Precision, Recall, and F 1-score of rockburst intensity grade prediction
models were calculated by confusion matrix, and the performance of different models was analyzed
based on four evaluation metrics. Table 5 reports the evaluation metrics of the six rockburst intensity
grade prediction models. The best results are indicated in bold.

Table 5: Evaluation metrics for the model

Model Accuracy Precision Recall F 1-score

KNN 0.514 0.583 0.470 0.520
PNN 0.600 0.651 0.616 0.633
SVM 0.629 0.678 0.675 0.676
PSO-SVM 0.714 0.791 0.746 0.768
DNN 0.829 0.889 0.736 0.806
BGD-MSR-DNN 0.971 0.983 0.934 0.960

It can be seen from Table 5 that four evaluation metrics of the BGD-MSR-DNN model are the
best compared with other models under the same test sets. Four evaluation metrics of the BGD-
MSR-DNN model surpass those of the other models. The Accuracy rate reached 97.1%, exceeding
the KNN model (51.4%), PNN model (60%), SVM model (62.9%), PSO-SVM model (71.4%), and
the DNN (82.9%) model by 45.7%, 37.1%, 34.2%, 25.7%, and 14.2%, respectively. It shows that the
prediction performance of the deep learning model has been dramatically improved compared with
the machine learning model. Moreover, the BGD-MSR-DNN model outperformed the original DNN
model by 9.4%, 19.8%, and 15.4% in three evaluation metrics of Precision, Recall, and F 1-score, and
corresponding values were much higher than the other comparable models. It proves that adding
the BGD module and MSR module to the DNN network structure has achieved ideal results and
improved the model’s prediction accuracy. In addition, comparing the evaluation metrics of the SVM
model and the PSO-SVM model, the DNN model, and the BGD-MSR-DNN model, it can be found
that the prediction performance of the combined classifier is much more excellent than that of a single
classifier. Combination classifiers can also make up for the limitations of single classifiers in predicting
rockburst intensity grade.

4.3 Ablation Study
To prove the necessity of the BGD module and MSR module, In the ablation experiments in

this section, the model performance after adding the BGD module and MSR module is verified by
comparing the prediction performance of the DNN model, BGD-DNN model, MSR-DNN model,
and BGD-MSR-DNN model. The results of the ablation experiments are shown in Table 6, and the
best results are indicated in bold.

The experimental results in Table 6 show that when the BGD-DNN model is added with the
BGD module in the DNN network structure, the two evaluation metrics of Recall and F 1-score
are respectively increased by 12.6% and 9.6% compared with the DNN model, because the BGD
module can update parameters faster when processing data sets with fewer samples, thus significantly
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improving the efficiency of the network; When the MSR-DNN model of the MSR module is added
to the DNN network structure, the DNN model has increased by 8.5%, 7.7% and 6.6% in the three
evaluation metrics of Accuracy, Recall and F 1-score, respectively, because the MSR module effectively
solves the problem of network degradation when there are too many hidden layers of DNN, it
dramatically improves the accuracy of model prediction; When the BGD-MSR-DNN model with
both the BGD module and the MSR module is added to the DNN network structure, the accuracy of
prediction is significantly improved compared with the other three models. It shows that the model’s
prediction accuracy is related to the BGD and MSR modules. It also proves the effectiveness of the
BGD-MSR-DNN model in predicting the rockburst intensity grade.

Table 6: The results of the ablation study

BGD MSR DNN Accuracy Precision Recall F 1-score
√ 0.829 0.889 0.736 0.806√ √ 0.886 0.944 0.862 0.902√ √ 0.914 0.942 0.813 0.872√ √ √ 0.971 0.983 0.934 0.960

In addition, ablation experiments found that the BGD-MSR-DNN model with BGD module and
MSR module has significantly improved in various evaluation metrics compared with the original
DNN model. Therefore, the DNN model and the BGD-MSR-DNN model are selected for further
analysis and comparison, and the comparison results are shown in Fig. 8 and Fig. 9. It can be seen
from the figure that with the increase of iteration rounds, the Accuracy curve and Loss curve of the
two models tend to be stable, but the curve of the BGD-MSR-DNN model fluctuates less. At the
same time, the training time of the BGD-MSR-DNN model is significantly lower than that of the
DNN model, indicating that the BGD-MSR-DNN model has better convergence speed and better
prediction performance.

Figure 8: Comparison of accuracy and loss
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Figure 9: Comparison of training time

To verify the sensitivity of the hyperparameters existing in the BGD module during model pre-
diction, we continuously search and obtain values manually and then conduct prediction experiments.
The values during the experiment are shown in Table 7.

Table 7: The value of hyperparameter α

Number Learning_rate α Value

1 α1 0.04
2 α2 0.05
3 α3 0.06
4 α4 0.07
5 α5 0.08

Finally, through experiments, the evaluation metrics curves of the hyperparameter α under
different values are obtained, as shown in Fig. 10. The curves of four evaluation metrics of Accuracy,
Precision, Recall, and F 1-score obtained under different values of hyperparameter α exhibit a normal
distribution. At α = 0.06, four evaluation metrics all reach the maximum value. Furthermore, the
floating trend of the curve in Fig. 10 indicates that the value of the hyperparameter a affects the speed
at which the model determines the optimal value. If hyperparameter α is too small, the optimization
efficiency may be too low, causing the model to fail to converge. In contrast, if hyperparameter α is
too large, the optimal value may be missed, resulting in a decline in model performance.
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Figure 10: Model evaluation metrics curves

5 Applications in Practical Engineering

To further verify the prediction performance of the BGD-MSR-DNN model, this paper collected
20 sets of engineering data from actual projects such as the Qinling Tunnel and Daxiangling Tunnel.
These include six groups of none rockburst, three groups of light rockburst, six groups of moderate
rockburst, and five groups of strong rockburst (Table 8). The three rockburst evaluation indexes σθ/σc,
σc/σt, and Wet of the data are then used as the input of the model. Finally, the prediction results of the
BGD-MSR-DNN model proposed in this paper are compared with those of other comparable models
(Fig. 11).

In Fig. 11, the purple histogram represents the number of real engineering data groups with grades
N, L, M, and S, and the pink histogram represents the number of rockburst intensity grade groups
predicted by the model, when the heights of the histograms of the two colors are closer, it proves
that the accuracy of the model prediction is higher. The BGD-MSR-DNN model established in this
paper can predict 100% of the rockburst intensity grade of 20 engineering data sets. The accuracy
rate is also better than other comparable models. Using the BGD-MSR-DNN model, the rockburst
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intensity grade is predicted rapidly and accurately. In addition, the newly acquired rockburst data in
the project can be used as training sets and input into the model for training, which can optimize the
model’s prediction performance, thereby improving the generalization ability and robustness of the
model.

Table 8: Engineering data

Group σθ/σc σc/σt Wet Rockburst intensity grade

1 0.54 14.19 6.16 S
2 0.53 21 3.6 M
3 0.61 25 3.7 N
4 0.23 6.67 1.39 M
5 0.81 16.71 5 L
6 0.45 17.53 5.08 L
7 0.48 24 5.1 M
8 0.63 4.48 3.17 L
9 0.19 6.67 1.39 N
10 0.283 9.68 1.92 N
11 0.479 10.1 1.1 N
12 0.72 13.59 1.6 N
13 0.23 7.52 1.5 N
14 0.27 21.69 5 M
15 0.82 18.46 3.8 M
16 0.32 21.69 5 M
17 0.69 32.1 5.9 S
18 0.44 20.3 8.1 S
19 0.66 13.2 6.83 S
20 0.65 28.6 6.8 S

Figure 11: (Continued)
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Figure 11: The result of the model prediction: (a) KNN model; (b) PNN model; (c) SVM model; (d)
PSO-SVM model; (e) DNN model; (f) BGD-MSR-DNN model

6 Conclusions

In this paper, by comprehensively considering the mechanism of rockburst during mine and tunnel
constructions, the σθ/σc,σc/σt, and Wet are carefully selected as rockburst evaluation indexes through
the Spearman coefficient method. Using the comprehensive evaluation indexes prediction method
effectively solves the problem of the low prediction accuracy of the single evaluation index prediction
method.

This paper proposes and establishes the BGD-MSR-DNN rockburst intensity grade prediction
model based on batch gradient descent and a multi-scale residual deep neural network. The BGD and
MSR modules are simultaneously integrated into the DNN network structure. This effectively improve
the convergence speed of the model as well as the network degradation caused by too many network
layers.

A total of 35 test sets were selected to analyze the prediction results of the BGD-MSR-DNN
model. The results showed that the Accuracy rate of the BGD-MSR-DNN model reached 97.1%,
which was 14.2% higher than that of the original DNN model. At the same time, three evaluation
metrics of Precision, Recall, and F 1-score have increased by 9.4%, 19.8%, and 15.4%. They are
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significantly better than other comparable models, which proves the effectiveness of the BGD-MSR-
DNN rockburst intensity prediction model.

Finally, the model’s performance was tested using two actual projects, the Qinling Tunnel and
Daxiangling Tunnel. The results showed that the prediction accuracy of the proposed model was 100%,
which was a significant improvement compared to other comparable models. The proposed approach
can effectively reduce economic loss and avoid casualties in actual engineering, proving its feasibility
in mine and tunnel engineering.
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