
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.040603
Article

Muti-Fusion Swarm Intelligence Optimization Algorithm in Base Station
Coverage Optimization Problems

Zhenyu Yan1,* and Haotian Bian2

1School of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay, 834000, China
2School of Arts and Sciences, China University of Petroleum-Beijing at Karamay, Karamay, 834000, China

*Corresponding Author: Zhenyu Yan. Email: yanzhenyuchn@gmail.com
Received: 24 March 2023; Accepted: 15 May 2023; Published: 28 July 2023

Abstract: As millimeter waves will be widely used in the Internet of Things
(IoT) and Telematics to provide high bandwidth communication and mass
connectivity, the coverage optimization of base stations can effectively
improve the quality of communication services. How to optimize the
convergence speed of the base station coverage solution is crucial for IoT
service providers. This paper proposes the Muti-Fusion Sparrow Search
Algorithm (MFSSA) optimize the situation to address the problem of discrete
coverage maximization and rapid convergence. Firstly, the initial swarm
diversity is enriched using a sine chaotic map, and dynamic adaptive weighting
is added to the discoverer location update strategy to improve the global
search capability. Diverse swarms have a more remarkable ability to forage
for food and avoid predation and are less likely to fall into a “precocious”
state. Such a swarm is very suitable for solving NP-hard problems. Secondly,
an elite opposition-based learning strategy is added to expand the search
range of the algorithm, and a t-distribution-based one-fifth rule is introduced
to reduce the probability of falling into a local optimum. This fusion mutation
strategy can significantly optimize the adaptability and searchability of the
algorithm. Finally, the experimental results show that the MFSSA algorithm
can effectively improve the coverage of the deployment scheme in the base
station coverage optimization problem, and the convergence speed is better
than other algorithms. MFSSA is improved by more than 10% compared to
the original algorithm.

Keywords: Base station coverage; swarm intelligence; dynamic adaptive;
coverage optimization

1 Introduction

The fifth generation of mobile communication technology (5G) has gained significant attention
in academia and industry due to its high bandwidth, low latency, and low power consumption
[1]. This technology has demonstrated remarkable achievements in smart agriculture, smart grid,
telemedicine, and environmental monitoring [2]. Furthermore, it has played an essential role in
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promoting the development of mobile edge computing, virtual reality, and other fields [3]. However,
5G communication technology utilizes a higher frequency band compared to 4G communication
technology, resulting in smaller signal coverage of 5G base stations. Consequently, the number of 5G
base stations required to be built by network providers is about three times the number of 4G base
stations [4]. These base stations can be classified into two groups: macro and micro base stations, with
micro base stations being further divided into small, flying, and skin base stations [5]. Although macro
base stations provide more extensive coverage areas, they incur high deployment and maintenance
costs [6]. In contrast, micro base stations, such as small base stations, have smaller coverage areas
and lower costs, making them dynamically ideal for deployment at multiple points. Therefore, most
network providers employ a combination of 5G macro base stations to operate together [7].

Micro-base stations are gaining attention from both academia and industry due to their flexibility
and mobility, as well as their resistance to terrain interference [8]. As shown in Fig. 1, these stations
can dynamically provide communication signal coverage for industrial IoT devices and mobile user
terminals in areas with signal coverage blind spots. However, due to limited energy consumption and
high user mobility, the base station must be able to develop the base station deployment scheme
must be designed quickly to achieve maximum signal coverage, while ensuring high signal coverage,
while ensuring high signal coverage. The problem of maximizing base station coverage is an NP-hard
problem, and finding an optimal solution through mathematical inference is difficult [9]. Nevertheless,
swarm intelligence optimization algorithms have proven to be more effective in solving such problems.
In recent years, swarm intelligence optimization algorithms have been widely used in wireless sensor
network (WSN) sensor node coverage quality problems, yielding significant results.

Figure 1: The application of base station fast coverage

Although mobile communication networks face many privacy protection and data security issues,
their mobile and flexible advantages have conquered the majority of communication service providers
[10]. In order to achieve high coverage quality and coverage convergence speed of the base station,
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a MFSSA coverage optimization method is proposed based on the sparrow search algorithm (SSA).
Firstly, sine chaotic map is used to initialize the sparrow swarm to enrich the diversity of the initial
sparrow swarm; then dynamic adaptive weighting is added to the discoverer position update strategy
to accelerate the convergence speed of the algorithm while balancing the local and global search
capabilities; elite opposition-based learning strategy is introduced to expand the search range of the
sparrow swarm while avoiding it from falling into a “premature”. Finally, the optimal global solution
obtained from the current sparrow swarm is subjected to t-distribution-based one-fifth rule to improve
the pioneering ability of the swarm and reduce the probability of it falling into a local optimum.

This paper is structured as follows: Chapter 2 introduces the signal coverage model and the
probabilistic optimization objective. Chapter 3 describes the specific design mechanism of the MFSSA.
In Chapter 4, the efficiency and accuracy of the MFSSA are demonstrated by comparing the final
coverage and convergence speed of the MFSSA with other algorithms in different scenarios. Chapter
5 gives a detailed list of recent research work. Chapter 6 provides an overall summary of the article.

2 System Model

The base station coverage problem requires a reasonable model simplification based on the
wireless communication channel modeling theory to construct a characteristic spatial model of
the signal coverage. A precise mathematical description of the base stations, users, and coverage
requirements is necessary for wireless communications. Firstly, a detailed analysis of the existing beam
assignment is conducted to build a plane model of the signal coverage of the base station. Secondly, a
joint probabilistic perception model is constructed to consider the realistic signal interference situation
and determine the problem’s final optimization objective. Finally, the problem is transformed to
facilitate subsequent solutions.

2.1 Signal Coverage Model
Let S is an L × L two-dimensional region in which a random set of N micro-base stations with

the same attributes is placed. The set of micro-base station points is defined as U = u1, u2, . . . , ui, i ∈
[1, N], represents the coordinates of each station ui = (xi, yi) , i = 1, 2, . . . , N. The objective is to move
this set of micro-base stations within region S to cover a predetermined number of M targets. T =
t1, t2, . . . , tj, j ∈ [1, M], where the coordinates of the each point tj are

(
Xj, Yj

)
, j = 1, 2, . . . , M.

In wireless communication systems, directional enhancement of signal coverage is required due
to the limited capacity of omnidirectional antennas and the radiation of electromagnetic waves across
space. Beamforming is the design solution to enhance the signal in the horizontal direction. It involves
transmitting the signal using two or more antennas with controlled delay or phase shift to create a
directional constructive interference pattern. This simplifies the spatial model of signal coverage of the
base station. In practical scenarios, micro base stations can move horizontally and vertically, leading
to changes in their coverage radius. Assuming a micro-base station has a vertical range of movement,
the signal coverage radius RT can be limited to [RTL, RTU ], while the communication radius RC can
vary between [RCL, RCU ]. The communication error of the micro-base station is RE. The coverage area
of each micro-base station is a closed circle of radius Rs, centered on itself.

If the distance between tj and ui is less than or equal to Rs, then tj is already covered by the
communication network of the micro-base station by default. The distance d between tj and ui is
defined as:

d
(
ui, tj

) =
√(

xi − Xj

)2 + (
yi − Yj

)2
, (1)
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2.2 Probability Optimization Objective
This paper adopts a probabilistic sensing model, denoted by p

(
ui, tj

)
, to account for the impact

of various environmental factors on the signal sensing capability of micro-base stations in real-world
scenarios.

p
(
ui, tj

) =
⎧⎨
⎩

0, RT ≤ d
(
ui, tj

)
eα, RT − RE < d

(
ui, tj

)
< RT

1, RT − RE > d
(
ui, tj

) (2)

α =
(
d

(
ui, tj

) − (RT + RE) + λ
)

(
d

(
ui, tj

) − RT

) , λ are signal regulators. Its value is related to the base station. In

the experiment, the value of λ is 1. The joint sensing probability is calculated when multiple micro-base
stations sense the area S containing tj.

P
(
U , tj

) = 1 −
n∏

i=1

[
1 − p

(
ui, tj

)]
. (3)

The coverage of the base station cluster in region S and RCover is determined by the ratio of the
number of points MCover covered by the base station point set to the total number of points m in the
target point set. This ratio represents the total coverage of the base station cluster and is defined as
follows:

RCover = MCover

m
(4)

As SSA is more effective in solving the minimum value problem, this paper converts the maximum
coverage problem into a minimum value problem. The objective function for solving the algorithm
presented in this paper is obtained.

FTarget = 1 − RCover (5)

3 Swarm Intelligence Optimization Algorithm

SSA offers numerous advantages, such as higher search accuracy, faster convergence, stability, and
robustness. Specifically, in the scenario of base station coverage, this algorithm effectively compresses
the problem’s solution space, resulting in improved convergence speed. To enhance the algorithm’s
global search performance, this paper introduces dynamic adaptive weighting, such as improving
the convergence ability using adaptive weighting through the chaotic map. Additionally, this paper
enhances the algorithm’s strong global search ability by integrating the opposition-based learning
strategy and the t-distribution-based one-fifth rule.

3.1 Swarm Intelligence
SSA simulates various threads or functions as a group of simple agents based on the laws of

nature, using specific mechanisms to achieve emergent collective intelligence. The simple swarm can
be represented as follows:

B = [b1, b2, . . . , bPN]T , bi = [bi,1, bi,2, . . . , bi,d] (6)

where PN is the number of individuals in the swarm, i = 1, 2,..., PN; Let d be the dimensionality of
the optimization variable. This paper expresses the fitness value of the swarm as a matrix.

Hf = [h (b1) , h (b2) , . . . , h (bPN)]T , h
(
bq

) = [
h

(
bi,1

)
, h

(
bi,2

)
, . . . , h

(
bi,d

)]
(7)
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Let Hf denote the fitness value of the individual, which is computed from the objective function
FTarget that the algorithm solves.

In SSA, individuals with higher fitness find food earlier and act as discoverers who provide
foraging directions for followers with lower or equal fitness values. Thus, the discoverer has a larger
foraging range than the follower and its position according to the following strategy.

Bit+1
i =

{
Bit

i · eγ , Bw < Br

Bit
i + Qr · L, Bw ≥ Br

, γ = − i
r · iter

(8)

Let Bit
i be the location of the ith finder in the tth iteration, r be a random uniform distribution

number within (0 < r < 1), and iter be the maximum number of iterations. Let Bw and Br be the
warning and safety values, respectively, and Qr be a random number with normal distribution. Let
L be a d-dimensional row vector of ones. If Bw < Br, the finder faces no predation risk and can forage
widely. If Bw ≥ Br, the finder detects predation risk and sends warning signals to the swarm, moving
toward safety and foraging.

The followers update their positions according to the following strategy:

Bit+1
i =

{
Qr · eδ, i > PN

2

Bit+1
Best + ∣∣Bit

i − Bit+1
Best

∣∣ K+ · L , otherwise
, δ = −Bit

Worse − Bit
i

i2
(9)

Bit+1
Best represents the current finder’s optimal foraging position, while Bit

Worse denotes the global
worst foraging place. A is a d-dimensional row vector consisting of elements of 1 or −1, and K+ =
KT

(
KKT

)(−1)

. PN refers to the sparrow swarm size, and when i > PN/2 indicates that the ith individual
is not well-adapted to foraging and must seek food in other areas. Otherwise, the individual follows
the finder to forage.

A group of vigilantes was selected to signal other individuals to avoid predation of the sparrow
swarm during foraging. The percentage of individuals chosen as vigilantes ranged between 10% and
20%.

The vigilante location update strategy is as follows:

Bit+1
i =

⎧⎪⎪⎨
⎪⎪⎩

Bit
Best + ε · ∣∣Bit

i − Bit
Best

∣∣ , fi > fBest

Bit
i + η ·

( ∣∣Bit
i − Bit

Worse

∣∣
(fi − fWorse) + μ

)
, fi = fBest

(10)

The equation describes how the sparrow swarm adjusts its foraging position during a search. The
variable Bit

Best represents the current global optimal foraging position. To control the movement step
during foraging, the algorithm uses a random number ε drawn from a normal distribution with a mean
of 0 and variance of 1. The fitness value of the current individual is denoted by fi, while fBest and fWorse

represent the global optimal and worst fitness values, respectively. If fi > fBest, the individual i is in an
advantageous position and moves to the global optimal foraging position Bit

Best. If fi = fBest, it means
that the individual i is already at the global optimal foraging place and needs to move to a nearby
place. The parameters η and μ control the step size and avoid division by zero, respectively.

3.2 Intelligent Mechanism Optimization
Uneven distribution in the randomly generated swarm can limit the search space and reduce the

algorithm’s accuracy. The chaotic map can be utilized to address this issue, given its advantages of
ergodicity, randomness, and regularity. It can be seen from Fig. 2 that the chaotic sequence distribution
of the sine model is more uniform than that of the other two models. The sine chaotic model, which
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has an infinite number of mapping folds, exhibits more pronounced chaotic characteristics than the
classical singer and sinusoidal models, making it particularly suitable for resolving the problem of
uneven distribution following swarm initialization [11].

Figure 2: Chaotic sequence distributions

Xi+1 = ρ sin (πXi)

Bi,j = Lj +
(
1 + Xi,j

) · Uj − Lj

2

(11)

where Xi ∈ [−1, 1], ρ is the control parameter, and Uj and Lj are an individual’s upper and lower
bounds in the jth dimension.

As the algorithm iterates, the discoverers and followers approach the optimal global solution,
causing the search range of the swarm to decrease gradually. This, in turn, weakens the global search
ability of the swarm and can lead to the algorithm getting stuck in local extrema, limiting its search
accuracy. This paper introduces a dynamic adaptive weighting, denoted by the symbol ω, in the
discoverer place update strategy to address this issue. ω is adjusted based on the number of iterations
completed by the algorithm. Specifically, ω takes on a larger value in the early iterations, resulting in
a more robust global search capability. As the algorithm progresses, ω decreases adaptively, leading to
a higher convergence rate. The calculation for ω and the updated discoverer position update strategy
is provided.

ω = cos
(

(π · it)
(2 · iter)

)
(12)

Bit+1
i =

{
Bit

i · eγ · ω, Bw < Br

Bit
i + Qr · L, Bw ≥ Br

, γ = − i
r · iter

(13)

3.3 Fusion Variation Strategy
The opposition-based learning strategy enhances sparrow swarm diversity and somewhat

improves the algorithm’s performance [12]. In the swarm intelligence optimization algorithm, elite
individuals possess more helpful information than ordinary ones, and a swarm generated by reversing
the elite individuals leads to a higher quality diversity [13]. The best individuals from the current and
opposition-based swarm are chosen to form a new swarm that enters the next iteration. This way,
the search process gradually leads the swarm toward the optimal global solution. The algorithm’s



CSSE, 2023, vol.47, no.2 2247

convergence rate increases, and too much diversity loss due to too-good elite individuals are avoided.
The elite opposition-based learning strategy is defined as follows.

be
i = (

be
i,1, be

i,2, . . . , be
i,d

)
, i = 1, 2, 3, . . . , z.

be
i,j = κ · (

αj + βj

) − be
i,j , j = 1, 2, 3, . . . , d.

(14)

where be
(i,j) represents elite individuals, z represents the number of elite individuals in the swarm, d

represents the dimension, be
(i,j) represents the inverse solution of elite individuals, κ is a dynamic random

coefficient on (0, 1), and be
(i,j) ∈ [

αj, βj

]
. αj and βj are dynamic bounds that can help the inverse solution

be
(i,j) to locate in a narrow search region, which is helpful to improve the convergence speed of the

algorithm. When be
(i,j) is out of bounds, it can be reset by the following method.

be
i,j = rand

(
αj, βj

)
(15)

A mutation strategy is introduced to address the swarm being too homogeneous and susceptible
to local optima. After an individual updates its state, mutation is performed to enhance the diversity
of the sparrow swarm and allow it to jump out of local optima. Using a dimension-by-dimension
variation approach can prevent mutual interference between dimensions, improving the quality of
individuals post-variation [14]. The introduction of the t-distribution-based one-fifth rule effectively
prevents the swarm from falling into local optima due to weak pioneering ability in the later iterations.

The discoverer’s movement direction significantly affects the foraging direction of the sparrow
swarm. The one-fifth rule for all individuals in the swarm is too burdensome, which can reduce the
algorithm’s search efficiency. Thus, only some of the optimal individuals from the discoverer are
selected for the t-distribution-based one-fifth rule to avoid the reduction in search efficiency.

bFind = (
bFind

1 , bFind
2 , . . . , bFind

d

)
, j = 1, 2, 3, . . . , d. d is the number of dimensions. The variation is

performed for each chosen finder and is calculated as follows.

bFindNew
j = bFind

j + bFind
j · t (iter) (16)

The variable denotes the result bFindNew
j after the jth dimensional variation of the optimal individual

in the discoverers. The function t (it) represents the t-distribution with the degree of freedom the
number of current iterations determines it. This variation strategy fully utilizes the current state
information of the sparrow swarm to improve the algorithm’s performance. At the beginning of
the iteration, t (it) is small. The t-distribution approximates a Cauchy distribution, similar to the
Cauchy variation of the discoverer dimension by dimension when the algorithm has global solid search
capability. As the algorithm progresses, t (it) increases. The t-distribution approximates a Gaussian
distribution, similar to the Gaussian variation of the discoverer dimension by dimension when the
algorithm has better local search capability and convergence speed, which helps prevent it from falling
into local optima. The dimension-by-dimension variation technique mitigates the issue of dimension
interference.

The simulated coverage optimization problem is tackled by using sparrow foraging to search
for the optimal location of the micro-base station. Each iteration involves updating the micro-base
station’s position by updating the sparrow’s part. The fitness value of the sparrow at the current
location is calculated to determine the optimal solution and motivate the sparrow to update its site.
The implementation of MFSSA is shown in Fig. 3.
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Figure 3: Implementation process of MFSSA

4 System Validation

This paper selects several commonly used swarm intelligence algorithms to compare with the
proposed multi-fusion swarm intelligence algorithm and verify its algorithmic model properties.
Different algorithms generate and solve a set of coverage target points separately. The coverage
and convergence metrics of each algorithm are calculated. This paper conducts 100 experimental
simulations under the same environmental conditions to ensure accuracy. The resulting practical data
sets are sorted, and each group’s top and bottom 5% are excluded.

This paper compares the multi-fusion swarm intelligence optimization algorithm proposed in this
study with three other algorithms: the basic SSA algorithm, ISSA [15], and RWSSA [16]. The ISSA is a
multi-strategy improvement algorithm, while the RWSSA is a single-strategy improvement algorithm.
The MSSA is a multi-strategy improved algorithm that utilizes the t distribution rule. The experimental
parameters are set as Table 1.

Based on the experimental simulation results, this paper analyzes the coverage optimization effects
of different algorithms in two dimensions: the target area’s size and the signal coverage radius, as the
perceived radius of the base stations is not uniform across the target area.



CSSE, 2023, vol.47, no.2 2249

Table 1: Simulation parameter settings

Parameter symbol Parameter Value

L Target area side length (m) L = 200 + 100 · i, i =
1, 2, . . . , 10

S Target area (m2) L × L
N The number of UAV micro base

stations
40

M Number of targets covered 150
Rs UAV micro base station coverage

radius (m)
Rs = 7.5 + 2.5 · j, j =
1, 2, . . . , 11

Maxiter The maximum number of iterations 150
pop Sparrow swarm 30
Times Number of repetitions for each

experiment
100

4.1 Base Station Deployment Effect Analysis
To visualize the performance of the MFSSA for base station coverage optimization, base station

signal coverage radiuses of 10.0, 17.5, 27.5, and 32.5 m are selected for a coverage area with a side length
of 400 m. The deployment effects of the five algorithms are visualized in the four cases mentioned
above. The coverage targets’ distribution locations in Fig. 4 are randomly generated. The base station
deployment diagrams in Fig. 4 correspond to the four coverage target distributions. By comparing
each algorithm’s optimized BTS deployment results, it is evident that the SSA has more overlapping
signal coverage among BTSs, resulting in a smaller effective coverage area and a more significant
signal coverage blind area. The RWSSA and ISSA result in a relatively more minor optimized signal
coverage blind area. The MSSA has a more even deployment effect but has an excessive number of
base stations in a particular range, leading to high energy loss during subsequent redeployment. The
BTS deployment scheme of the MFSSA is more uniform, resulting in a relatively larger effective signal
coverage area and smaller signal coverage blind spot.

4.2 Scene Side Length Change
Fig. 5 shows that as the base station is elevated to a certain height and has the corresponding signal

coverage of 12.5, 17.5, 25.0, and 32.5 m, the coverage target range gradually increases from 300 to
1200 m. As the experiment scale expands and the algorithm-seeking difficulty rises, the changing trend
of the relationship curve corresponding to the MFSSA is smoother than that of the other algorithms.
Furthermore, the error of the MFSSA is more stable, and its positive and negative error range is mainly
maintained at 0.5% to 3.5%. When comparing the average coverage effect on other occasions, the
intermediate coverage level of the MFSSA is significantly higher than that of other algorithms. These
findings suggest that the MFSSA is more stable and has better search capabilities than the different
algorithms when the target range in which the coverage target is located changes. Moreover, it is more
suitable for application in scenarios where the base station moves in a more extensive range in the
horizontal direction.
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Figure 4: The complexity analysis of base station deployment effect
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Figure 5: The complexity analysis of partitioning schemes

4.3 Signal Coverage Radius Change
From Fig. 6, it is evident that the MFSSA’s coverage minimum values at corresponding locations

are higher than the maximum values of other improved strategies by 10% to 30% when signal coverage
radius changes due to varying heights in target scenes with site side lengths of 400, 700, and 1100 m.
Moreover, considering the average coverage effect in other settings for side-by-side comparison, the
MFSSA outperforms the different compared algorithms concerning coverage rate. While the signal
radius of the base station decreases with the expansion of the experimental scale, making the conditions
harsher, the difficulty of solving the algorithm increases. However, the MFSSA’s error remains stable
with an error range of 1% to 3% and significantly higher than the other algorithms on average. When
the base station is located at different heights, causing signal coverage changes, the MFSSA is less
affected than the other improved strategy algorithms, with higher solution stability and quality. Thus,
the MFSSA is more suitable for scenarios where the base station moves vertically over a broad range.
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Figure 6: The complexity analysis of partitioning schemes

4.4 Comparative Analysis of Algorithm Convergence
Fig. 7 depicts iterative curves of various algorithms for coverage of discrete target sites under 12

different conditions. As the target site increases and the signal coverage radius of the base station
decreases, the algorithm’s difficulty in finding the global optimal solution increases. Fig. 7 shows
that the MFSSA algorithm exhibits superior convergence compared to the other algorithms, with
a convergence rate of 70% to 75% of its maximum coverage after ten iterations and reaching its limit
from 50 to 70 iterations. Conversely, other algorithms have little coverage change during the early
stages of the iterative process, and the curve changes are relatively flat, with only a marginal coverage
increase in subsequent iterations. As environmental conditions become more demanding, the number
of iterations required for the MFSSA algorithm to reach its limit increases, with a maximum coverage
20% higher than the ISSA, RWSSA, and SSA algorithms. Thus, the MFSSA algorithm exhibits higher
finding accuracy than other algorithms. Compared to the MFSSA algorithm, different algorithms are
more likely to enter the premature state and fall into the local optimum.
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Figure 7: The complexity analysis of algorithm convergence

The MFSSA’s iterative curve remains consistent as the target site and signal coverage radius
conditions become stricter. Furthermore, its convergence is more stable than that of other algorithms.
However, the algorithm’s growth trend will gradually decrease for sites with an edge length of
1100 m and a base station coverage radius of 10.0 m. Although the curve gradually levels off at the
early iteration stage, its optimization-seeking accuracy is still superior to other algorithms. In contrast,
the convergence stability of the MSSA, SSA, and ISSA is inferior to that of MFSSA. Additionally,
these algorithms are more susceptible to location and target conditions, resulting in poorer stability.
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The MFSSA’s superior searchability and pioneering ability are attributed to its dynamic adaptive
weighting and elite opposition-based learning strategy. While the other algorithms struggle with more
demanding conditions, resulting in low coverage and a smooth iteration curve, the MFSSA’ tendency
to fall into a local optimum is mitigated by its t-distribution-based one-fifth rule. This feature enables
the MFSSA algorithm to jump out of the local optimum effectively, and its better compression ability
for the solution space makes it stand out from other algorithms.

4.5 Base Station Average Coverage
Combined with Table 2, it can be seen intuitively that the coverage optimization efficiency of ISSA

improved by using a common mutation strategy is weaker than that of original SSA and common
improved RWSSA. On the contrary, the coverage optimization efficiency of MFSSA and MSSA
based on the dynamic t-dimensional mutation strategy is much better than that of standard improved
algorithms. The dynamic dimension-wise mutation strategy greatly optimizes the adaptability and
searchability of the algorithm. By analyzing the performance of MFSSA and MSSA on different
occasions, the refined search ability of MFSSA is more prominent than that of MSSA, resulting from
the fusion of varying mutation strategies.

Table 2: Average target coverage of 100 replicate experiments under different conditions

Length(m): 400 400 400 700 700 700 1100 1100 1100
Radius(m): 17.5 27.5 32.5 17.5 27.5 32.5 17.5 27.5 32.5

SSA 0.34 0.58 0.70 0.16 0.29 0.36 0.09 0.16 0.19
MFSSA 0.67 0.89 0.96 0.45 0.62 0.70 0.33 0.44 0.50
MSSA 0.64 0.85 0.92 0.41 0.58 0.66 0.30 0.40 0.46
RWSSA 0.33 0.57 0.69 0.16 0.28 0.35 0.09 0.15 0.20
ISSA 0.32 0.55 0.67 0.15 0.27 0.34 0.08 0.15 0.18

5 Related Work

Many vital advances have emerged from high-level academic papers in the field of web services
problems in IoT and research on swarm intelligence algorithms. These works are of great significance
in guiding and helping multi-convergence swarm intelligence algorithms. Therefore, this paper has
compiled some representative results.

5.1 Internet of Things Services
The IoT connects people, machines, and things profoundly and extensively. With the integration

of new-generation information technology and the traditional manufacturing industry, IoT has
widespread use in industrial manufacturing, energy interconnection, and intelligent medical appli-
cations [17]. As an essential technology supporting the vision of the industrial Internet, IoT has
received significant attention from researchers for its security, stability, reliability, and intelligence.
To improve network transmission efficiency, Song et al. [18] proposed an innovative, collaborative
automation (SCA) scheme to enhance the resource utilization of network transmission in smart IoT
and to increase its buffer limit. To ensure network security, Kim et al. [19] introduced the Mobile
Terminal Switching (MoTH) security protocol to secure smart IoT incorporating 5G technologies in
the wireless data backhaul. WSN technology, a crucial technology for IoT, has been extensively studied
by many scholars to address the network service coverage problem of IoT, which is no longer limited
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to the static deployment problem of IoT base stations. Researchers worldwide have shown significant
interest in real-time tracking of sensing devices with fast coverage of network services to exploit the
flexible mobile characteristics of mobile sensors in IoT [20].

5.2 Swarm Intelligence Optimization Algorithm
Swarm intelligence optimization algorithms are well-suited for addressing the problem of base

station coverage and sensor node deployment in the IoT due to their fast convergence and strong
adaptability. However, the direct application of the genetic algorithm to sensor node coverage scenarios
may not produce ideal optimization results, as the initial swarm’s parameters and quality heavily
influence its effectiveness. Hanh et al. [21] proposed a metaheuristic algorithm based on the genetic
algorithm to address this issue. Additionally, Famila et al. [22] proposed an artificial bee colony
clustering algorithm incorporating GEM and Cauchy operator, which is fast in convergence but
could be better in coverage quality for WSN coverage optimization problems. Due to their ease of
implementation and fast convergence, particle swarm algorithms are widely used in WSN coverage
quality optimization problems. Phoemphon et al. [23] introduced an improved particle swarm opti-
mization algorithm with an embedded virtual force resampling strategy that has better optimization
effects and is easier to implement than the genetic algorithm. Qi et al. [24] proposed a particle swarm
algorithm based on fuzzy logic and an extreme value learning machine, which exhibits more robust
global search capabilities than the basic particle swarm algorithm but has limited local search ability
in the late iteration. To optimize the gray wolf algorithm, Zhang et al. [25] proposed an optimization
method based on simulated annealing, which has faster optimization and higher network coverage
than the basic gray wolf algorithm but is prone to get trapped in local optima. Wang et al. [26]
proposed a gray wolf algorithm with multiple fusion strategies with good coverage, excellent global
solving ability, and fast convergence. Kotary et al. [27] proposed a multi-objective whale optimization
algorithm with robust distributed clustering, which can result in a more uniform distribution of nodes.
Nematzadeh et al. [28] proposed an efficient metaheuristic-based method for environment-aware node
deployment, which can Maximize coverage and maintain connectivity in WSN and decentralized IoT.
Ali et al. [29] proposed a max–min ant colony optimization algorithm for path planning of multiple
UAVs. Rauf et al. [30] proposed a multi-population-based chaotic differential evolution algorithm for
multi-modal and multi-objective optimization problems.

6 Conclusion

This paper proposes the MFSSA to maximize the coverage of discrete coverage targets and achieve
rapid convergence of base stations. The algorithm is based on the SSA and incorporates several
improvements to enhance its performance. Specifically, the sine chaotic map enriches the initial swarm
diversity. Dynamic adaptive weighting is added to the discoverer position update strategy to improve
the global search capability and accelerate the convergence speed. The elite opposition-based learning
strategy is introduced to expand the search range of the algorithm and prevent it from getting trapped
in a “premature” state. Finally, the optimal global solution of the current iteration is subjected to
a t-distribution-based one-fifth rule to improve the pioneering ability of the algorithm and reduce
the probability of falling into a local optimum. Simulation experimental results demonstrate that the
MFSSA outperforms other algorithms regarding strong search capability, fast convergence, and good
stability. It can effectively optimize the rapid deployment of base stations and reduce the redundant
coverage problem. Future work will consider specific physical scenarios, optimal coverage paths, and
the algorithm’s solving capability in complex systems.
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