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Abstract: 3D models are essential in virtual reality, game development, archi-
tecture design, engineering drawing, medicine, and more. Compared to digital
images, 3D models can provide more realistic visual effects. In recent years,
significant progress has been made in the field of digital image encryption,
and researchers have developed new algorithms that are more secure and
efficient. However, there needs to be more research on 3D model encryption.
This paper proposes a new 3D model encryption algorithm, called the 1D
map with sin and logistic coupling (1D-MWSLC), because existing digital
image encryption algorithms cannot be directly applied to 3D models. Firstly,
this paper introduce 1D-MWSLC, which has a wider range of parameters
compared to traditional 1D chaotic systems. When the parameter exceeds
a specific range, the chaotic phenomenon does not weaken. Additionally,
1D-MWSLC has two control parameters, which increases the cryptosystem’s
parameter space. Next, 1D-MWSLC generates keystreams for confusion and
diffusion. In the confusion stage, this paper use random confusion, and the
keystream generates an index matrix that confuses the integer and decimal
parts of the 3D model simultaneously. In the diffusion stage, this paper use
parallel bidirectional diffusion to simultaneously diffuse the integer parts of
the three coordinates of the 3D model. Finally, this paper verify the proposed
algorithm through statistical analysis, and experimental results demonstrate
that the proposed 3D model encryption algorithm has robust security.

Keywords: Parallel bidirectional diffusion; chaos theory; 1D-MWSLC; image
encryption; information security

1 Introduction

The Internet’s rapid development and widespread usage have brought convenience to our lives but
also created a range of privacy and security issues [1–4]. Various applications and services generate a
significant amount of data on the Internet, including sensitive information such as personal health,
finance, and shopping records [5–8]. Hackers may attack or leak this data to third parties, posing
threats to privacy and data security [9–13].
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Digital images have become an integral part of modern society, playing a significant role in
various aspects of our daily lives. Digital images can quickly and easily convey information [14–17],
illustrate an idea, provide visual examples, and enhance the impact of text-based communication [18–
22]. Chaotic image encryption is a technology that uses chaotic systems to encrypt digital images
[23–26]. The objective is to create a secure and efficient encryption method to protect sensitive image
data from unauthorized access. In recent years, researchers have made significant progress in this
field, developing new encryption algorithms that use chaotic maps to generate encryption keys for
image encryption [27–32]. These algorithms have proven more secure and efficient than traditional
encryption methods [33–35]. For instance, Mansoor et al. [36] utilized two one-dimensional chaotic
maps to generate pseudorandom sequences and proposed a unique hybrid adaptive image encryption
(HAIE). Pratyusha et al. designed a new encryption method to use a new conservative chaotic system
based on memristors, aiming to prevent external attacks [37].

Although digital image encryption algorithms have proven to be efficient and secure, they are not
suitable for 3D models [38–42]. The representation of 3D models is different from that of digital images,
as they provide more precise information about the size, shape, and location of objects, enabling more
accurate measurements and analysis in various fields such as medicine and engineering design [43–46].

To address this issue, this paper proposes a 3D model encryption algorithm to ensure secure
transmission of 3D models over the internet. Firstly, a new chaotic system called 1D map with
sin and logistic coupling (1D-MWSLC) is introduced. This system has two control parameters,
providing a larger parameter space for cryptographic systems. 1D-MWSLC is then utilized to encrypt
3D models, with a secret key generated based on the data information of the 3D model. Four
keystreams are generated for scrambling and diffusion according to 1D-MWSLC. The scrambling
phase simultaneously scrambles the integer and fractional portions of the 3D model. In the diffusion
phase, a parallel bidirectional diffusion strategy is proposed to diffuse the integer parts of the three
coordinates of the 3D model simultaneously, starting from the center position of each coordinate axis.
This approach increases the security of the algorithm.

This paper presents the following main contributions:

1. A novel image encryption algorithm is proposed for 3D models.
2. Based on the Sin Map and Logistic Map, a 1D-MWSLC is introduced with a wide chaotic

range and good randomness, which is highly suitable for cryptography.
3. The Parallel Bidirectional Diffusion strategy is proposed to improve the efficiency of the

encryption system.
4. Simulation experiments demonstrate the effectiveness of the proposed algorithm, and compar-

ison with state-of-the-art methods shows superior performance.

The remaining sections of this paper are arranged as follows. Section 2 describes the proposed
1D Map with Sin and Logistic Coupling (1D-MWSLC) and analyzes its dynamic behavior through
methods such as chaotic attractor. Section 3 describes the proposed encryption algorithm, including
normalization and key generation, generating the keystream of the cryptographic system, scrambling,
and parallel bidirectional diffusion. Section 4 presents the simulation experiments of the algorithm
and validates its practicality through statistical tests. Section 5 concludes the paper and describes
future work.
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2 Chaotic System

2.1 Sin Map and Logistic Map
The Sin map is represented by a mathematical expression which is as follows [47]:

X(r + 1) = β sin(πX(r)). (1)

where, X(1) is the initial values of Sin map, β is the parameter of Sin map.

The Logistic Map is represented by a mathematical expression which is as follows:

X(r + 1) = αX(r)(1 − X(r)). (2)

where, X(1) is is the initial values of Logistic Map, α is the parameter of Logistic Map.

2.2 1D Map with Sin and Logistic Coupling (1D-MWSLC)
One-dimensional chaotic maps have fewer parameters and smaller ranges, chaos will be reduced

or even eliminated once the parameters exceed a certain range. Therefore, this paper proposes the
1D-MWSLC. The 1D-MWSLC is represented by a mathematical expression which is as follows:

X(r + 1) = β sin(e5παX(r)(1 − X(r))). (3)

where, X(1) is is the initial values of 1D-MWSLC, X ∈ [−β, β], α (α ∈ (0, +∞)) and β (β ∈ (0, +∞))
are the parameters of 1D-MWSLC.

2.3 Chaotic Attractor
Chaotic attractors describe the changes in the output of a system. Systems with complex, chaotic

behaviors have complex attractors occupying a large space. Fig. 1 describes the 2D chaotic attractor
of 1D-MWSLC. Fig. 2 describes the 3D chaotic attractor of 1D-MWSLC. Note that x is randomly
selected and can be any value. To show the chaotic attractor, this paper randomly select the initial
value of 1D-MWSLC is x(1) = 0.94905165561134.

Figure 1: 2D chaotic attractor of 1D-MWSLC

Fig. 3 describes the 2D and 3D chaotic attractors of the Sin map and Logistic map. Set the same
parameters and initial values as 1D-MWSLC. The comparison results show that under the same
parameters and initial values, 1D-MWSLC has more complex attractors and occupies more space than
the Sin and Logistic maps. 1D-MWSLC has good chaotic behavior and generates random sequences.
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Figure 2: 3D chaotic attractor of 1D-MWSLC

Figure 3: Chaotic attractor of 3D and 2D of Sin map and Logistic map

2.4 Lyapunov Exponents
The Lyapunov exponent (LE) is applied to evaluate chaotic behavior of systems. Fig. 4 describes

Lyapunov exponent of the 1D-MWSLC with different parameters β. Fig. 5 describes Lyapunov
exponent of the 1D-MWSLC with different parameters α.

Figure 4: Lyapunov exponents of the 1D-MWSLC with different parameters β

Figure 5: Lyapunov exponents of the 1D-MWSLC with different parameters α
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LE analysis shows that 1D-MWSLC is globally chaotic, and the value of LE tends to increase as
β and α increase, indicating that the larger the values of α and β, the better the chaotic performance
of 1D-MWSLC.

Fig. 6 describes the Lyapunov exponents of the Sin map and Logistic map. Because the Sin map
and Logistic map have fewer parameters and smaller ranges, chaos will be reduced or even eliminated
once the parameters exceed a certain range. Compared to Sin and Logistic maps, 1D-MWSLC has a
larger chaotic range.

Figure 6: Lyapunov exponents of Sin map and Logistic map

2.5 Approximate Entropy (ApEn)
The ApEn comparison results for 1D-MWSLC, Sin map, and Logistic map are shown in Table 1.

The ApEn analysis results show that under the same parameter conditions, the ApEn of 1D-MWSLC
has a more stable value and a larger value than the ApEn of the Sin map and Logistic map. This
indicates that 1D-MWSLC has a stable performance of generating many random numbers.

Table 1: Approximate entropy

α β Sin map Logistic map 1D-MWSLC

0.5 1 0.6007 - 1.2281
2 1 0.6007 0.0000007 1.2259
3.9 1 0.6007 0.4578 1.2442
3.9 1.2 0.6693 0.4578 1.2347
3.9 2 0.9760 0.4578 1.2349
3.7 10 1.2677 0.3603 1.2319
3.7 19 1.2128 0.3603 1.2315
10 9.8 1.1912 - 1.2260
20 19 1.2128 - 1.2300
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3 Application to 3D Symmetric Encryption of 1D-MWSLC

Because 1D-MWSLC exhibits excellent performance and can generate many acyclic key streams,
it is very suitable for cryptography. Therefore, this section discusses the application of 1D-MWSLC in
3D model encryption. The encryption process is described below. The encryption process diagram is
shown in Fig. 7.

Figure 7: The encryption process diagram

3.1 Normalization and Key Generation
Unlike digital images, the data type of a 3D model contains arbitrary floating point numbers.

Therefore, in the designed encryption algorithm, normalization processing is first performed to align
the data type of the 3D model with the data type of the digital image.

TDM represents 3D model, TDM ∈ (−∞, +∞), and the size of TDM is L×3. The normalization
process is as follows,

NTDM = 255 × TDM − min TDM
max TDM − min TDM

. (4)

Now NTDM ∈ [0, 255].

The secret key of the cryptosystem is generated by the new 3D model (NTDM), which are⎧⎪⎪⎨
⎪⎪⎩

KM1 =
L∑

d=1

NTDM (d, 1) × 10−10

f1(c + 1) = 3.99997 × f1(c) × (1 − f1(c))
c = 1, 2, 3, . . . ., 100, f1(1) = KM1

,

⎧⎪⎪⎨
⎪⎪⎩

KM2 =
L∑

d=1

NTDM (d, 2) × 10−10

f2(c + 1) = 3.99998 × f2(c) × (1 − f2(c))
c = 1, 2, 3, . . . ., 100, f2(1) = KM2

. (5)

⎧⎪⎪⎨
⎪⎪⎩

KM3 =
L∑

d=1

NTDM (d, 3) × 10−10

f3(c + 1) = 3.99999 × f3(c) × (1 − f3(c))
c = 1, 2, 3, . . . ., 100, f3(1) = KM3

,

⎧⎪⎨
⎪⎩

F1 = f1(100)

F2 = f2 × 100 + 1
F3 = f3 × 100 + 1

. (6)

F1, F2, F3 are the secret keys of the cryptographic system. During the stream cipher generation
phase, F1, F2, F3 are the initial values and parameters of 1D-MWSLC.



CSSE, 2023, vol.47, no.2 1825

3.2 Generating the Keystream of the Cryptographic System
Generate keystreams based on the secret key (F1, F2, F3) by 1D-MWSLC, which are{

KS1 : Xc+1 = β sin(e5παXc(1 − Xc))

β = F1, α = F2, X1 = F3

,

{
KS2 : Xc+1 = β sin(e5παXc(1 − Xc))

β = F1, α = F3, X1 = F2

. (7)

{
KS3 : Xc+1 = β sin(e5παXc(1 − Xc))

β = F1, α = F2 + F3, X1 = F3

,

{
KS4 : Xc+1 = β sin(e5παXc(1 − Xc))

β = F1, α = F2, X1 = F3 + F2

. (8)

When 1D-MWSLC is sufficiently chaotic, the key stream is extracted,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

KS1 = KS1(floor(F1 × 50) + 200 : L × 3 − 1)

KS2 = KS2(floor(F2 × 10) + 200 : L − 1), KKS2 = floor(KS2 × 1010)mod256
KS3 = KS3(floor(F3 × 10) + 200 : L − 1), KKS3 = floor(KS3 × 1010)mod256
KS4 = KS4(floor(F1 × 40) + 200 : L − 1), KKS4 = floor(KS4 × 1010)mod256

. (9)

3.3 Scrambling and Parallel Bidirectional Diffusion
In the scrambling phase, both the integer and fractional parts of the 3D model undergo simul-

taneous scrambling. In the diffusion phase, this paper suggest a bidirectional diffusion strategy that
operates in parallel. All three coordinates of the 3D model are diffused simultaneously, starting from
the center position of each coordinate axis. The diffusion operations are exclusively performed on the
integer portions of the 3D model.

Input: NTMD, KS1, KS2, KS3, KS4

Output: CTDM

Step1: Convert NTMD (L × 3) to NTMD (1 × 3L) by

NTDM = reshape(NTDM, 1, L × 3). (10)

Step2: Generate Index Matrix LP,

LP = sort(KS1). (11)

where, KS1 is sorted from small to large and the index of its original matrix is found, recorded as LP.

Step3: The scrambling steps is,

SNTDM(c) = NTDM(LP(c)), c = 1, 2, 3, . . . ., L × 3. (12)

Step4: Convert SNTMD (1 × 3L) to SNTMD (L × 3) by

SNTDMA = reshape(SNTDM, L, 3). (13)

Step5: During the diffusion process, only integer operations are performed on 3D models, and
integer extraction of 3D models is performed through,{

SNTDMA1 = floor(SNTDMA)

SNTDMA2 = SNTDMA − SNTDMA1

. (14)
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Step 6: In the parallel bidirectional diffusion stage, the starting point of bidirectional diffusion is
PAW , where

PAW = floor(L/2). (15)

Step 7: The specific steps for parallel bidirectional diffusion are as follows. Note that these three
steps are performed simultaneously,⎧⎪⎨
⎪⎩

CAP(PAW) = SNTDMA1(PAW , 1) + KKS2(PAW)mod256
CAP(r)=SNTDMA1(r, 1)+KKS2(r)+CAP(r − 1)mod256, r = PAW +1 : PA
CAP(r)=SNTDMA1(r, 1)+KKS2(r)+CAP(r + 1)+CAP(r + 2)mod256, r=PAW − 1 : −1 : 1

.

(16)

⎧⎪⎨
⎪⎩

CBP(PAW) = SNTDMA1(PAW , 2) + KKS3(PAW)mod256
CBP(g) = SNTDMA1(g, 2) + KKS3(g) + CBP(g − 1)mod256), g = PAW + 1 : PA
CBP(g)=SNTDMA1(g, 2)+KKS3(g)+CBP(g + 1)+CBP(g + 2)mod256, g=PAW − 1 : −1 : 1

.

(17)

⎧⎪⎨
⎪⎩

CBP(PAW) = SNTDMA1(PAW , 3) + KKS3(PAW)mod256
CBP(b) = SNTDMA1(b, 3) + KKS4(b) + CCP(b − 1)mod256), b = PAW + 1 : PA
CBP(b)=SNTDMA1(b, 3)+KKS4(b)+CCP(b + 1)+CCP(b + 2)mod256, b=PAW − 1 : −1 : 1

.

(18)

Step 8: The ciphertext CTMD of the 3D model is{
CTDM = [CAP; CBP; CCP]
CTDM = CTDM + SNTDMA2

. (19)

3.4 Decryption Algorithm
The proposed 3D model encryption algorithm is a symmetric encryption algorithm. Therefore,

the decryption process is the inverse of the encryption process. More specifically,

Input: CTDM, KS1, KKS2, KKS3, KKS4.

Output: NTMD

Step1: Decompose CTDM into CAP, CBP, CCP and SNTDMA2.

Step 2: The inverse process of diffusion is⎧⎪⎨
⎪⎩

SNTDMA1(PAW , 1) = CAP(PAW) − KKS2(PAW)mod256
SNTDMA1(r, 1) = CAP(r) − KKS2(r) − CAP(r − 1)mod256, r = PAW + 1 : PA
SNTDMA1(r, 1)=CAP(r)−KKS2(r)−CAP(r + 1)−CAP(r + 2)mod256, r=PAW − 1 : −1 : 1

.

(20)
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⎧⎪⎨
⎪⎩

SNTDMA1(PAW , 2) = CBP(PAW) − KKS3(PAW)mod256
SNTDMA1(g, 2) = CBP(g) − KKS3(g) + CBP(g − 1)mod256), g = PAW + 1 : PA
SNTDMA1(g, 2)=CBP(g)−KKS3(g)+CBP(g + 1)+CBP(g + 2)mod256, g=PAW −1 : −1 : 1

.

(21)

⎧⎪⎨
⎪⎩

SNTDMA1(PAW , 3) = CBP(PAW) − KKS3(PAW)mod256
SNTDMA1(b, 3) = CBP(b) − KKS4(b) − CCP(b − 1)mod256), b = PAW + 1 : PA
SNTDMA1(b, 3)=CBP(b)−KKS4(b)−CCP(b + 1)−CCP(b + 2)mod256, b=PAW −1 : −1 : 1

(22)

Step 3: The reverse process of scrambling is

NTDM(LP(c)) = SNTDM(c), c = 1, 2, 3, . . . ., L × 3.

where SNTDM = SNTDMA1 + SNTDMA2, and LP is generated by KS1.

3.5 An Example of Encryption
Due to its two control parameters, the 1D-MWSLC offers a larger parameter space for the

cryptographic system. The algorithm generates a key stream for both confusion and diffusion. The
3D model is regularized (TDM → NTMD) and mapped to [0, 255]. In the confusing stage, random
confusion is applied. The key stream generates an index matrix that confuses both the integer and
decimal parts of the 3D model, as illustrated in Fig. 8. In the diffusion stage, parallel bidirectional
diffusion is employed simultaneously to diffuse the integer parts of the three coordinates of the 3D
model, as depicted in Fig. 9.

Figure 8: Normalization and scrambling
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Figure 9: Parallel bidirectional diffusion

4 Performance Analysis

4.1 Visualization
In order to assess the security and viability of the suggested algorithm, an algorithmic test was

performed on a 3D model obtained from the Stanford 3D scanning repository database (https://
graphics.stanford.edu/data/3Dscanrep/). The evaluation findings, presented in Fig. 10, demonstrate
that the plaintext information in the encrypted image cannot be identified. This validates that the
proposed encryption technique is highly effective in preventing the leakage of plaintext information
content.

Figure 10: (Continued)

https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/
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Figure 10: Visualization of 3D model for dragonStandRight_0 (41841 × 3)

4.2 Key Space and Key Sensitivity Analysis
The secret key of the algorithm includes F1(F1 ∈ (0, 1)), F2(F2 ∈ (0, 100)), and F3(F3 ∈ (0, 100)).

If the calculation accuracy of the computer is 10−15. The key space of the algorithm is

KeySpace = 1015 × 1017 × 1017 = 1047 ≈ 2156.

When the secret key space of the algorithm is greater than 2100, it is considered that the algorithm
can resist violent attacks. Therefore, the proposed algorithm has good resistance to violent attacks.

For a secure cryptographic system, the more sensitive the encryption algorithm is to the secret
key, the more difficult it is to decipher it with various opportunities for plaintext analysis. In
dragonStandRight_0, the initial key is

KY1 =

⎧⎪⎨
⎪⎩

F1 = 0.7629504319360213
F2 = 0.3561951297073947
F3 = 0.5143438570224240

.

Use the new secret key to decrypt the encryption algorithm, which are

KY2 =

⎧⎪⎨
⎪⎩

F1 = 0.7629504319360213 + 10−15

F2 = 0.3561951297073947
F3 = 0.5143438570224240

, KY3 =

⎧⎪⎨
⎪⎩

F1 = 0.7629504319360213
F2 = 0.3561951297073947 + 10−15

F3 = 0.5143438570224240
,

KY4 =

⎧⎪⎨
⎪⎩

F1 = 0.7629504319360213
F2 = 0.3561951297073947
F3 = 0.5143438570224240 + 10−15

.

The decryption results are shown in Fig. 11. The secret key analysis shows that the proposed
encryption algorithm is sensitive to the secret key.
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Figure 11: Key sensitivity analysis

4.3 Information Entropy Analysis
Information entropy can indicate the level of pseudorandomness in an image. A higher infor-

mation entropy value indicates good pseudorandomness. Table 2 presents the analysis results of
information entropy. Furthermore, Table 3 compares the results of our proposed algorithm with
algorithms in Ref. [48] and Ref. [49].

Table 2: Information entropy analysis

3D models Plaintext Ciphertext

bun_zipper 7.72174 7.99856
dragonStandRight_0 7.59763 7.99884
drill_1.6 mm_0_cyb 6.78711 7.99301
xyzrgb_manuscript 6.61928 7.99998
xyzrgb_dragon 7.46354 7.99998

#Average 7.18144 7.99807

Table 3: Information entropy comparison

Algorithms Proposed Ref. [48] Ref. [49]

Information entropy 7.9981 7.9980 7.9959

The comparison shows that our proposed algorithm achieves similar information entropy as the
theoretical value, and the information entropy is closer to the theoretical value than algorithms in Ref.
[48] and in Ref. [49]. The coordinate distribution in the generated ciphertext image demonstrates good
randomness.

4.4 Correlation Analysis
In the original 3D model, adjacent coordinates have a strong correlation, meaning accessing a

small amount of plaintext information can reveal the entire message. Fig. 12 shows a correlation
analysis of plaintext and ciphertext images (dragonStandRight_0). Obtaining a correlation image of
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the ciphertext shows a scattered pattern, indicating that the correlation between adjacent pixel values
is minimal.

Figure 12: Correlation analysis

Reducing complexity and enhancing security: Table 4 presents the correlation analysis results
obtained using the proposed algorithm. The analysis indicates that the pixel correlation in the
ciphertext is weak, with a correlation coefficient close to zero. Therefore, it is unlikely for an attacker
to extract meaningful information from the ciphertext pixel values.

Table 4: Correlation coefficients
3D models Plaintext Ciphertext

X Y Z X Y Z

bun_zipper 0.69663 0.79876 0.76797 0.01002 0.00224 -0.01078
dragonStandRight_0 0.97925 0.99998 0.98294 0.00186 0.01132 0.00165
drill_1.6 mm_0_cyb 0.92989 0.99998 0.97733 -0.00543 0.00784 -0.02057
xyzrgb_manuscript 0.99999 0.99931 0.99709 -0.00094 0.00020 -0.00103
xyzrgb_dragon 0.99865 0.99773 0.99907 -0.00045 -0.00009 -0.00005

#Average 0.92088 0.95915 0.94488 0.00101 0.00430 -0.00615

In addition, Table 5 provides a comparison between the correlation results obtained using the
proposed algorithm and those from other algorithms, such as those reported in the cited references
[48,49]. The comparison reveals that the proposed algorithm produces lower correlation values,
indicating that it offers good security.
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Table 5: Correlation coefficients comparison

Algorithms Proposed Ref. [48] Ref. [49]

X-direction 0.0010 −0.0055 −0.0254
Y-direction 0.0043 0.0081 −0.0097
Z-direction –0.0061 0.0115 0.0049

4.5 NIST Statistical Test Suite
The NIST Statistical Test Suite includes various tests, such as the Frequency (Monobit) Test,

Block Frequency Test, Runs Test, Longest Run of Ones in a Block Test, and Random Excursions
Test. These tests can be applied to both plaintexts and ciphertexts to evaluate the strength and security
of a cryptographic algorithm. Table 6 presents the NIST results for plaintexts and ciphertexts. All of
the tests resulted in a value of 0 for the plaintexts, indicating that they failed to meet the statistical
randomness requirements of the NIST tests. However, the ciphertexts passed all of the tests, indicating
that the proposed algorithm is highly resistant to statistical attacks on the ciphertext, which is a
desirable property for a secure encryption algorithm.

Table 6: NIST For plaintexts and ciphertexts

Statistical test Plaintexts Pass (Y/N) Ciphertexts Pass (Y/N)

Non-overlapping template
matching

0 N 0.949 Y

Serial 0 N 0.253 Y
Block frequency 0 N 0.739 Y
Frequency 0 N 0.299 Y
Approximate entropy 0 N 0.468 Y
Longest run of ones 0 N 0.148 Y
Cumulative sums 0 N 0.671 Y
Random excursions 0 N 0.350 Y
Random excursions variant 0 N 0.350 Y
Linear complexity 0 N 0.066 Y
Overlapping template
matching

0 N 0.739 Y

Spectral 0 N 0.407 Y
Runs 0 N 0.534 Y
Universal 0 N 0.739 Y
Rank 0 N 0.671 Y

4.6 Histogram Analysis
Histogram analysis provides a deeper understanding of the central tendency, variability, and

skewness of data. The histogram analysis is shown in Fig. 13. The uniform distribution of the
ciphertext’s histogram indicates that the encryption algorithm’s ciphertext has a high degree of
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randomness and unpredictability. This can enhance the security of the encryption algorithm because
an attacker cannot gain any information about the plaintext or key by analyzing the histogram of the
ciphertext.

Figure 13: Histogram analysis

The chi squared test of histograms is a statistical method used to evaluate the difference between
observed and expected values. The chi squared test is shown in Table 7.

Table 7: Chi square test

3D models Plaintext Ciphertext

bun_zipper 46108.86 254.14
dragonStandRight_0 80485.98 219.78
drill_1.6 mm_0_cyb 25647.97 226.80
xyzrgb_manuscript 64901635.34 239.66
xyzrgb_dragon 7517109.52 244.30

The table shows the chi-square test results performed on plaintext and ciphertext data for different
3D models. The values in the table represent the chi-square statistic for each model. For all models,
the chi-square statistic for the plaintext is much higher than that of the ciphertext, indicating that
the distribution of the plaintext data is not uniform. Overall, the results suggest that the encryption
algorithm used in the study produces ciphertext with a more uniform distribution than plaintext, which
is desirable for ensuring the security of the data.

4.7 Robustness Analysis
Robustness analysis can help determine the applicability of encryption algorithms in practical

applications, as encrypted images may be subject to various unexpected and intentional attacks in
practical scenarios. By subjecting the encrypted image to various attacks, such as noise attacks, the
robustness of the encryption algorithm against these attacks can be evaluated. This paper evaluates
the robustness of the algorithm using dragonStandRight_0, as shown in Fig. 14. If the encryption
algorithm can still protect the confidentiality of the image in the face of various attacks, it can be
considered to have good robustness. The results of the robustness analysis indicate that the tested
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encryption algorithm can protect the confidentiality of the image in the face of attacks and has strong
security.

Figure 14: Robustness analysis

4.8 Differential Attack Analysis
Differential attacks are one of the most common methods used to break encryption algorithms.

In image encryption, a differential attack involves identifying the changes in the pixel values between
two similar images. The differential attack then uses this information to derive the encryption key or
recover the plaintext. As suggested by Wu in Ref. [50], if the NPCR value is greater than 99.5893%
and the UACI value falls between 33.3730% and 33.5541%, then the algorithm is considered resistant
to differential attacks. The differential attack analysis is shown in Table 8.

Table 8: Differential attack analysis

3D models NPCR (%) Pass (Y/N) UACI (%) Pass (Y/N)

bun_zipper 99.60 Y 33.46 Y
dragonStandRight_0 99.59 Y 33.51 Y
drill_1.6 mm_0_cyb 99.60 Y 33.41 Y
xyzrgb_manuscript 99.61 Y 33.45 Y
xyzrgb_dragon 99.60 Y 33.48 Y

The analysis of differential attacks shows that the NPCR values of all models are above 99.59%,
while the UACI values are between 33.41% and 33.54%, indicating that these algorithms can resist
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differential attacks. Therefore, all models have passed the test, demonstrating the algorithm’s excellent
ability to resist differential attacks.

5 Conclusion

In recent years, significant progress has been made in digital image encryption, resulting in the
development of new, more secure, and efficient algorithms. However, there is still a pressing need for
research on 3D model encryption, as existing digital image encryption algorithms are not directly
applicable to 3D models. This paper proposes a new 3D model encryption algorithm based on a 1D
map with sin and logistic coupling (1D-MWSLC). The 1D-MWSLC algorithm has a broader range
of parameters than traditional 1D chaotic systems, and its chaotic phenomenon remains robust even
when the parameter exceeds a specific range.

Furthermore, the 1D-MWSLC algorithm has two control parameters, resulting in a larger
parameter space for the cryptosystem. The algorithm generates keystreams using 1D-MWSLC for
both confusion and diffusion. During the confusion stage, random confusion is applied, and the
keystream generates an index matrix that simultaneously confuses the integer and decimal parts of
the 3D model. In the diffusion stage, parallel bidirectional diffusion is used to diffuse the integer
parts of the three coordinates of the 3D model. The proposed algorithm has been verified through
statistical analysis, with experimental results demonstrating its robust security. Overall, this new 3D
model encryption algorithm based on 1D-MWSLC represents a significant advancement in 3D model
encryption.

Despite the proposed algorithm’s significant advancement in the field of 3D model encryption,
there is still scope for further research. Future work could investigate the algorithm’s performance on
different types of 3D models, including larger and more complex models, and compare its performance
with other existing encryption algorithms. Additionally, it would be useful to explore the algorithm’s
applicability to color and binary images as a dataset in other domains.
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