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Abstract: Kidney infection is a severe medical issue affecting individuals
worldwide and increasing mortality rates. Chronic Kidney Disease (CKD) is
treatable during its initial phases but can become irreversible and cause renal
failure. Among the various diseases, the most prevalent kidney conditions
affecting kidney function are cyst growth, kidney tumors, and nephrolithi-
asis. The significant challenge for the medical community is the immediate
diagnosis and treatment of kidney disease. Kidney failure could result from
kidney disorders like tumors, stones, and cysts if not often identified and
addressed. Computer-assisted diagnostics are necessary to support clinicians’
and specialists’ medical assessments due to the rising prevalence of chronic
renal illness, the lack of experts, and the rising rates of assessment and moni-
toring, mainly in developing nations. Artificial Intelligence (AI) approaches
such as machine, and deep learning has been used in literature for kidney
disease detection; however, they still lack performance. This paper imple-
ments a deep learning-based Convolutional Neural Network (CNN) model
for the classification and prognosis of kidney disease. We use a benchmark
Computed Tomography (CT) kidney dataset for experimentation. The data is
pre-processed, and then CNN extracts the features from the images. Results
reveal that the proposed approach accurately classifies kidney disease with a
considerable accuracy of 99.94%, 99.95% precision, 99.92% recall, and 99.94%
F1-score. The code is publicly available at [https://drive.google.com/file/d/1
cipo96h7mK4Gp-91IbqgjXixRzrbRJ2Y/view?usp=sharing]. This study sug-
gests using the proposed fine-tuned CNN model for kidney disease detection.

Keywords: Kidney disease; convolutional neural network; computed tomo-
graphy; feature extraction; deep learning; machine learning

1 Introduction

Machine and deep learning have been extensively used for various healthcare applications such
as kidney disease detection, diabetes, brain tumor, breast cancer and cataract disease detection
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[1–7]. Kidney disease is the most common healthcare repercussion for billions of people worldwide,
significantly raising the risk of premature death [8–11]. The World Health Organization (WHO) claims
that chronic diseases concern emerging regions [12,13]. Early-stage CKD is curable, while later-stage it
leads to renal failure [14,15]. The prevalence of chronic renal disease was the 16th leading cause of death
in 2016 and is expected to rise towards the 5th position by 2040, which is more significant than 10%
worldwide [16]. Kidney disease grows progressively over time and impacts how the urine system works.
The development of waste materials in the blood causes additional health issues, many of which have
similar symptoms to cardiovascular disease, including high and low blood pressure, nerve damage,
diabetes, and bone issues. Chronic kidney disease sufferers are at risk for developing heart disease,
diabetes, and hypertension [17,18].

Diabetes is characterized by hyperglycemia, which can affect the kidneys, heart, arteries, and eyes.
Furthermore, heart attack, stroke, and chronic renal disease can be attributed to poorly controlled
high blood pressure [19]. Among the various diseases, the most prevalent kidney conditions affecting
kidney function are cyst growth, kidney stones, and tumor. The kidney cyst is the fluid-filled region
with a thin wall that develops on the surface of the kidney. A cyst with a high-water level may form
inside the kidneys: Hounsfield units range from 0 to 20 [20,21]. A kidney illness known as kidney stone,
characterized by the formation of crystal clasts inside the kidneys, affects 12% of people worldwide
[22]. One of the ten malignancies with the highest incidence rates worldwide is Renal Cell Carcinoma
(RCC), sometimes a kidney tumor [23]. Patients with chronic kidney disease experience adverse
effects, particularly in the later stages, which weaken their neurological and immune systems. Patients
in underdeveloped nations may get the illness later, necessitating dialysis or renal transplantation
[24,25]. Experts use glomerular filtration rate, a measure of kidney damage, to identify renal disorders.
Age, medical tests, gender, and additional factors affect a patient’s glomerular filtration rate [26].
Pathology tests in conjunction with X-ray, Magnetic Resonance Imaging (MRI), CT, B-ultrasound,
and technology are typical for detecting kidney problems [27]. The CT scanner employs X-ray photons
to analyze the targeted area of the human body to produce a cross-sectional image that provides three-
dimensional data on the target anatomy. CT scans are helpful research tools because they provide
information and slice-by-slice visuals for kidney investigations [28].

Early kidney disease detection and diagnosis is a significant challenge for the medical community.
Renewal failure may ensue if kidney anomalies, including tumors, stones, and cysts, are not discovered
early and treated [29]. That is why one of the critical steps in preventing kidney failure is the early
detection of renal diseases such as kidney cysts, stones, and tumors [30]. The two medical procedures
used to detect chronic kidney disease are a blood test to assess glomerular filtrate levels and urine
analysis to examine protein levels. Due to the growing number of people with chronic renal disease,
the scarcity of specialists, and the exorbitant prices of diagnosis and therapy, particularly in developing
nations, computer-assisted diagnostics are required to support doctors’ and radiologists’ clinical
choices. AI approaches have been used in the early phases of disease diagnosis and disease prediction in
the medical image processing industry, where Machine Learning (ML) techniques [31–34] and Deep
Learning (DL) techniques [35–39] have been implemented. AI techniques have significantly helped
the early diagnosis of chronic kidney disease. ML methods are used to detect chronic kidney disease
earlier. Support Vector Machines (SVM) and Artificial Neural Networks (ANN) are among the most
popular technologies. These techniques offer significant benefits for diagnosing a variety of situations,
including clinical diagnosis. However, the capacity of these techniques to provide better performance
still needs to be improved [40,41]. Considering these limitations, this study uses the CT kidney disease
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dataset, which includes the normal, cyst, tumor, and stone classes, to implement the deep learning-
based CNN model to diagnose kidney illness. The main contributions of the research are given below
in the listed form.

• This study employs a convolutional neural network model to identify kidney disease and
presents a thorough performance analysis that explains image processing, feature extraction
and classification.

• The dataset CT kidney disease having normal, stone, cyst, and tumor classes is used with
12,446 unique instances. Results reveal that the proposed approach achieves the best accuracy
of 99.94% compared to traditional methods and existing studies.

The following sections comprise the paper’s structure: The literature study of machine learning
and deep learning methods for diagnosing renal illness is included in Section 2. The research
methodology for the proposed work, which uses the CT kidney disease dataset and deep learning
model, is described in Section 3. The results are explained and discussed in Section 4. The conclusion
of the work and suggestions for more research are included in Section 5.

2 Literature Review

In the literature review section, the background of kidney disease detection is provided using
machine and deep learning techniques.

2.1 Machine Learning Techniques
ML techniques have been employed for various healthcare applications such as tumor identifica-

tion, activity recognition, health evaluation, dementia detection, and many others [42–46]. Authors in
[32] proposed a technique for accurately detecting chronic kidney disease by combining an information
gain-based feature selection strategy with an expense Adaptive Boosting (AdaBoost) classifier. A
technique like this can shorten screening times and save costs for chronic renal disease because only
some diagnostic test values would be necessary for the diagnosis. The proposed strategy is compared
to CKD prediction algorithms and well-known classifiers recently put forward. Authors in [33] pursue
a method that uses ML techniques to develop practical tools for forecasting the incidence of chronic
kidney disease. To be more precise, the study first employs class balancing to address the non-uniform
distribution of instances inside the two classes, after which features are ranked and analyzed. Finally,
several ML models are developed and evaluated using various performance metrics. The conclusions
showed that the Rotation Forest (RotF) outperformed the other models.

Using big data platforms (Apache Spark), the author in [34] presents hybrid ML methods
incorporating feature selection techniques designed to recognize chronic kidney disease. The essential
features are chosen using the Relief-F and chi-squared feature selection approach. This research uses
six different ML techniques and ensemble Gradient-Boosted Trees techniques. Each algorithm’s cross-
validation and testing results have been calculated using full features, features chosen using Relief-
F, and features selected using the chi-squared feature selection approach. The findings yielded that
ML Classifiers performed best when using the selected features. Authors in [9] determine whether
ML could accurately predict the risk of End-Stage kidney disease (ESKD) in patients with CKD.
A continuous CKD cohort provided the data. The patient’s baseline features and blood sampling
outcomes were vital predictors. The existence or absence of ESKD at the end of 5 years resulted from
interest. Multiple imputations were used to replace the missing information. Different ML algorithms
are implemented on the given data. The model obtained the best 0.90% accuracy.
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2.2 Deep Learning Techniques
Numerous DL techniques can significantly enhance disease classification and identification

procedures such as COVID-19 identification, lung illness prognosis, skin cancer detection and many
others [47–51]. The author [36] proposed the Heterogeneous Modified Artificial Neural Network
(HMANN) for diagnosing, detecting, and segmenting chronic renal failure using the Internet of
medical things platform. Moreover, the suggested HMANN is also categorized as an SVM and
Multilayer Perceptron (MLP) using a Backpropagation (BP) technique. The proposed HMANN
method for segregating the kidneys offers great accuracy while significantly reducing the time required
to draw the contour. The region of renal interest is divided into the ultrasound image, which is used
as the foundation for the proposed algorithm’s operation. The proposed algorithm provides 97.5%
accuracy and a 99.7% of prediction ratio.

The author developed the DL Algorithm [37] to diagnose chronic renal illness from retinal scans,
which can supplement current screening methods. The data for this study come from three population-
based, cross-sectional and multiethnic studies carried out in Singapore and China. The deep learning
system is created using data from 5188 patients in the Singapore Epidemiology of Eye Diseases study
(SEED; participants ≥ 40 years old), and it is validated using data from 1297 patients. External testing
was performed on two separate datasets: the Beijing Eye Study (BES, 1538 patients ≥ 40 years) and
the Singapore Prospective Study Program (SP2, 3735 patients ≥ 25 years). An estimated glomerular
filtration rate of less than 60 mL/min per 173m2 was used to diagnose chronic renal disease. The AUC
is 0.911 for the image DL algorithm, 0.916 for the risk factor, and 0.938 for the hybrid deep learning
algorithm in the SEED validation dataset. Authors in [52,53] proposed machine and deep learning
models for the prognosis and early identification of chronic renal disease. The research’s authors of [38]
aim to construct a DNN and assess its performance compared to other state-of-the-art ML techniques.
For classification purposes, selected features are provided to ML models. During tests, the database’s
missing values have all been replaced using the average of the corresponding features. The optimal
parameters of the Neural Network (NN) are then fixed by setting the parameters and doing numerous
trials. The most important traits are chosen using Recursive Feature Elimination (RFE). The proposed
method can be helpful for neurologists in diagnosing chronic renal disease. Authors in [54] developed
a new classification model with optimized feature selection based on a metaheuristic algorithm to
diagnose chronic kidney disease. Data having missing values were initially removed during the pre-
processing phase. Then, an evolutionary algorithms algorithm known as the Oppositional based
Firefly Optimization (FFO) method identified the best collection of features, which aids in the more
precise prediction or classification of the disease. The opposite-based learning approach increases the
firefly method’s convergence rate. A DNN was suggested for classification to identify the presence of
CKD. In comparison to the algorithms of the pre-existing classifier models, the findings showed that
the suggested approach had a high accuracy rate.

To assess the applicability of approaches like the kidney disease dataset and the deep learning
approach to categorize the CT kidney disease images, a variety of datasets are being used along with
ensemble classifiers, machine learning techniques, and ensemble classifiers to address some limitations.
Table 1 presents the summary of existing work and limitations.

3 Proposed Methodology

This section details the algorithm and proposed approach for classifying CT kidney disease using
different evaluation metrics. In this study, the suggested model’s accuracy is the dependent variable,
and independent factors are used to analyze their impacts. The proposed model is shown in Fig. 1.
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The proposed model consists of four phases, the first choosing the CT kidney dataset. Further,
data pre-processing, which includes operations like grayscale conversion, image scaling, and bilinear
interpolation, is carried out in the second stage. Feature extraction is carried out in the third stage. In
the final phase, CNN is used to identify if a kidney is a tumor, cyst, normal, or stone.

Table 1: Summary of existing work

Reference Techniques Results Limitation(s)

[9] ML algorithms 90% 1: Does not handle large dimensional data.
2: Low performance of detecting kidney disease on medical
image data.

[36] HMANN 97.5% 1: Does not focus on extracting quality features of kidney
data.
2: Low performance.

[37] SEED 91.1% 1: Does not focus on large kidney data.
2: Low performance.
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Figure 1: Workflow of the proposed methodology for kidney disease detection

3.1 Experimental Dataset
The dataset was compiled using Picture archiving and communication systems (PACS) at different

hospitals across Dhaka, Bangladesh. Patients recognized as having kidney cysts, tumors, and normal
or stone findings. Each participant in the dataset who volunteered to participate in the research experi-
ments had their informed consent obtained before data gathering. The testing and data collection were
approved by the responsible Dhaka Central International Medical College and Hospital (DCIMCH)
administration.

The data gathering and experimentation also adhere to all applicable protocols. The whole
abdomen and urogram protocols follow for choosing the Coronal and Radial slices from chromatic
and non-contrast studies. Then, researchers created a collection of images for every diagnostic finding
from the carefully chosen Dicom study, one diagnosis at a time. The Dicom images are changed to
a compact JPEG format after the researchers remove each patient’s data and metadata. The Sante
Dicom editor tool [55] converts data to jpg images. It is primarily used as a Dicom viewer with advanced
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features to help radiologists diagnose specific disease findings. The Philips IntelliSpace Portal 9.0 [56]
application is used for data annotation and is an advanced image visualization tool for radiology
images. A clinician and a medical consultant again verified each image finding to confirm the accuracy
of the data after manual conversion and interpretation [57]. There are 12,446 unique data in the
produced dataset, 3,709 of which are from cysts, 5,077 from normal data, 1,377 from stones, and 2,283
from tumors. Fig. 2 depicts a representative sampling of the datasets. The image shows the various
sample of kidney scans such as stones, tumors, cysts and normal.

Figure 2: Sample data images of kidney tumor, cyst, normal, or stone results

3.2 Data Pre-Processing
This phase performed the data preparation stage to improve the model’s performance. Every

dataset of kidney disease Dicom images includes undesirable places and areas. Therefore, re-scaling or
resizing the images is essential to eliminate unnecessary space and use only the pertinent information.
The first pre-processing step is resizing the images according to the typical size requirement of NN
models after transferring DICOM images into jpg files. Images of various shapes, sizes, and widths
can be found in the Dicom image dataset for kidney disease. To get the best results, resizing the images
to be the same height and width is required. In this research, each image is resized 227 by 227 pixels for a
CNN and uses bilinear interpolation. Bilinear interpolation transforms an image with matching pixels
whenever possible, chooses and assigns the proper intensity distribution to each pixel, and produces a
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smoother-looking image. As a result, we found 12446 files belonging to 4 classes cyst, normal, stone,
and tumor.

3.3 Feature Extraction
The pre-processed data is then used to train the Dicom picture dataset. Features are extracted

representing the kidney cyst, stone, tumor, or normal. The CNN-based models automatically extract
the essential features without any human involvement. Convolutional filters extract features from the
training dataset following deep learning’s benefit. The CNN deep learning model is used in this study
to classify the various forms of CT kidney illness and extract detailed information from an image. The
deep learning models, such as a CNN with the Fully Connected (FC) layer, are then fed the extracted
features.

3.4 Convolutional Neural Network (CNN)
It is helpful to extract an image’s spatial and temporal features [58]. CNN is the sub-type of

Deep Neural Networks (DNN) that use various convolutional layers to process inputs for the useful
information [59,60]. Convolutional filters are implemented to the input by the CNN convolutional
layers to determine the result of the interconnected neurons to the various input areas.

The convolutional, max-pooling and fully connected layers are the three critical layers that
compose the CNN model. Three essential parameters are incorporated in the convolutional layer:
pitch, padding, and filter size. To extract features accurately, many filters are applied to each layer.
The filters move inside the images according to stride. The stride size can only be one or two; CNN’s
performance suffers if it is more than two. When the filter does not entirely protect each input image
in the convolutional layer, zero padding is required to maintain the structural assessment [61]. Each
convolutional layer aims to accomplish a particular objective; for instance, the first layer highlights the
lesions’ borders, the second layer extracts the features of complicated geometrical structures, and the
third layer emphasizes the forms and colors of the lesions. The ReLU layer in the feature map transmits
positive values while suppressing negative ones and setting them to zero. The extracted features are
down-sampled or made less dimensional using the max-pooling layer. The two approaches for the
max-pooling layer that are most frequently employed are average and max. The fully connected layer
with 128 units divides the image into categories. The batch normalization layer is utilized for feature
map normalization. These layers improve network regulation and training.

Fig. 3 represents the architecture of the CNN model. The max-pooling and 2D CNN are
integrated into each convolutional block. The network comprises 15 layers, six convolutional layers,
six max-pooling layers, and two dense and one flattened layer. The proposed approach first used the
six convolutional layers with six max-pooling layers and then used the flattened and two dense layers.
The convolutional layer with a 3 × 3 kernel size is used for feature extraction from the Dicom images
(JPEG format) activated by the Relu function. The max-pooling layer with a 3 × 3 kernel size decreases
the dimensionality of an input image. The six convolutional layers have different input sizes: the first
two convolutional layers have 32 input sizes, the next two have 64, and the last two convolutional layers
have 128 input sizes. The two dense layers have input sizes 512 and 4 with ReLU activation and softmax
function, respectively. The internal characteristics and structures of the image are less distorted when
there is less shrinkage.

Table 2 provides the CNN architecture summary. The detail of the layer types, input size, and
kernel size is given. The convolution layers (Conv2D) have 3 × 3 kernel size with distinct sizes of
input 32, 64, and 128 and output shapes (198,198,32), (97,97,32), (46,46,64), (21,21,64), (8,8,128)
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and (2,2,128). The max-pooling layers (maxPool2D) have 3 × 3 kernel sizes with different input
sizes 2 and output shapes (99,99,32), (48,48,32), (23,23,64), (10,10,64), (4,4,128) and (1,1,128). The
input and output dimensions of the dense layer are 512 and 4, correspondingly. The max-pooling
and convolutional layers achieve lower image reduction with various input sizes. Less contraction
causes the internal characteristics and patterns of the image to be less distorted. After examining
the characteristics of the time, the architecture sorts the Dicom image into cyst, normal, stone, and
non-tumor categories using a fully connected layer. The proposed model is trained using the rmsprop
optimizer with 10 training epochs, and categorical-cross entropy is employed for losses and metrics.

Figure 3: Architecture of CNN model

Table 2: The CNN network summary

Layers Types Kernel size Input size Output shape

1 Conv2D 3 × 3 32 198, 198, 32
2 MaxPool2D 3 × 3 2 99, 99, 32
3 Conv2D 3 × 3 32 97, 97, 32
4 MaxPool2D 3 × 3 2 48, 48, 32
5 Conv2D 3 × 3 64 46, 46, 64
6 MaxPool2D 3 × 3 2 23, 23, 64
7 Conv2D 3 × 3 64 21, 21, 64
8 MaxPool2D 3 × 3 2 10, 10, 64
9 Conv2D 3 × 3 128 8, 8, 128
10 MaxPool2D 3 × 3 2 4, 4, 128
11 Conv2D 3 × 3 128 2, 2, 128
12 MaxPool2D 3 × 3 2 1, 1, 128
13 Flatten – – 128
14 Dense – 512 512
15 Dense – 4 4

The steps to detect kidney disease are given in Algorithm 1. First, input the CT kidney disease
dataset D_s, then performs the image processing I_p and convert the Dicom images into JPEG format.
Resize R_s the images into 227 × 227 pixels and extract the features f _e using the CNN model. After
feature extraction, classify the images and get the four classes cyst, tumor, normal, and stone. E_s is
the current epoch, EpochSize represents the total number of epochs, similar B_s is the current batch
size, and BatchSize shows the total number of batch sizes. The following parameter model parameters,
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such as an epoch value, activation function, and batch size, are utilized to compute the model loss. The
procedure is repeated until the requisite is attained or the loss function is constantly minimized. Fig. 4
depicts the graphical representation of the proposed CNN architecture.

Figure 4: Proposed CNN architecture
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4 Results and Discussion

The performance of the proposed model has been discussed in this part. The proposed model is
assessed on many criteria, including accuracy, recall, precision, and f1-score. The proposed model is
evaluated using these parameters to determine if it outperforms the existing approaches and whether
it is suitable for the timely identification of kidney disease. The proposed model is implemented on a
dataset of CT kidney disease images, and the CNN model is employed on this dataset.

4.1 Evaluation Metrics
The prediction and classification issues are assessed using a variety of measures, such as accuracy,

F1-score recall, and precision. The following evaluation measures gauge how well the proposed model
works.

Accuracy: To assess the precision of the suggested model, compute the proportion of false
positives, true positives, true negatives, and false negatives. Eq. (1) represents the accuracy estimate.

Algorithm 1: Proposed CNN model Pseudo Code
1: Input Dataset: Ds (CT Kidney disease dataset)
2: Image pre-processing: Ip (Dicom images)
3: Image = Rs (227 × 227) (resize image)
4: Feature extraction: f e (CNN model)
5: image classification: Ic (cyst, tumor, normal, stone)
6: for (Es in EpochSize) do
7: for (Bs in BatchSize), do
8: Ls ← Categorical_crossentropy (Loss)
9: Af ← relu (Activation Function)
10: Om ← rmsprop (Optimizer)
11: Em ← evaluation metrics
12: EndFor
13: EndFor Results

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Precision: The proportion of actual positives to all positives in the data (both false and true).
Eq. (2) presents the precision rate. Alternatively known as a highly anticipated value.

Precision = TP
TP + FP

(2)

Recall: A dataset’s ratio of real positives to true positives and false negatives is described using
sensitivity, the likelihood of detection, and the probability of a genuine positive. Eq. (3) indicates the
recall rate.

Recall = TP
TN + FN

(3)

F1-Score: The weighted average of recall and precision is the F1-score. The F1-score is provided
in Eq. (4).

F1-score = 2 × Precision + Recall
Precision + Recall

(4)
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4.2 Experimental Analysis and Results
The results of the proposed model are provided in Table 3. The CNN model accurately detects

kidney illness, either cyst, normal, stone, or tumor, by achieving accuracy of 99.94%, 99.95% precision,
99.92% recall, and 99.94% F1-score. The proposed approach is implemented in a convolutional
neural network model. The convolutional neural network’s accuracy, loss, precision, and recall during
training and validation are graphically shown in Fig. 5. The first graph represents the precision
curves where blue line represents the training precision curve; an orange line represents the validation
precision curve. At the 0th epoch, the training precision is 0.65; after various fluctuations between falls
and gains, it reached about 0.99 at the 8th epoch. At the 0th epoch, validation precision starts around
0.76; however, it also reaches to around 0.985. The second graph on the right side represents the recall
curves. The training recall is 0.3 at the 0th epoch and varied between drops and gains until it reached
roughly 0.99 at the 8th epoch. Validation recall start from 0.35 at the 0th epoch and reaches around 1.0.

Table 3: Performance of CNN model in percentage

Model Accuracy Precision Recall F1-score

CNN 99.94 99.95 99.22 99.94

The third graph in Fig. 5 represents the accuracy curves of the model. Training accuracy started
around 0.5 at the 0th epoch and improved to about 1.0 at the 8th. At the 0th epoch, validation accuracy
initiated from about 0.65 and improved to around 1.0 by the 8th. The last graph depicts the loss model.
During the training phase, the loss fluctuates at most of the epoch. Training loss initiated from 1.0 at
the 0th epoch, after various fluctuations between falls and gains, decreased to 0.05 at the 8th epoch.
Validation loss is 0.95 at the 0th; however, it fluctuates between drops and gains until reaching 0.1 loss
at the 8th epoch.

Figure 5: (Continued)
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Figure 5: Results based on various evaluation metrics of CNN architecture

Fig. 6 graphically shows the confusion matrix of the proposed approach. For CNN model, it
diagnoses kidney disease in four categories: cysts, normal, stone, and tumor. Because it has more
continuous, better true positive and negative results and fewer false positive and negative values, the
proposed technique performs better.

Figure 6: Confusion matrix of the proposed model

The comparison of the suggested model with existing techniques is presented in Table 4. In [9]
researcher provides the outcomes in terms of accuracy 90%. In [36] author gave the result in terms of
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accuracy of 97.5% and precision of 99%. The provided results clearly show that the suggested model
outperforms the existing techniques.

Table 4: Proposed model comparison with previous techniques

Reference Techniques Accuracy Precision Recall F1-measure

[9] ML algorithms 90% – – –
[36] HMANN 97.5% 99% – –
Proposed approach CNN 99.94% 99.95% 99.22% 99.94%

5 Conclusion

Kidney disease is a severe medical issue that considerably increases mortality risk and morbidity
worldwide. Renal failure could result from kidney damage if not regularly diagnosed and treated.
Computer-assisted diagnostics are necessary to help clinicians’ and experts’ diagnostic decisions since
chronic renal disease is becoming more prevalent, fewer experts are available, and diagnosis and
treatment are costly. Several methods have been used in the ML and DL domains of medical image
processing in the early phases of disease detection and prediction. This research proposes the deep
learning CNN model for classifying kidney disease using NN models after transferring DICOM
images into jpg files. Second, the proposed model retrieves the features using a convolutional neural
network. The proposed model performs best, obtaining accuracy of 99.94%, 99.95% precision, 99.92%
recall, and 99.94% F1-score. The findings demonstrate that the proposed approach is more effective
in identifying kidney disease, including cysts, tumors, or normal kidney disease. Future research
would use a combination of extraction, optimization, and ensemble deep learning models to study
the performance of the suggested approach. Additionally, the generalizability of the model will be
examined using other datasets.

Acknowledgement: This work was supported by the Deanship of Scientific Research at Prince Sattam
Bin Aziz University under the Research Project (PSAU/2023/01/22425).

Funding Statement: This work was supported by the Deanship of Scientific Research at Prince Sattam
Bin Aziz University under the Research Project (PSAU/2023/01/22425).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Mohiyuddin, A. Basharat, U. Ghani, V. Peter, S. Abbas et al., “Breast tumor detection and classification

in mammogram images using modified YOLOv5 network,” Computational and Mathematical Methods in
Medicine, vol. 2022, no. 3, pp. 1–16, 2022. https://doi.org/10.1155/2022/1359019

[2] M. Mehmood, M. Rizwan, M. G. ml and S. Abbas, “Machine learning assisted cervical cancer detection,”
Frontiers in Public Health, pp. 2024, 2021.

[3] S. Alsubai, H. U. Khan, A. Alqahtani, M. Sha, S. Abbas et al., “Ensemble deep learning for brain tumor
detection,” Frontiers in Computational Neuroscience, vol. 16, pp. 788347, 2022. https://doi.org/10.3389/
fncom.2022.1005617

https://doi.org/10.1155/2022/1359019
https://doi.org/10.3389/fncom.2022.1005617
https://doi.org/10.3389/fncom.2022.1005617


2132 CSSE, 2023, vol.47, no.2

[4] A. R. Javed, L. G. Fahad, A. A. Farhan, S. Abbas, G. Srivastava et al., “Automated cognitive health
assessment in smart homes using machine learning,” Sustainable Cities and Society, vol. 65, no. 9, pp.
102572, 2021. https://doi.org/10.1016/j.scs.2020.102572

[5] A. Alqahtani, S. Alsubai, M. Sha, V. Peter, A. S. Almadhor et al., “Falling and drowning detection
framework using smartphone sensors,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1–12,
2022. https://doi.org/10.1155/2022/6468870

[6] S. Alsubai, A. Alqahtani, M. Sha, S. Abbas, A. Almadhor et al., “Smart home-based complex interwoven
activities for cognitive health assessment,” Journal of Sensors, vol. 2022, no. 2, pp. 1–10, 2022. https://doi.
org/10.1155/2022/3792394

[7] S. Safdar, M. Rizwan, T. R. Gadekallu, A. R. Javed, M. K. I. Rahmani et al., “Bioimaging-based machine
learning algorithm for breast cancer detection,” Diagnostics, vol. 12, no. 5, pp. 1134, 2022.

[8] E. M. Senan, M. H. Al-Adhaileh, F. W. Alsaade, T. H. Aldhyani, A. A. Alqarni et al., “Diagnosis of chronic
kidney disease using effective classification algorithms and recursive feature elimination techniques,”
Journal of Healthcare Engineering, vol. 2021, no. 2, pp. 1–10, 2021. https://doi.org/10.1155/2021/1004767

[9] Q. Bai, C. Su, W. Tang and Y. Li, “Machine learning to predict end-stage kidney disease in chronic kidney
disease,” Scientific Reports, vol. 12, no. 1, pp. 1–8, 2022. https://doi.org/10.1038/s41598-022-12316-z

[10] M. A. Khan, A. Khan, M. Alhaisoni, A. Alqahtani, S. Alsubai et al., “Multimodal brain tumor detection
and classification using deep saliency map and improved dragonfly optimization algorithm,” International
Journal of Imaging Systems and Technology, 2022.

[11] T. Vaiyapuri, A. Binbusayyis and V. Varadarajan, “Security, privacy and trust in IoMT enabled smart
healthcare system: A systematic review of current and future trends,” International Journal of Advanced
Computer Science and Applications, vol. 12, no. 2, 2021.

[12] L. Vita-Finzi, G. WHO, Preventing Chronic Diseases: A Vital Investment. 2005.
[13] M. A. Khan, M. Alhaisoni, M. Nazir, A. Alqahtani, A. Binbusayyis et al., “A healthcare system for

COVID19 classification using multi-type classical features selection,” Computers, Materials & Continua,
vol. 74, no. 1, pp. 1393–1412, 2023. https://doi.org/10.32604/cmc.2023.032064

[14] M. Aoun, R. Salloum, A. Dfouni, G. Sleilaty and D. Chelala, “A formula predicting the effective dose of
febuxostat in chronic kidney disease patients with asymptomatic hyperuricemia based on a retrospective
study and a validation cohort,” Clinical Nephrology, vol. 94, no. 2, pp. 61–69, 2020. https://doi.org/10.5414/
CN109867

[15] N. Skafi, D. Abdallah, C. Soulage, S. Reibel, N. Vitale et al., “Phospholipase D: A new mediator during
high phosphate-induced vascular calcification associated with chronic kidney disease,” Journal of Cellular
Physiology, vol. 234, no. 4, pp. 4825–4839, 2019. https://doi.org/10.1002/jcp.27281

[16] K. J. Foreman, N. Marquez, A. Dolgert, K. Fukutaki, N. Fullman et al., “Forecasting life expectancy, years
of life lost and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative
scenarios for 2016-40 for 195 countries and territories,” The Lancet, vol. 392, no. 10159, pp. 2052–2090,
2018. https://doi.org/10.1016/S0140-6736(18)31694-5

[17] P. Budhiraja, B. Kaplan, M. Kalot, A. El Alayli, A. Dimassi et al., “Current state of evidence on kidney
transplantation: How fragile are the results?” Transplantation, vol. 106, no. 2, pp. 248–256, 2022.

[18] Z. Chen, X. Zhang and Z. Zhang, “Clinical risk assessment of patients with chronic kidney disease by
using clinical data and multivariate models,” International Urology and Nephrology, vol. 48, no. 12, pp.
2069–2075, 2016.

[19] D. N. Koye, D. J. Magliano, R. G. Nelson and M. E. Pavkov, “The global epidemiology of diabetes and
kidney disease,” Advances in Chronic Kidney Disease, vol. 25, no. 2, pp. 121–132, 2018.

[20] C. Rediger, L. Guerra, M. Keays, C. Wayne, D. Reddy et al., “Renal cyst evolution in childhood: A
contemporary observational study,” Journal of Pediatric Urology, vol. 15, no. 2, pp. 188–e1, 2019.

[21] A. J. Brownstein, S. U. B. Mahmood, A. Saeyeldin, C. V. Mejia, M. A. Zafar et al., “Simple renal cysts and
bovine aortic arch: Markers for aortic disease,” Open Heart, vol. 6, no. 1, pp. e000862, 2019.

https://doi.org/10.1016/j.scs.2020.102572
https://doi.org/10.1155/2022/6468870
https://doi.org/10.1155/2022/3792394
https://doi.org/10.1155/2022/3792394
https://doi.org/10.1155/2021/1004767
https://doi.org/10.1038/s41598-022-12316-z
https://doi.org/10.32604/cmc.2023.032064
https://doi.org/10.5414/CN109867
https://doi.org/10.5414/CN109867
https://doi.org/10.1002/jcp.27281
https://doi.org/10.1016/S0140-6736(18)31694-5


CSSE, 2023, vol.47, no.2 2133

[22] T. Alelign and B. Petros, “Kidney stone disease: An update on current concepts,” Advances in Urology,
vol. 2018, no. 1, pp. 1–12, 2018. https://doi.org/10.1155/2018/3068365

[23] J. J. Hsieh, M. P. Purdue, S. Signoretti, C. Swanton, L. Albiges et al., “Renal cell carcinoma,”Nature Reviews
Disease Primers, vol. 3, no. 1, pp. 1–19, 2017. https://doi.org/10.1038/nrdp.2017.9

[24] Q. A. Al-Haija and A. Adebanjo, “Breast cancer diagnosis in histopathological images using ResNet-50
convolutional neural network,” in 2020 IEEE Int. IOT, Electronics and Mechatronics Conf. (IEMTRON-
ICS), Vancouver, BC, Canada, IEEE, 2020.

[25] J. G. Rizk, J. G. Lazo, D. Quan, S. Gabardi, Y. Rizk et al., “Mechanisms and management of drug-induced
hyperkalemia in kidney transplant patients,” Reviews in Endocrine and Metabolic Disorders, vol. 22, no. 4,
pp. 1–14, 2021. https://doi.org/10.1007/s11154-021-09677-7

[26] P. Budhiraja, M. A. Kalot, A. El Alayli, A. Dimassi, B. Kaplan et al., “Reporting and handling of missing
participant data in systematic reviews of kidney transplant studies,” Transplantation, vol. 105, no. 8, pp.
1708–1717, 2021. https://doi.org/10.1097/TP.0000000000003503

[27] S. Gilbert and D. E. Weiner, National Kidney Foundation Primer on Kidney Diseases, E-Book. New York
City: Elsevier Health Sciences, 2022.

[28] A. R. Javed, F. Shahzad, S. Ur Rehman, Y. B. Zikria, I. Razzak et al., “Future smart cities requirements,
emerging technologies, applications, challenges and future aspects,” Cities, vol. 129, no. 3, pp. 103794, 2022.
https://doi.org/10.1016/j.cities.2022.103794

[29] K. C. Saw, J. A. McAteer, A. G. Monga, G. T. Chua, J. E. Lingeman et al., “Helical CT of urinary calculi:
Effect of stone composition, stone size and scan collimation,” American Journal of Roentgenology, vol. 175,
no. 2, pp. 329–332, 2000. https://doi.org/10.2214/ajr.175.2.1750329

[30] T. Gunasekara, P. M. de Silva, E. Ekanayake, W. Thakshila, R. Pinipa et al., “Urinary biomarkers indicate
pediatric renal injury among rural farming communities in Sri Lanka,” Scientific Reports, vol. 12, no. 1,
pp. 1–13, 2022. https://doi.org/10.1038/s41598-022-10874-w

[31] Y. Bi, X. Shi, J. Ren, M. Yi and X. Han, “Transarterial chemoembolization of unresectable renal cell
carcinoma with doxorubicin-loaded callispheres drug-eluting beads,” Scientific Reports, vol. 12, no. 1, pp.
1–8, 2022. https://doi.org/10.1038/s41598-022-12334-x

[32] A. Helwan, M. K. S. Maaitah, H. Hamdan, D. U. Ozsahin and O. Tuncyurek, “Radiologists versus
deep convolutional neural networks: A comparative study for diagnosing COVID-19,” Computational and
Mathematical Methods in Medicine, vol. 2021, no. 7, pp. 1–9, 2021. https://doi.org/10.1155/2021/5527271

[33] S. A. Ebiaredoh-Mienye, T. G. Swart, E. Esenogho and I. D. Mienye, “A machine learning method with
filter-based feature selection for improved prediction of chronic kidney disease,” Bioengineering, vol. 9, no.
8, pp. 350, 2022. https://doi.org/10.3390/bioengineering9080350

[34] E. Dritsas and M. Trigka, “Machine learning techniques for chronic kidney disease risk prediction,” Big
Data and Cognitive Computing, vol. 6, no. 3, pp. 98, 2022. https://doi.org/10.3390/bdcc6030098

[35] M. A. Abdel-Fattah, N. A. Othman and N. Goher, “Predicting chronic kidney disease using hybrid machine
learning based on Apache spark,” Computational Intelligence and Neuroscience, vol. 2022, no. 15, pp. 1–12,
2022. https://doi.org/10.1155/2022/9898831

[36] A. Helwan, M. K. S. Maaaitah, S. Uzelaltinbulat, M. Z. Altobel and M. Darwish, “Gaze prediction based
on convolutional neural network,” in Proc. of Int. Conf. on Emerging Technologies and Intelligent Systems:
ICETIS 2021, Springer, vol. 2, pp. 215–224, 2021.

[37] F. Ma, T. Sun, L. Liu and H. Jing, “Detection and diagnosis of chronic kidney disease using deep learning-
based heterogeneous modified artificial neural network,” Future Generation Computer Systems, vol. 111,
no. 15, pp. 17–26, 2020. https://doi.org/10.1016/j.future.2020.04.036

[38] C. Sabanayagam, D. Xu, D. S. Ting, S. Nusinovici, R. Banu et al., “A deep learning algorithm to detect
chronic kidney disease from retinal photographs in community-based populations,” The Lancet Digital
Health, vol. 2, no. 6, pp. e295–e302, 2020. https://doi.org/10.1016/S2589-7500(20)30063-7

https://doi.org/10.1155/2018/3068365
https://doi.org/10.1038/nrdp.2017.9
https://doi.org/10.1007/s11154-021-09677-7
https://doi.org/10.1097/TP.0000000000003503
https://doi.org/10.1016/j.cities.2022.103794
https://doi.org/10.2214/ajr.175.2.1750329
https://doi.org/10.1038/s41598-022-10874-w
https://doi.org/10.1038/s41598-022-12334-x
https://doi.org/10.1155/2021/5527271
https://doi.org/10.3390/bioengineering9080350
https://doi.org/10.3390/bdcc6030098
https://doi.org/10.1155/2022/9898831
https://doi.org/10.1016/j.future.2020.04.036
https://doi.org/10.1016/S2589-7500(20)30063-7


2134 CSSE, 2023, vol.47, no.2

[39] V. Singh, V. K. Asari and R. Rajasekaran, “A deep neural network for early detection and pre-
diction of chronic kidney disease,” Diagnostics, vol. 12, no. 1, pp. 116, 2022. https://doi.org/10.3390/
diagnostics12010116

[40] A. Almadhor, M. U. Sattar, A. Al Hejaili, U. Ghulam Mohammad, U. Tariq et al., “An efficient
computer vision-based approach for acute lymphoblastic leukemia prediction,” Frontiers in Computational
Neuroscience, pp. 171, 2022.

[41] M. Makino, R. Yoshimoto, M. Ono, T. Itoko, T. Katsuki et al., “Artificial intelligence predicts the
progression of diabetic kidney disease using big data machine learning,” Scientific Reports, vol. 9, no. 1,
pp. 1–9, 2019. https://doi.org/10.1038/s41598-019-48263-5

[42] Q. Yuan, H. Zhang, T. Deng, S. Tang, X. Yuan et al., “Role of artificial intelligence in kidney disease,”
International Journal of Medical Sciences, vol. 17, no. 7, pp. 970, 2020. https://doi.org/10.7150/ijms.42078

[43] V. Kumar, G. S. Lalotra and R. K. Kumar, “Improving the performance of classifiers for diagnosis of
critical diseases to prevent COVID risk,” Computers and Electrical Engineering, vol. 102, no. 1, pp. 108236,
2022. https://doi.org/10.1016/j.compeleceng.2022.108236

[44] V. Kumar, G. S. Lalotra, P. Sasikala, D. S. Rajput, R. Kaluri et al., “Addressing binary classification over
class imbalanced clinical datasets using computationally intelligent techniques,” Healthcare, vol. 10, pp.
1293, MDPI, 2022.

[45] U. G. Mohammad, S. Imtiaz, M. Shakya, A. Almadhor and F. Anwar, “An optimized feature selection
method using ensemble classifiers in software defect prediction for healthcare systems,” Wireless Commu-
nications and Mobile Computing, vol. 2022, no. 2, pp. 1–14, 2022. https://doi.org/10.1155/2022/1028175

[46] V. Kumar, S. Biswas, D. S. Rajput, H. Patel and B. Tiwari, “PCA-based incremental extreme learning
machine (PCA-IELM) for COVID-19 patient diagnosis using chest X-ray images,” Computational Intel-
ligence and Neuroscience, vol. 2022, no. 1, pp. 1–17, 2022. https://doi.org/10.1155/2022/9107430

[47] T. M. Ali, A. Nawaz, A. U. Rehman, R. Z. Ahmad, A. R. Javed et al., “A sequential machine learning-
cum-attention mechanism for effective segmentation of brain tumor,” Frontiers in Oncology, vol. 12, pp.
1993, 2022. https://doi.org/10.3389/fonc.2022.873268

[48] C. Dhasarathan, M. K. Hasan, S. Islam, S. Abdullah, U. A. Mokhtar et al., “COVID-19 health data analysis
and personal data preserving: A homomorphic privacy enforcement approach,” Computer Communica-
tions, vol. 199, no. 16, pp. 87–97, 2023. https://doi.org/10.1016/j.comcom.2022.12.004

[49] V. Ravi, H. Narasimhan, C. Chakraborty and T. D. Pham, “Deep learning-based meta-classifier approach
for COVID-19 classification using CT scan and chest X-ray images,” Multimedia Systems, vol. 28, no. 4,
pp. 1401–1415, 2022. https://doi.org/10.1007/s00530-021-00826-1

[50] A. Tarhini, A. Harfouche and M. De Marco, “Artificial intelligence-based digital transformation for
sustainable societies: The prevailing effect of COVID-19 crises,” Pacific Asia Journal of the Association
for Information Systems, vol. 14, no. 2, pp. 1, 2022.

[51] V. Ravi, V. Acharya and M. Alazab, “A multichannel efficientnet deep learning-based stacking ensemble
approach for lung disease detection using chest X-ray images,” Cluster Computing, pp. 1–23, 2022.

[52] V. Ravi, “Attention cost-sensitive deep learning-based approach for skin cancer detection and classifica-
tion,” Cancers, vol. 14, no. 23, pp. 5872, 2022. https://doi.org/10.3390/cancers14235872

[53] D. Alzuabi, M. Abdullah, I. Hmeidi, R. AlAzab, M. Gharaibeh et al., “Kidney tumor detection and
classification based on deep learning approaches: A new dataset in CT scans,” Journal of Healthcare
Engineering, vol. 2022, no. 1, pp. 1–22, 2022. https://doi.org/10.1155/2022/3861161

[54] C. Mondol, F. J. M. Shamrat, M. R. Hasan, S. Alam, P. Ghosh et al., “Early prediction of chronic kidney
disease: A comprehensive performance analysis of deep learning models,” Algorithms, vol. 15, no. 9, pp.
308, 2022. https://doi.org/10.3390/a15090308

[55] J. R. Lambert and E. Perumal, “Oppositional firefly optimization based optimal feature selection in chronic
kidney disease classification using deep neural network,” Journal of Ambient Intelligence and Humanized
Computing, vol. 13, no. 4, pp. 1799–1810, 2022. https://doi.org/10.1007/s12652-021-03477-2

https://doi.org/10.3390/diagnostics12010116
https://doi.org/10.3390/diagnostics12010116
https://doi.org/10.1038/s41598-019-48263-5
https://doi.org/10.7150/ijms.42078
https://doi.org/10.1016/j.compeleceng.2022.108236
https://doi.org/10.1155/2022/1028175
https://doi.org/10.1155/2022/9107430
https://doi.org/10.3389/fonc.2022.873268
https://doi.org/10.1016/j.comcom.2022.12.004
https://doi.org/10.1007/s00530-021-00826-1
https://doi.org/10.3390/cancers14235872
https://doi.org/10.1155/2022/3861161
https://doi.org/10.3390/a15090308
https://doi.org/10.1007/s12652-021-03477-2


CSSE, 2023, vol.47, no.2 2135

[56] Sante dicom viewer pro, “Santesoft ltd,”. [Online]. Available: https://www.santesoft.com/products.html
[57] Intellispace portal 9.0, “Radiology and cardiology diagnostic imaging solution | philips healthcare,”

2023. [Online]. Available: https://www.usa.philips.com/healthcare/product/HC881072/intellispace-portal-
advanced-visualization-solution

[58] M. N. Islam, M. Hasan, M. Hossain, M. Alam, G. Rabiul et al., “Vision transformer and explainable
transfer learning models for auto detection of kidney cyst, stone and tumor from CT-radiography,”
Scientific Reports, vol. 12, no. 1, pp. 1–14, 2022. https://doi.org/10.1038/s41598-022-15634-4

[59] H. Abdellatef, M. K. Hani, N. S. Husin and S. O. Ayat, “Accurate and compact convolutional neural
network based on stochastic computing,” Neurocomputing, vol. 471, no. 1, pp. 31–47, 2022. https://doi.
org/10.1016/j.neucom.2021.10.105

[60] F. Gerges, F. Shih and Danielle Azar., “Automated diagnosis of acne and rosacea using convolution neural
networks,” in 2021 4th Int. Conf. on Artificial Intelligence and Pattern Recognition, Xiamen, China, pp.
607–613, 2021.

[61] M. Goyal, R. Goyal and B. Lall, “Learning activation functions: A new paradigm for understanding neural
networks,” arXiv preprint arXiv:1906.09529, 2019.

https://www.santesoft.com/products.html
https://www.usa.philips.com/healthcare/product/HC881072/intellispace-portal-advanced-visualization-solution
https://www.usa.philips.com/healthcare/product/HC881072/intellispace-portal-advanced-visualization-solution
https://doi.org/10.1038/s41598-022-15634-4
https://doi.org/10.1016/j.neucom.2021.10.105
https://doi.org/10.1016/j.neucom.2021.10.105

	Applying Customized Convolutional Neural Network to Kidney Image Volumes for Kidney Disease Detection
	1 Introduction
	2 Literature Review
	3 Proposed Methodology
	4 Results and Discussion
	5 Conclusion
	References


