
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.040529
Article

Knee Osteoarthritis Classification Using X-Ray Images Based on Optimal
Deep Neural Network

Abdul Haseeb1, Muhammad Attique Khan1,*, Faheem Shehzad1, Majed Alhaisoni2, Junaid Ali Khan1,
Taerang Kim3 and Jae-Hyuk Cha3

1Department of Computer Science, HITEC University, Taxila, 47080, Pakistan
2Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman

University, Riyadh, 11671, Saudi Arabia
3Department of Computer Science, Hanyang University, Seoul, 04763, Korea

*Corresponding Author: Muhammad Attique Khan. Email: attique@ciitwah.edu.pk
Received: 22 March 2023; Accepted: 30 May 2023; Published: 28 July 2023

Abstract: X-Ray knee imaging is widely used to detect knee osteoarthritis due
to ease of availability and lesser cost. However, the manual categorization
of knee joint disorders is time-consuming, requires an expert person, and is
costly. This article proposes a new approach to classifying knee osteoarthritis
using deep learning and a whale optimization algorithm. Two pre-trained
deep learning models (Efficientnet-b0 and Densenet201) have been employed
for the training and feature extraction. Deep transfer learning with fixed
hyperparameter values has been employed to train both selected models on
the knee X-Ray images. In the next step, fusion is performed using a canonical
correlation approach and obtained a feature vector that has more information
than the original feature vector. After that, an improved whale optimization
algorithm is developed for dimensionality reduction. The selected features are
finally passed to the machine learning algorithms such as Fine-Tuned support
vector machine (SVM) and neural networks for classification purposes. The
experiments of the proposed framework have been conducted on the publicly
available dataset and obtained the maximum accuracy of 90.1%. Also, the
system is explained using Explainable Artificial Intelligence (XAI) technique
called occlusion, and results are compared with recent research. Based on
the results compared with recent techniques, it is shown that the proposed
method’s accuracy significantly improved.

Keywords: Knee joints; magnetic resonance imaging (MRI); deep learning;
fusion; optimization; neural network

1 Introduction

For older adults, knee osteoarthritis (KOA) is the most severe cause of disability [1]. Knee joint
disease is caused by the deterioration of ligament tissues among knee bones (Fibula, Tibia, and Femur).
According to the World Health Organization (WHO) report, 28% of people over sixty suffer from
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KOA. Of those, 80% have severe issues, while 25% cannot perform daily tasks [2]. According to recent
studies, KOA will impact at least 130 million individuals by 2050 as the world’s population ages [3].
However, diagnosis of KOA is not easy as multiple factors affect the causes of the disease, such as
age, gender, hormones, genetics, and Body Mass Index (BMI). In the worst case, scenario patient with
KOA may have to go through a whole knee replacement [4]. However, early detection of knee joint
disease may help older people regain mobility.

Interrogating the radiographs such as X-Ray images is a common method to diagnose the
disease [5]. Radiographs (X-rays) remain the gold standard for KOA screening due to their expense,
protection, wide availability, and timeliness. According to radiologists, joint space narrowing (JSN)
and osteophyte development, as seen in Fig. 1, are the most conspicuous pathological characteristics of
KOA. Using the Kellgren-Lawrence (KL) grading system, these two characteristics can also be utilized
to assess the severity of KOA [6]. Using this method, KOA severity is graded into five categories,
ranging from grade 0 to grade 4, based on the agreed ground truth categorization [7].

Figure 1: Normal and severe osteoarthritic knee [8]

Grade 0 indicates healthy joints where the radiological characteristics of knee osteoarthritis are
absent. Grade 1 KOA indicates the likelihood of osteophytic lip and dubious JSN. Grade 2 OA is
characterized by the existence of osteophytes and the potential of JSN [9]. The presence of JSN,
numerous osteophytes, and sclerosis characterizes grade 3 OA. Finally, grade 4 indicates severe OA
due to massive osteophytes within the joints, as shown by JSN and extensive sclerosis. Fig. 2 depicts
knee joint specimens from each KL grade.

Due to the scarcity of radiologists, particularly in remote locations, and the duration of time
necessary to examine knee X-ray images, entirely automated categorization of knee stiffness is in high
demand as it expedites the diagnostic method and improves the rate of earlier recognition [10]. To
identify and assess KOA, several computer-aided diagnostics (CAD) based clinical imaging systems
have been presented in the scientific literature [11].
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Figure 2: KOA levels according to KL grades

To quantify the severity of knee joint osteoarthritis, some detection methods based on deep
learning have been developed and effectively used [12]. In addition, the authors provide astounding
effectiveness in assessing X-rays images in the biomedical field without requiring human feature
extraction, which occurs implicitly during the training stage by adjusting its hyperparameters to
match the relevant data. On the other hand, all typical Machine Learning (ML) techniques demand
that the provided data be changed using a specific feature engineering or training methodology
before producing the intended results [13]. As a result, deep Learning (DL) methods often need a
disproportionate amount of processing capacity and resources compared to normal ML techniques
[14]. In addition, it leads to overfitting if limited data are provided. Moreover, some types of DL, such
as Resnet, Inception, Xception, and CNN-based on Transfer Learning (TL) [15], achieve exceptional
efficiency in computer vision, surpassing that of humans [16].

Deep feature extraction is crucial because it enables the automated learning and extraction of
useful, high-level features from raw data [17]. This is beneficial in many cases where hand-crafted
features are difficult to build or insufficiently expressive to represent the underlying data patterns.
Deep feature extraction can also increase the performance of downstream models and eliminate
the need for human feature engineering, resulting in more scalable and efficient solutions. Feature
fusion is a process in machine learning where multiple sources of information or features are
combined to form a new, more informative representation of the data. The curse of dimensionality
pertains to the complications that occur while interacting with high-dimensional data. Dimensionality
reduction or feature selection can be utilized to overcome the curse of dimensionality. Feature selection
aids in enhancing model precision, minimizing overfitting, reducing training time, and enhancing
interpretability [18]. It also assists in identifying the most significant attributes by eliminating excessive
or redundant features that may enhance throughput and a more accurate generalization of new data.

Major Contributions: This article proposed a new framework for classifying knee osteoarthritis
using deep learning and optimal feature selection. Our major contributions consist of the following:

• The dataset is preprocessed using Brightness Preserving Histogram Equalization (BPHE).
• Proposed a deep skipping network based on Efficietnetb0 and Densenet201 in which several

layers are skipped and trained on the selected dataset using deep transfer learning with fixed
hyperparameters.

• Features of the extracted model are fused using Correlation Extended Serial Approach.
• Several features in the fusion process are analyzed as redundant and irrelevant; therefore, we

proposed a feature selection technique named improved whale optimization.
• Selected features are further sliced into different size vectors to check the effects of gradual

feature downsizing.
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• Furthermore, Artificial Neural Networks and fine-tuned Linear Support Vector machines are
used for classification purposes.

2 Literature Review

This section reviews knee osteoarthritis classification and explores various studies and articles
published on the subject. The literature review would aim to provide a comprehensive overview of
the various classifications used for knee osteoarthritis and the strengths and weaknesses of each
approach. Demographic studies demonstrate that the healthcare system is overburdened because of the
exponential increase in OA, necessitating a delayed and repeated procedure for illness diagnosis and
tracking its progression [19]. However, throughout time and depending on the severity of the condition,
different assessment techniques, e.g., shear wave elastography (SWE), have been developed. SWE
is a non-invasive, radiation-free technology whose purpose is to assess the extensibility of articular
cartilage. In OA, the atrophied activity of the quadriceps femoris muscle exacerbates knee discomfort
and progressively impairs the muscle’s biomechanical performance [20].

In [21], authors presented a cost-efficient and extremely impactful hybrid SFNet. The hybrid
version of SFNet is a two-scale DL framework with reduced neurons due to the decreased computing
cost and great efficiency of training the model at both scales. Utilizing an enhanced canny edge
detection technology, the fragmented bone is initially located. Then, the grey and canny images are
loaded into a composite SFNet for deep feature extraction. This procedure improves the assessment
of broken bones considerably. A new methodology for automatic segmentation of such meniscus
premised on magnetic resonance imaging is suggested by the researchers in [22]. Mean intersection over
union (MIoU) and Dice similarity coefficient are utilized to evaluate segmentation accuracy (DSC).
The relative mean scores for the present approach are 89.70% and 94.22%.

A method was created by combining the Xception model, ImageNet, and a dataset containing
X-ray images from TKA patients. An ML model was then created based on this information. Another
ML model was also developed using a random forest classifier built on a different system and used
a dataset containing TKA patient clinical parameters. To understand the model’s predictions, class
activation maps were employed. The ML model for the image-based loosening achieved a precision
of 0.92 while having a recall of 0.96, with a 96.3% accuracy for classification. However, incorporating
a clinical information-based framework did not enhance accuracy, as it obtained a precision of 0.71
and a recall of 0.20 [23]. Finally, Chan et al. in [24] developed an efficient DL model for evaluating
malignancies in knee bones. A mix of unsupervised and supervised algorithms was utilized to recognize
important patterns in recognition of common and atypical bones and bone cancers. The results
demonstrated that the model’s efficiency surpasses that of other notable models.

In [25], the authors examined and compared the acoustic emissions (AE) and kinematic instability
(KI) of osteoarthritic (OA) knee joints to radiography findings. Sixty-six women and 43 men between
the ages of 44 and 67 were recruited. On radiographs, the narrowing of the joint space was inspected.
Moreover, osteophytes, as well as Kellgren–Lawrence (KL) grade, were also examined. Fifty-four
participants in the group were identified with radiographic OA-based radiography, whereas 55 subjects
comprised the control group. AE and KI were measured using a custom prototype framework and
compared to radiography results using area-under-curve (AUC) and independent T-test. Leave-one-
out cross-validation was utilized to develop predictive logistic regression models. In females, KI, BMI,
and age, representing the constancy of AE patterns throughout certain tasks, differed significantly
between the OA and control groups (p = 0.001–0.036). The chosen AE signals, KI, age, and BMI were
used to develop a prediction model for radiographic OA with an AUC of 90.3%, statistically superior
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to the reference model based on age and BMI, which had an AUC of 84.2%. The predictive model
did not enhance the reference model for guys. AE and KI give complementary information for the
radiographic diagnosis of knee osteoarthritis in females. A summary is given in Table 1.

Table 1: Summary of related work for knee osteoarthritis

Reference Year Technique Dataset Accuracy (%)

[26] 2022 External AI tool Private 84.00
[4] 2022 CNN+SVM Public 88.00
[23] 2022 CNN+ML Private 96.3 (For 2 classes)
[27] 2020 CNN Public 73.46

In general, the researchers successfully improved their classification of knee osteoarthritis. Nev-
ertheless, there is a large void in the subject matter that has to be addressed. As a result, it must use a
remarkable hybrid method that combines deep learning and machine learning strategies to accomplish
remarkable results. It’s possible that using machine learning techniques to identify significant features
and automated deep feature extraction to find them might assist in improving classification accuracy.

3 Proposed Methodology

The framework to achieve the results starts by implementing the preprocessing technique. Images
histograms are equalized, and the resultant dataset is fed to two pre-trained networks that are
Efficientnetb0 and Densenet201. Using a transfer learning strategy, models are trained to modified
networks. Moreover, deep features are extracted by applying both trained networks to obtain feature
vectors from Efficientnetb0 and Densenet201 named Veff and Vden. Furthermore, extracted features are
combined using the feature fusion technique. Also, the best features are selected by implementing the
whale optimization technique. Selected features are further sliced and given as input to classifiers to
obtain results. Fig. 3 shows the steps taken in the proposed methodology.

3.1 Dataset
In this study, the used knee joints dataset is available to the public [28], which comprises 7828

images. Furthermore, the dataset is divided into two sets, i.e., training and testing set that includes
seventy percent for training, whereas thirty percent is segregated for testing purposes. The dataset is in
two channels; thus, it is changed to three channels since deep learning models only accept images with
three channels. The dataset contains four classes named 0, 1, 2, and 3. Class 0 represents healthy knee
X-ray images, class 1 shows Doubtful knee joint narrowing, class 2 depicts moderate disorder, and
class 3 shows severe knee joint disorder. Class 0 contains 3085 images, class 1 contains 1416 images,
and class 2 have 2062 image, whereas the last class, i.e., class 3, includes 1265 images of knee joints.

3.2 Preprocessing
Preprocessing is an important step to enhance the dataset, which may impact highly on required

results. Brightness Preserving Histogram Equalization (BPHE) technique is used to improve the
quality of images.
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Figure 3: Proposed methodology for osteoarthritis classification using deep learning

Brightness-preserving histogram equalization is a contrast enhancement method in image process-
ing [29]. It aims to improve the visual quality of an image by adjusting the distribution of intensity levels
so that the image has a more uniform histogram. Unlike traditional histogram equalization methods,
preserving bi-histogram equalization considers an input image’s bright and dark regions. It adjusts the
histograms of each independently to preserve details in both bright and dark regions while enhancing
overall contrast. This technique is particularly useful in medical imaging and other applications where
preserving the detail in both bright and dark regions is important. To achieve brightness preservation,
the input image is divided into two parts. Lower bound set (Slower) consists of images with low-contrast
pixels while the upper bound set (Shigher) consists of high-contrast pixels. i.e.,:

SInp = (Slower)
⋃(

Shigher

)
(1)
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Here, Op
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)
respectively. Similarly, cumulative

density functions for both parts are given below:
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The transform function for the lower and upper parts are as follows:
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The final image having equalized histogram with preserved brightness can be obtained by
combining both equations, that is:

SBPHE = FunL

(
Sp

) ∪ Funh

(
Sp

)
(10)

Here, SBPHE is the Brightness Preserved Histogram Equalized image. Sample images from the
preprocessed dataset are shown in Fig. 4.

Figure 4: Comparison between original and preprocessed dataset using sample images

3.3 Convolutional Neural Network
CNNs are widely used in the medical image processing domain. A network is called CNN if

a minimum of one layer performs a convolution operation. In a convolution operation, a filter of
a specific size having multiple parameters is run through an input image in the sliding windows
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method. The resultant image is passed to the next layer for further operations. Mathematically it is
represented as:

Imgout {rout × cout} = (
imginp ∗ kop

)
(11)

where, Imgout is the output matrix having rout and cout rows and columns, respectively. Moreover, kop is
the kernel used for convolution operation. Furthermore, the rectified linear unit function is applied to
obtain the negative feature’s value as zero, which can be represented in the equation below:

ReLu = Max (0, a) , a ∈ Imgout (12)

Also, the pooling operation is performed to minimize the data to improve the time cost. Then, two
different functions are performed either maximum or average values of the specific area are extracted
and replaced with the central input value. Finally, a fully connected layer flattens the features and
extracts a one-dimensional vector. Mathematically it is denoted as:(

Vecfeat

)out

0
= Imgout {rout × cout} (13)

(
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)in

i
= (

Vecfeat

)out
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∗ Imgi + ci (14)
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Here,
(
Vecfeat

)out

i
is flattened vector, Δ is activation function, and i is layer number. The softMax

layer is inserted to obtain the probability of the feature for the class that is shown as:
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(16)

3.4 Feature Extraction
Features extraction is the most important step in DL. Two pre-trained models, i.e., Efficientnetb0

[30] and Densenet201 [31], are trained using the transfer learning technique. The dataset is divided
into training and testing parts, with 70% training and 30% testing images. Transfer learning (TL)
principles were selected for the training of refined models. Since the pre-trained neural networks are
trained on a subset of classes (i.e., the ImageNet dataset), while the medical image classification task is
the objective in our situation, the pre-trained neural networks are not applicable. Therefore, we must
train the network using a carefully selected knee orthosis dataset. In the case of the Efficientnetb0
model, the layers classification, ‘softmax,’ and ‘efficientnet-b0|model|head|dense|MatMul’ are replaced
with ‘new_ classification,’ ‘new_softmax,’ and ‘new_efficientnet-b0|model|head|dense|MatMul’ lay-
ers. The size of the vector obtained through ‘new_softmax,’ and ‘new classification’ layers is [1
× 1 × 4], as the dataset used in this study contains four classes while the model is pretrained
with one thousand classes. In the instance of Densenet201, the layers ‘fc1000,’ fc1000_softmax,’
and ClassificationLayer_fc1000’ are changed with ‘new_ classification,’ ’“new_softmax” and ‘new_
ClassificationLayer_fc1000’ layers. The vector obtained from the new layers have the size of [1 ×
1 × 4], as the number of classes in the dataset is 4. while the pretrained network is trained using
thousand number of classes. The hyperparameters are initialized with the following values: the mini-
batch size of 8, the initial learning rate of 0.01, epochs of 150, the dropout factor of 0.4 and the
optimizer used is Adam. TL is then used to train the newly refined models. Moreover, features are
extracted from both networks. Veff and Vden are the feature vectors having 1280 features and 1920
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features respectively. Veff is obtained from Efficientnetb0 through the global average pooling layer
named “efficientnetb0|model|head|global_average_pooling2d|GlobAvgPool” whereas Vden is extracted
through Densenet201 from the average pooling layer named “avg_pool”.

3.5 Feature Fusion
As mentioned above, two feature vectors Veff and Vden are extracted from both networks used

in this methodology, it is necessary to combine both vectors to enlarge the feature vector having
more information. Correlation extended serial approach is used to fuse both of the vectors, which
can mathematically be shown as:

Crelation =
∑ (

Ri − R
) (

Xj − X
)

√∑ (
Ri − R

)2 ∑ (
Xj − X

2
) (17)

In above equation, Ri and Xj are the features from Veff and Vden whereas R and X are mean value
of Veff and Vden. Based on this method, the features with a +ve correlation (+1) are selected into a new
vector labeled Vc3 and the features with a correlation value of 0 or −1 are added to Vc4. Then, the mean
value of Vc4 is determined by:

CrelationT =
{

Vecupd, Vc4 ≥ 0
Ignore_feat, Vc4 < 0

(18)

By using the mathematical formulation below, both vectors are fused.

VecFinal =
(

Vecupd

Vc3

)
(19)

The final fused vector VecFinal has 3200 features.

3.6 Feature Optimization
Whale optimization (WOA) is used in this work to reduce the dimension of feature vectors, which

helps avoid the curse of dimensionality. Fused vector VecFinal is then fed to WOA to extract the selected
feature vector.

The whale feature selection technique, which is a nature-based metaheuristic algorithm designed
by Mirjalili, is used to acquire the most important features from a large set of features [32]. Whales
search and prey on food in a unique manner which researchers adopt to achieve the best feature
selection. In the first step, it generates k humpback whales and disperses them at random across the
search space. After assessing each whale’s position, the best humpback whales are chosen. The other
whales will try to get closer to the top whale. Humpback whales begin to adopt a bubble-net tactic
in the second phase of the attack. There are two strategies: spiral positioning for bubble-net attacks
and shrinking encircling. This step is actually identical to the exploitation phase, in which each whale
suggests a subset of features. The classifier’s accuracy on the testing set is then utilised to evaluate these
feature subsets. In the third stage, known as the exploration phase, humpback whales hunt for prey at
random based on their position in relation to one another.

Firstly, the whales randomly search for their prey. Then, when the prey is located, it is encircled
by adopting the spiral position updating technique. Mathematically these steps are denoted by:

D = |EZ ∗ (j) − Z(j)| (20)

Z (j + 1) = Z ∗ (i) − CD (21)
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Here, j is explained as the most recent iteration number while Z ∗ (j) is the whale which is in the
best position with respect to the food source. Furthermore, Z (j) is current whale position. C and E
are the coefficients that are described as:

C = 2ct1 − c (22)

E = 2t2 (23)

where, t1 and t2 are two casual parameters having values of zero and one respectively. Moreover, c is
the convergent factor calculated as:

c = 2 − 2
J

JMax

(24)

where, JMax is the total number of iterations, while J is the current iteration. As mentioned above,
whales use encircled positional updating method to achieve minimization of distance to the food
source; hence, the mathematical formulation for the method is given as:

Z (j + 1) = Z ∗ (j) − Fqecl cos (2π l) (25)

Above, Fq is the distance between the source of food and the current whale. l is the unintended
number ranging from zero to one. As the whale uses the spiral updating method, it must contract the
circle around the food source to minimize the distance. The probability for this method is calculated as:

Z (j + 1) =
{

Z ∗ (i) − CD prob < Pb

Z ∗ (j) − Fqecl cos (2π l) prob ≥ Pb

(26)

In the initial stage, whales have to go randomly searching for food sources. Hence, each whale must
update its position within the area yet at some random point to detect the food source. Therefore, the
fitness is checked for each iteration, and Fine- K Nearest Neighbor (F-KNN) classifier is employed
as a fitness function. Mathematically, the random point is denoted by equations as follows:

F = EZrand − Z(j) (27)

Z (j + 1) = Zrand − CF (28)

Here, Z(j) is the position vector for a whale that is chosen causally. An agent called a seeking agent
is used to force the whales for position updating according to the current whale, which may help in
finding a new source.

4 Results and Analysis

This study is implemented on MATLAB-2021A—a windows-based machine with a GTX
950M GPU.

4.1 Numerical Results
This section covers the results achieved using the proposed methodology. Results are given in

the tabular form, confusion matrix, and graphical form. Table 2 represents the results achieved using
different classifiers, according to the table below fine-tuned Linear Support Vector Machine (LSVM)
obtained the highest accuracy of 90.1 percent. In LSVM, one vs. all strategy is adopted to fine-tune
the algorithm. Also, fine-tuned LSVM obtained a Precision value of 0.88, a Recall value of 0.89, and
an F1 Score of 0.88. Fig. 5 illustrates the confusion matrix of fine-tuned LSVM classification. LSVM
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without tuning achieved better time cost than all other classifiers and attained 89.9 percent accuracy.
Different Neural Networks are also used to classify, and results are accessed in the table below.

Table 2: Accuracy achieved and time taken by the algorithm (2500 features)

Classifier Accuracy (%) Precision Recall F1 score Time (S)

LSVM 89.9 0.87 0.89 0.88 117
LSVM (Fine
tuned)

90.1 0.88 0.90 0.89 242.3

Narrow NN 85.6 0.84 0.84 0.84 381.2
Medium NN 86.1 0.85 0.85 0.85 123.8
Wide NN 87.1 0.90 0.90 0.90 185
Bilayered NN 85.6 0.84 0.85 0.85 590.4
Trilayered NN 85.4 0.84 0.84 0.84 496.2

0 2915 108 62 0
1 202 1085 123 6
2 79 94 1857 32
3 0 8 62 1195

0 1 2 3

ssal
C

eur
T

Predected Class

Figure 5: Confusion matrix of LSVM (fine-tuned)

Fig. 6 shows the time cost of classifiers used in the proposed methodology, while Fig. 7 represents
the comparison of accuracy obtained by different classifiers. Fig. 8 compares time cost and accuracy
obtained by different classifiers. Features are selected using the whale optimization technique and
accessed the results. Also, selected features are further sliced into minimal feature sets. Furthermore,
each sliced feature set is fed to the classification algorithm and achieves accuracy. Table 3 represents
the accuracy and time cost attained by each classifier.

Figure 6: Time bar chart for classifiers
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Figure 7: Accuracy bar chart for classifiers

Figure 8: Time and accuracy comparison for classifiers

Table 3: Accuracy and time comparison of methodology using different sets of features

Number of features Accuracy (%) Time (S)

3200 90.1 139.7
2705 90.0 128.3
2500 90.1 117.0
2400 89.7 102.0
2300 89.7 101.6
2250 89.6 97.0
2200 89.6 96.7
2100 89.5 94.5
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It is accessed in the graph shown in Fig. 9 that accuracy is enhanced as the number of features is
increased. Trendline depicts the gradual increase in the accuracy on each step of the features increment.
Similarly, the graph in Fig. 10 shows that the time cost also expands as the number of features increases.
Analytics of both graphs represents that any increment in features after 2500 features does not affect
accuracy while time cost increases rapidly. Fig. 11 combines the graphs and shows accuracy vs. time
concerning the number of features.

Figure 9: Accuracy with respect to number of features

Figure 10: Time graph with respect to number of features

4.2 Explainable Artificial Intelligence
Explainable artificial intelligence (XAI) [33] refers to intelligent systems that can give researchers

clear and trustworthy descriptions of their decision-making process. XAI is crucial because it enables
humans to comprehend why an AI system makes particular predictions, judgments, or suggestions
and to spot any biases or flaws in its thinking. This can boost confidence in AI systems and guarantee
that they are employed following human values and ethical standards.
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Figure 11: Time vs. accuracy graph with respect to number of features

Explainable artificial intelligence (XAI) uses occlusion [34] to determine each individual’s con-
tribution to a model’s forecast. The method includes masking or obstructing portions of an input
and evaluating how the model’s output varies. By reiterating this procedure for various input sections,
it is feasible to determine which elements are most crucial for the model’s prediction and which are
driving the model’s behavior. Frequently, occlusion is used to construct saliency maps or heat maps,
as represented in Fig. 12, which are visual representations of the importance of each feature to the
model’s prediction for each class sample of the dataset. This can help comprehend a model’s decisions
and identify any biases or errors in its predictions.

Figure 12: Occlusion for all four classes of sample images



CSSE, 2023, vol.47, no.2 2411

Mesh plots in Fig. 13 depict the density of important features inside the input image area. Test
images are taken from each dataset class and predicted by the trained network. A heatmap for the area
with dense important features is extracted by applying the occlusion technique. As shown in Fig. 13 it is
clear that class 0 and class 2 sample images are not classified correctly, while class 1 and class 3 sample
images are classified correctly. This is because the dense area for the class 0 sample image is classified
as class 2 whereas the class 0 sample image belongs to the normal class. Similarly, class 2 sample image
features are extracted from the image area where knee disorder is not impacted. On the other hand,
class 1 and class 3 are correctly classified, and the dense feature area is correctly highlighted.

Figure 13: Map plot for occlusion for all classes

In the last, we compare the proposed method’s accuracy with several other neural nets, as given
in Table 4. All models are tested on the selected datasets as used for the proposed framework. This
table shows that the defined model’s accuracy is 90.1%, 85.3%, 82.9%, 84.76%, 86.22%, and 87.32%,
respectively. After the proposed model, the accuracy of the ResNet101 deep model is better. In
addition, a confidence interval-based analysis is also given in Fig. 14. This figure shows that the margin
of error after 100 times iterations is 88.95 ± 1.594 (±1.79%). This means that the 1.79% error is noted.
Hence, based on this, it can be concluded that the proposed framework’s accuracy remains consistent.
A comparison with the recent state-of-the-art methods is also performed, as noted in Table 5. This
table shows that the proposed method accuracy is compared with several state-of-the-art (SOTA)
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techniques. In this table, an efficient deep mixture approach is introduced by Ahmed et al. [4] and
obtained a classification accuracy of 88%. In [26], the authors presented an artificial intelligence
based technique and obtained 84% accuracy for the classification. The other methods, such as [27,35]
and [36], the authors obtained accuracies of 73.46%, 72.10%, and 69.18%. Therefore, the proposed
approach achieves an accuracy of 90.1%, which is 2% improved than the recent methods.

Table 4: Comparison of proposed method accuracy with recent models

Deep model Accuracy (%)

Proposed framework 90.1
AlexNet deep model 85.3
GoogleNet deep model 82.9
VGG16 deep model 84.76
ResNet50 deep model 86.22
ResNet101 deep model 87.36

Figure 14: Margin of error-based analysis of the proposed framework accuracy

Table 5: Comparison of proposed framework with state-of-the-art (SOTA) recent works

Reference Year Optimization Approach Accuracy (%)

[4] 2022 PCA CNN + SVM 88.00
[26] 2022 – CNN based tool 84.00
[27] 2020 – CNN 73.46
[35] 2022 – Hand crafted + Deep features

using CNN
72.10

[36] 2021 – CNN + ML 69.18
Proposed - WOA CNN + FT-LSVM 90.01

5 Conclusion

A new framework is proposed in this work for the classification of knee osteoarthritis. Two
pre-trained deep learning models have been utilized for deep feature extraction, and later, fusion is
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performed using a canonical correlation approach. By employing this approach, information from
both sources has been combined for better accuracy performance. Moreover, the dimensionality
reduction technique is applied to acquire the best features that are finally classified using machine
learning classifiers. In conclusion, the proposed approach obtained better multi-class classification
accuracy of 90.1% compared to previous research. Also, it is accessed through this study that features
slicing may positively impact increasing accuracy while keeping time cost as low as possible. The work
also elaborates that Efficientnetb0 and Densenet201 obtained better results if the extracted features
were combined using a correlation extended serial approach. Multiple sets of features are given as input
to the system and accessed that time and accuracy have inversely proportional relation for the number
of features. Furthermore, the prediction of the system is explained by occlusions which highlight the
dense feature areas of images. The key limitation of this work is the extraction of some redundant
information that misleads the classification performance and increases the computational time. In the
future, this issue can be resolved by employing the customized CNN model with residual block and
Bayesian optimization.
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