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Abstract: The high dimensionalhyperspectral image classification is a chal-
lenging task due to the spectral feature vectors. The high correlation between
these features and the noises greatly affects the classification performances.
To overcome this, dimensionality reduction techniques are widely used. Tradi-
tional image processing applications recently propose numerous deep learning
models. However, in hyperspectral image classification, the features of deep
learning models are less explored. Thus, for efficient hyperspectral image
classification, a depth-wise convolutional neural network is presented in this
research work. To handle the dimensionality issue in the classification process,
an optimized self-organized map model is employed using a water strider opti-
mization algorithm. The network parameters of the self-organized map are
optimized by the water strider optimization which reduces the dimensionality
issues and enhances the classification performances. Standard datasets such
as Indian Pines and the University of Pavia (UP) are considered for exper-
imental analysis. Existing dimensionality reduction methods like Enhanced
Hybrid-Graph Discriminant Learning (EHGDL), local geometric structure
Fisher analysis (LGSFA), Discriminant Hyper-Laplacian projection (DHLP),
Group-based tensor model (GBTM), and Lower rank tensor approximation
(LRTA) methods are compared with proposed optimized SOM model. Results
confirm the superior performance of the proposed model of 98.22% accuracy
for the Indian pines dataset and 98.21% accuracy for the University of Pavia
dataset over the existing maximum likelihood classifier, and Support vector
machine (SVM).

Keywords: Hyperspectral image; dimensionality reduction; depth-wise
separable model; water strider optimization; self-organized map

1 Introduction

Hyperspectral image contains rich spatial and spectral information. Analyzing information-rich
hyperspectral images have prominent applications in various domains like mining, military, agriculture,
etc. [1,2]. Reflectance spectrum of hyperspectral images can be used to detect the different viability of
objects. However precise analysis of different spectrums through the naked eye is quite impossible.
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Thus, image processing algorithms are used to extract the essential features from the hyperspectral
images. The fine spectral resolution of images is obtained through remote sensing sensors which
utilize multiple adjacent narrow spectral bands to construct an HSI image [3]. Hyperspectral sensors
generate wavelength bands in the visible and infrared spectra [4,5] and analyzing these spectral
bands will provide target information in a better manner [6]. The HSI image pixels are composed of
electromagnetic radiation bands [7] and hypercubes are used to represent the HSI in three dimensions.
The spatial information is represented in the first two dimensions and the third dimension is used for
representing the spectral information. The spatial information (x and y) and the spectral information
(f) are represented as hypercube as x ∗ y ∗ f to represent all the data [8,9].

While the large spectrum dimensionality of HSI helps with pattern identification precision,
the processing and analysis of such a large amount of data are hampered [10]. It is also frequent
in Hyperspectral image analysis for numerous spectral bands to be correlated, which means that
redundant information is being processed. Because of this, dimensionality reduction is a key stage
in the processing of HSI [11]. A classifier’s performance can be severely affected if redundant data is
not removed using dimensionality reduction. Thus, dimensionality reduction in HSI processing can
reduce costs and irrelevant resource utilization while maintaining information quality [12]. Nonlinear
and linear dimensional methods include Maximum Noise Fraction (MNF) method [13,14] for noise
removal. While processing HSI spatially, recent supervised dimensionality reduction algorithms are
focused on decreasing the data’s dimensionality. A dimensionality reduction can be achieved by
utilizing local neighborhood information, such as Fisher’s LDA [15] and regularised model [16]. But
the fundamental drawback of these approaches is the requirement for labeled data to reduce the
dimensionality. For RS applications, unsupervised dimensionality reduction approaches have gained
attention because of the lack of this information [17,18]. The lack of labeled examples is addressed by
unsupervised dimensionality reduction methods, which aim to identify a different illustration of the
data in a lower space. In this research study, initially, noises are removed using the DL technique, and
then the pre-processed image is fed into SOM for dimensionality reduction. In the SOM, weight is
updated by using the optimization model. The experiments are carried out on two publicly available
datasets in terms of several metrics.

The remaining discussions are arranged in the following order. A brief literature analysis of
existing research works is presented in Section 2. The proposed optimized dimensionality reduction
model is presented in Section 3. Experimental results and discussion are presented in Section 4 and
the conclusion is presented in Section 5.

2 Related Works

Various dimensionality reduction methods are evolved in recent times which support Hyperspec-
tral image classification applications. The dimensionality reduction model presented in [19] presents
a shape adaptive tensor factorization model which extracts the patch features to develop fourth-
order tensors. Similarly, the latent features are extracted in the presented approach using the mode
i-tensor matrix. The dimensionality-reduced features are processed through sparse multinomial
logistic regression to attain better classification performances. The dimensionality reduction model
presented in [20] presents a graph-based spatial and spectral scaling cut procedure that incorporates
both spectral and spatial domain features. The presented approach initially includes a guided filter to
smoothen the pixels. Followed by smoothening, the local scaling cut procedure is employed to define
the dissimilarities in features. A compressive dimensionality reduction procedure presented in [21]
includes an optimized slice sparse coding tensor to reduce the high dimensionality of features. The
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dimensional reduced sparse features are classified using a tensor-based classifier to attain accurate
classification performance with minimum computation cost.

An unsupervised method was presented in [22] for effective dimensionality reduction and clas-
sification of HSI images. The presented local neighborhood structure preserving embedding method
reconstructs the samples based on neighbor spectral weights. The optimal weights are obtained from
the reconstructed samples which are further used to develop adjacency graphs. The modification
performed in the loss function greatly reduces the scatters and improves the classification perfor-
mances compared to existing methodologies. The dimensionality reduction model for a Hyperspectral
image incorporates a graph-based approach for effective dimensional reduction [23]. The presented
multigraph embedding procedure initially captures the local and spatial information to develop a
tensor subgraph. Then a bipartite graph is developed based on the relationship between the pixels and
patch tensors. Finally, the deviations in the pixels are removed from the patch tensor and a pixel-based
subgraph was developed to obtain the geometrical structures.

Researchers from Zhang et al. [24] developed an attention-based hierarchical homogeneity-based
network to streamline computing by minimizing the number of comparable operations. According
to CNN visual invariance, alterations to input images can have a significant impact on network
performance. It has been proposed by Sabour et al. [25] to combine spectral–spatial feature extraction.
Network robustness can be improved and more efficient position information can be preserved by
using a capsule network (CapsNet), which was proposed in [26]. The DC-CapsNet has been introduced
in 3D convolution by the author from [27] to improve the robustness of the learned spectral–spatial
properties. CapsNet’s lack of labeled samples has recently been alleviated by GAN, which has shown
satisfactory results. On the other hand, it has a difficult time modeling and preserving the relative
locations of features [28]. The development of DL-based algorithms has also revealed several difficult
problems. It has become increasingly challenging to deploy deep learning models on edge devices
because of the increasing complexity of the model and the need for training samples and depths.

A general multimodal deep learning model is presented by Wu et al. [29] for remote sensory image
classification. The presented fusion architecture performs pixel-wise classification considering the spa-
tial information using a convolutional neural network. Experimentations provide better performance
in remote sensory image classification compared to traditional approaches. A similar convolutional
neural network-based remote sensing data classification model reported by Hong et al. [30] presents an
advanced cross-channel reconstruction model using CNN. The presented approach provides compact
fusion representations using reconstruction strategies and exchanges the information in an effective
manner to obtain better classification performances. A semi-supervised 3D CNN (SS-3DCNN) was
presented in a study [31] for the categorization of HSI. Using labeled and unlabelled training samples,
this approach aims to overcome the problem of low training sample numbers and the “curse of
dimensionality.” SS-3DCNN is utilized for HSI categorization once the specified bands have been
input into them for processing. To classify HSI images, Zhang et al. [32] suggested a deformable
convolution network for spectral–spatial attention fusion as SSAF-DCR. To advance the classification
presentation of the HSI, the proposed model includes both feature classification networks. A 3D
CNN is used to extract the HSIs’ spectral and low-level spatial properties, whereas a 2D CNN is
used to recover the HSIs’ high-level spatial data. The SSAF-DCR strategy proved to be beneficial.
For Hyperspectral image categorization, another study [33] presented a deep spectral-spatial inverted
residuals network (DSSIRNet). To avoid the lack of labeled samples, DSSIRNet presented a data
block random erasing technique. The DIR module for spectral bands is also projected in this paper.
A 3D consideration module is also implemented and integrated into the DIR component.
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Luo et al. [34] tried to remove the HSI mixed noise by spatial-spectral constrained deep image
prior (S2DIP). Without any training data, the proposed model removed the noise by using hand-
crafted priors. The DIP-based model’s semi-convergence behavior is avoided by the proposed model.
An algorithm called the alternating direction multiplier model is used to enhance the denoising ability
of the DIP model. Zeng et al. [35] removed the HSI mixed noise by proposing nonlocal block-term
decomposition (NLBTD). Global spectral and non-local self-similarity features are captured by using
BTD for preserving the smoothness of local spectra. Based on the proximal alternating minimization,
the mixed noises in HSI are removed to increase the efficiency of NLBTD. Wang et al. [36] improved
the strip removal and avoided the poor generalization ability by proposing Translution-SNet. The
proposed model is used to remove the strip noise of HSI by applying the convolution and transformer
as feature extraction. The loss function from noisy data is calculated by using an unbiased estimation
method. During strip removal, various complex stripe noises are dealt with through semi-supervised
methods to improve the Translution-SNet.

3 Proposed Methodology

3.1 Noise Reduction Using the Proposed DL Model
In all individual matrices representing the input image, there are equivalent kernel matrices and

biases. Finally, activation functions for all individual pieces have been developed. Behind the Back-
Propagation (BP) phase, feature detection filters are constructed by altering bias and weight values. A
feature map filter is applied to each of the three channels to minimize the amount of noise in the images
that are being processed. Using a technique called “pooling layers,” CNN reduces the amount of data
it needs to work with to reduce the amount of noise it has to deal with in its final output. To protect
the crucial features, the usual pooling methods are used. The max-pooling method is one of the most
well-known methods of pooling, and it involves selecting the largest activation in the pooling window.
Using sigmoid (Eq. (1)) or ReLU (rectified linear activation unit) (Eq. (2)) activation functions, CNN
has applied a BP approach to perform a discriminative function. According to Eq. (3), the final layer
has one node that has a beginning function for binary classification and another node that has an
activation function for multi-class issues [37].

f (x) = 1
1 + e−x

∈ (0, 1) (1)

f (x) = max (0, x) (2)

σ (z)j = ezi∑K

k=1e
zk

∀j ∈ {1, . . . , k} (3)

For image categorization, the DWS convolutions were used. It is a type of factorized convolutional
that breaks down depth-wise convolutions. With only one filter per input channel, the depth-wise
convolutional filtering (Fig. 1) performs lightweight filtering. Next, the input channels are combined
in a linear fashion using a point-wise convolution [30]. Standard convolutional functions are returned
by using DWS convolution, which returns a factorized 2-layer convolution and a single layer to space
filter. It is therefore possible to reduce computation/noises of the input images and mode size by using
depth-wise separable convolutional. The standard convolution layer receives a feature map of h × w ×
cin input I and performs a k × k × cin × cout convolution kernel K to yield an output feature map
O by using h × w × cout where h and w are the input feature map dimensions, k is the square kernel
spatial dimension, cin is the input channel count, and cout is the result channel count. The output
feature map can be assumed to have the same spatial dimensions as the input feature maps because
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of the zero-padding meaning. A normal convolutional is characterized by a difficulty in computation
(the function counts). Table 1 shows the architecture layer description of the projected model.

Figure 1: Structure of proposed depth-wise CNN

Table 1: Description of projected model’s layer

Layer Filter shape Type/Stride Input size

Conv1 3 × 3 × 3 × 16 Conv 32 × 32 × 3
Pool 2 × 2 Max pool/S2 32 × 32 × 16

Conv2 3 × 3 × 16 DW_Conv/S1 16 × 16 × 16
1 × 1 × 16 × 32 PW_Conv/S1 16 × 16 × 16
Pool 2 × 2 Max pool/S2 16 × 16 × [16 + 16]

Conv3 3 × 3 × 32 DW_Conv/S1 8 × 8 × 32
1 × 1 × 32 × 64 PW_Conv/S1 8 × 8 × 32
Pool 2 × 2 Max pool/S2 8 × 8 × [16 + 16 + 32]

FC4 1024 × 10 FC/S1 4 × 4 × 64
Classifier – SoftMax/S1 1 × 1 × 10

All of the separable convolutional parts can be separated. It uses depth-wise convolutional filtering
to apply a single filter to all input feature maps, which is given in Eq. (4).

G (y, x, j) =
∑k

u=1

∑k

u=1
K (u, u, j) × I (y + u − 1, x + u − 1, j) (4)

in which K implies the kernels of size k × k × cin. The nth filter is used to yield the nth channel of the
filtered result feature map G, K is functional to the I channel. To determine the linear group of depth-
wise results when constructing new features, a point-wise convolutional requires 11 convolutions.
Point-wise convolutions can be expressed using the formula in Eq. (5).

0 (y, x, I) =
∑cin

j=1
G (y, x, j) × P (j, l) (5)
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1×1 Convolutional kernel has a size of 1×1×cin×cout. It is possible to change the feature map by
changing m. There are no restrictions on the locality of dense 1 × 1 convolutional functions like those
found in other convolutional functions; hence there is no need to re-arrange the parameters in memory.
Then, using incredibly efficient matrix multiplication algorithms, it is carried out immediately. It is
difficult to express a convolutional calculation as shown in Eq. (6).

Cds = k2 · cin · h · w + cin · cout · h · w (6)

The cost of depth-wise convolution and 1 × 1 point-wise convolution is shown below. A DWS
convolutional is related to the normal convolutional in that it reduces the calculation difficulty by a
factor as shown in (7).

η = Cds

Cstd

= k2cinhw + cincouthw
k2cincouthw

= 1
cin

+ 1
k2

(7)

The factor is roughly comparable to 1
k2 because the value of m is typically very large. As a result

of using 3 × 3 DWS convolutional layers in this research, the calculation complexity and parameter
count of layers are 7 ∼ 8 times lower than with regular convolutions.

3.2 Dimensionality Reduction Using Proposed Optimized SOM
An approach based on maps to reduce the size of an HSI is presented in this section. As a first step,

the image is reduced to a lower dimension using the dimensional reduction approach projected in this
study and based on optimized SOM. The use of optimized SOM is to reduce the spatial dimensions
of hyperspectral image (HSI). SOMs are inspired by the human brain’s ability to focus on the most
important aspects of the universe. Using self-organized maps, high-dimensional data in HSI can be
grouped. This type of network has only one input and one output layer, and there are no hidden
layers. Relationships within the input patterns are automatically discovered by the SOM network. To
solve the difficulty of mapping images from higher to two-D feature space for image cataloging, this
property can be employed. A SOM network is defined by the neurons in the input and output layers.
Each feature has the same amount of input neurons. The output layer of a SOM is typically a two-
dimensional layer with M × M neurons. The synaptic weights wij connect the neurons in the input
and output layers, where i and j represent neurons’ unique identities, respectively. During training,
the weights are arbitrarily assigned and then fine-tuned by using the Water Strider Optimization
algorithm (WSOA) to better arrange the relationships between the input patterns. The WSOA is a
nature-inspired population-based optimizer that is inspired based on the life cycle of water strider bugs.
The optimization model is framed by characteristics of the bug’s insect succession, territorial behavior,
feeding mechanisms, mating style, and clever ripple communication [38]. In the next sections, we go
over the basics of this strategy.

3.2.1 Initial Birth

Here’s how the search space is filled with the possible solutions/water striders (WS):

WS0
i = Lb + rand, (Ub − Lb) ; i = 1, 2, . . . nws (8)

If WS0
i represents the initial weight of ith WS in the lake/SOM. The lower and upper boundaries

are denoted by Lb and Ub, respectively. An arbitrary number between zeros and ones and the number
of WSs is denoted by rand (population size). Based on objective functions, the first position of WSs is
determined.
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3.2.2 Territory Establishment

Based on an individual’s level of fitness, the WSs are organized and the nws/nt number of groups
are formed in order. For each group, the j-th member is given an equal number of territories, which
range from 1 tont. As a result, the total sum of WSs in each territory is equal to nws/nt. The sites with
the best and worst fitness are assigned to men and women, accordingly (keystone).

3.2.3 Mating

To mate, the male WS sends out a ripple signal to the female. The likelihood of attraction or
repulsion is calculated based on the fact that the behavior of females is unknown [39]. p is always set
to 0.5. These changes have been made to the location where the male WS can be found:{

WSt+1
i = WSt

i + R · rand; if mating happens (with a probability of p)

WSt+1
i = WSt

i + R · (1 + rand) ; otherwise.
(9)

The length of R is projected as follows

R = WSt−1
F − WSt−1

i (10)

where WSt−1
F andWSt−1

i signify the male and female WS in the (t − 1)
th cycle, reprehensively.

3.2.4 Feeding

The male water strider forages for food after mating, which requires a lot of energy for the water
strider. Using Eq. (11), the male WS will seek out the lake’s best-suited WS to find prey.

WSt+1
i = WSt

i + 2rand∗ (
WSt

BL − WSt
i

)
(11)

3.2.5 Death and Succession

The male WS would die in the new site, and a new WS would take its place as follows:

WSt+1
i = Lbt

j + rand∗ (
Ubt

j − Lbt
j

)
(12)

where Ubt
j and Lbt

j are the greatest and negligible values of WS†
s situated inside the j-th territory.

3.2.6 WSOA Termination Criterion

For a novel loop, the process would return to the coupling stage if the end criteria were met. At this
point, the supreme quantity of function evaluation or updated weight is taken into account as a final
criterion. Final weights wij show how well the input features have been characterized once the training
process is complete. Essentially, a multidimensional input space is predictable into a two-dimensional
output space.

3.2.7 Training of Optimized SOM Model

Competitive learning is the SOM training philosophy. The neurons in the output layer must strive
with one another to respond to the input pattern. It is so possible to adjust at once all the weights of
M × M neurons. An adjustment is made to the weights of the winning neuron and its neighbors, but
not the rest of the input layer.

Then, taking a Hyperspectral image X(N×p) where N = n × m is defined as Xi(p×1), which contains
each spectral feature of the ith pixel. wij

(
M2 × p

)
by multiplying each spectral input vector Xi(p×1) with

the ith pixel’s respective nm-sized output vectors. These results generate output vectors with dimension
M2 with an input vector Xi(p×1). The dimensionality of the self-organized map decreases as the map size
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grows. By utilizing an optimized self-organized map, a 1 − M2 = p dimensional reduction ratio can
be obtained (13).

X̂i

(
M2 × 1

) = wij

(
M2 × p

)
Xi (p × 1)

%Reduction = 1 − M2p (13)

The proposed dimensional reduction method described in this study and based on self-organized
maps is depicted in Algorithm 1.

Algorithm1: SOM Dimensional Reduction

1. Load input image X(N×p) = [
X1(p×1), . . . Xi(p×1), . . . , XN(p×1)

]
2. Define SOMM × M < p
3. Define weights matrix wij

(
M2 × p

) = [w1, . . . wr, . . . , wM2 ]
4. Define control variables σini, σend, αini, αend, tmax

5. Whilet < tmax

6. Excellent random input vector Xi(p×q)

7. Novelty the winner neuron index s = argmin
∣∣∣∣Xi − wij

∣∣∣∣
8. Update each weight wij by using the Water Strider Optimization algorithm
9. For r = 1 to M2

10.�wij = α (t) hjs (t)
(
Xi − wij

)
11.wij = wij + �wij

12. End For
13.t = t + 1
14. End While
15. X̂(N×M2) = wij

(
M2 × p

) ∗ X(N×p)

On lines 1 to 3, Algorithm 1 begins by loading X(N×p) and then creating a self-organized map with M
neurons, wij

(
M2 × p

)
. There are many possible inputs to the iterative process, but the one used here is

a randomly generated input vector Xi(p×1), and the final winner neuron location s will be determined by
finding the vector wij with the lowest distance between each input and each of the associated weighting
vectors (14).

s = argmin
∣∣∣∣Xi − wij

∣∣∣∣ (14)

For the self-organizing map, Eq. (15) specifies how the synapse weights change over time, which
includes the learning rate (t), each synapse weight wij and the iteration index (t).

�wij = α (t) hjs

(
Xi − wij

)
(15)

tmax is the maximum sum of iterations that can be used in the training process, while αini and αend

are the initial and final learning rates respectively. Eq. (16) seeks to have the neurons quickly adapt to
the input data at the start of the training phase. The learning rate decreases as the procedure progress
to achieve a better fit in training.

α (t) = αini (αendαini)
tmax (16)
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The neighborhood function hjs (t) is calculated using Eq. (17), It can be expressed as a Gaussian
curve. The farther neuron is away from the winning neuron, the less influence it has on the other
neurons.

hjs (t) = e

⎛
⎝ −d(js)2

2σ2 ini(σend /σini)
2tmax

⎞
⎠

(17)

where neurons sandr are separated by an angle of d; this changes the synaptic weights of neurons j.
To ensure that the learning algorithm convergence is stable, the neighborhood variable rank r must
be used.

The synaptic weights matrix wij

(
M2 × p

)
is created at the end of the iterative process outlined

above. As a result of this, an output matrix X̂ with dimension n×m×M2 has been generated (line 15).
In each application, the correct value of M is determined heuristically. After the previous operation,
a data subset with n × m pixels and M2 dimensions is obtained.

4 Results and Discussion

The proposed model experimental analysis includes two datasets as Indian Pines dataset and the
University of Pavia dataset. The Airborne Visible and Infrared (AVIRIS) sensor captured the Indian
Pines (IP) dataset, which was the starting point for this research work. Each class has a 145 × 145-
pixel spatial resolution and 220 spectral bandwidths. It is further characterized by the removal of
104–108, 150–163, and 220. The spectral wavelength is between 0.4 and 2.5 micrometers. 10% of the
samples from each class were used in the training, while the rest were used for testing. Table 2 lists
the total number of training and testing samples for each class. As a second source, we turned to
Italy’s University of Pavia dataset (UP), which was gathered using the ROSIS imaging spectrometer.
It measures 610 × 340 pixels in width and height. After removing the noisy bands, it has 103 spectral
bands, each with 200 training samples; the remaining samples were used for testing purposes. For each
class, the numbers in Table 2 reflect how many training and testing samples were used.

Table 2: Training and testing details

Indian Pines dataset University of Pavia dataset
Classes Number of samples Name Number of samples

Training Testing Training Test Total

Hay-windrowed 430 48 Bitumen 1197 133 1330
Oats 18 2 Metal sheets 1211 135 1345
Soybean-no-till 875 97 Gravel 1889 210 2099
Soybean-clean 534 59 Asphalt 5968 663 6631
Wheat 184 21 Bare soil 4526 503 5029
Alfalfa 41 5 Meadow 16784 1865 18,649
Corn-no-till 1285 143 Shadows 852 95 947
Grass-pasture 435 48 Bricks 3314 368 3682
Grass-pasture-mowed 25 2 Trees 2758 306 3064
Corn-min-till 747 83 –
Corn 213 24

(Continued)
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Table 2 (continued)

Indian Pines dataset University of Pavia dataset
Classes Number of samples Name Number of samples

Training Testing Training Test Total

Grass-tress 657 73
Soybean-min-till 2209 246
Woods 1138 127
Buildings-grass-tree-drives 347 39
Stone-steel-towers 84 9
Total 9222 1027

4.1 Performance Validation of the Proposed Model
We have utilized an Intel Xeon W-2123 CPU with 64 GB of RAM and an NVIDIA GeForce

GTX 2080 Ti GPU with 11 GB of RAM in the experimental configuration. The Pytorch 1.6.0 DL
frameworks are used in conjunction with a 64-bit Windows 10 OS. In terms of overall accuracy (OA),
average accuracy (AA), and Kappa coefficients, classification accuracy is measured.

Further to validate the performance of the proposed model, different dimensionality reduction
techniques are compared with the existing methods like Enhanced Hybrid-Graph Discriminant Learn-
ing (EHGDL), local geometric structure Fisher analysis (LGSFA), Discriminant hyper-Laplacian
projection (DHLP), Group-based tensor model (GBTM), and Lower rank tensor approximation
(LRTA) methods. The results are obtained from Luo et al. [40] and An et al. [41] research works
that perform dimensionality reduction in Hyperspectral images. The dataset which was used in the
proposed work was used in the existing methods so that the results are directly compared with the
proposed model results given in Table 3. The ablation study results on the Indian Pines dataset and
the University of Pavia dataset are given in Table 4, which describes the overall accuracy, average
accuracy and Kappa coefficient of the proposed model. The following data given in Table 5 presents
the comparative analysis of the proposed model and existing model performances for the Indian pine
dataset. From the results, it can be observed that the performance of the proposed model is much
better than the existing methods in terms of overall accuracy, average accuracy, and kappa coefficient.

Table 3: Proposed model performance for the Indian Pines dataset and University of Pavia dataset

Class Indian Pines dataset University of Pavia dataset
Proposed model Proposed model

1 98.64 79.93
2 92.46 81.82
3 99.64 75.75
4 96.52 97.47
5 98.65 91.69
6 98.63 94.75
7 97.43 89.29
8 99.75 99.32

(Continued)
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Table 3 (continued)

Class Indian Pines dataset University of Pavia dataset
Proposed model Proposed model

9 99.65 96.22
10 98.76 –
11 98.49
12 97.54
13 97.43
14 98.76
15 98.62
16 89.34

Table 4: Ablation study results on the Indian Pines dataset and the University of Pavia dataset

Metrics Indian Pines dataset University of Pavia dataset

Proposed model Proposed model

OA 96.30 ± 3.07 98.22 ± 2.73
AA 98.57 ± 1.67 98.21 ± 1.34
Kappa 98.88 ± 0.72 98.32 ± 1.09

Table 5: Comparative analysis of the proposed model with existing methodologies of the Indian Pines
dataset

Class DHLP LGSFA EHGDL LRTA GBTM Proposed

1 82.61 78.26 84.78 81.25 85.63 98.64
2 62.54 64.15 60.29 84.69 91.16 92.46
3 64.82 65.42 75.78 68.37 89.32 99.64
4 51.9 47.26 64.56 73.57 85.38 96.52
5 94 92.75 87.37 96.89 94.94 98.65
6 94.52 93.29 94.25 99.29 96.4 98.63
7 85.71 89.29 85.71 90 94.26 97.43
8 98.74 98.12 95.82 99.91 99.64 99.75
9 60 60 70 80 31.26 99.65
10 65.64 67.7 69.75 68.5 91.97 98.76
11 80.24 82.53 87.98 84.46 98.48 98.49
12 69.14 68.3 72.85 85.33 83.06 97.54
13 99.02 98.54 98.54 99.95 97.79 97.43
14 95.73 96.21 95.97 97.23 96.49 98.76
15 53.11 52.07 50.52 83.98 91.23 98.62
16 84.95 84.95 86.02 94.47 78.82 89.34
OA 77.67 78.35 80.49 85.88 93.53 96.3

(Continued)
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Table 5 (continued)

Class DHLP LGSFA EHGDL LRTA GBTM Proposed

AA 77.67 77.43 80.01 86.74 87.64 98.57
Kappa 74.4 75.16 77.58 85 93 98.88

Similarly, the performance of the proposed model is compared with existing methods for the
University of Pavia dataset. Table 6 depicts the performance comparative analysis and it can be
observed from the results that the performance of the proposed model is much better than the existing
methods.

Table 6: Comparative analysis of the proposed model with existing methodologies of the University
of Pavia dataset

Class DHLP LGSFA EHGDL LRTA GBTM Proposed

1 85.12 87.33 92.76 93.51 93.44 79.93
2 94.92 98.16 98.21 98.24 99.21 81.82
3 73.46 63.84 72.13 76.41 95.41 75.75
4 85.57 88.61 87.96 92.19 77.02 97.47
5 99.85 99.85 99.85 99.96 91.26 91.69
6 73.16 62.42 77.85 92.89 99.51 94.75
7 78.57 72.26 83.38 92.51 95.41 89.29
8 71.97 77.95 84.03 81.68 92.52 99.32
9 97.99 98.1 99.79 94.25 73.22 96.22
OA 86.86 87.42 91.36 93.64 94.86 98.22
AA 84.51 83.17 88.44 91.29 90.78 98.21
Kappa 82.47 83.01 88.41 92 94 98.32

Further to validate the impacts of dimensionality in the overall accuracy metric, different
dimensional measures are employed and measured the overall accuracy for the proposed model. Fig. 2
depicts the performance comparative analysis of the proposed model and existing models for different
dimension rates. The dimensionality is varied from the minimum on a scale of ten and measured for
the maximum value of 100. Fig. 2 depicts the variations in the overall accuracy of the proposed and
existing methods for the Indian Pines dataset. Similarly, Fig. 3 depicts the variations in the overall
accuracy of the proposed method and existing methods for the University of Pavia dataset. Due to the
maximum dimensional reduction without any feature loss proposed model attains maximum accuracy
compared to other methods for both datasets.

To validate the classifier performance, the proposed dimensionality reduction method and existing
methods are comparatively analyzed and the performances are presented in Table 7.

The existing methods like DHLP, LGSFA, and EHGDL incorporate a maximum likelihood
classifier, and the LRTA and GBTM methods incorporate an SVM as a classifier. The proposed
model includes depth wise CNN model for final classification. The initial dimensionality reduction
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is performed through optimized SOM. The major issue in handling hyperspectral images is its
dimensionality and the presented approach effectively reduces the dimensions and selects the optimal
feature which improves the classification accuracy compared to existing methods. The computation
complexity of the proposed model is slightly higher than the existing methods due to multiple
algorithms. However, it can be neglected as the results of the proposed dimensionality reduction
method and classifier performances in hyperspectral image classification are observed as better
compared to existing methods.

Figure 2: Overall accuracy for different dimensionalities (Indian Pines Dataset)

Figure 3: Overall accuracy for different dimensionalities (University of Pavia dataset)
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Table 7: Classification accuracy comparison

S. No. Algorithm Classifier Overall accuracy (%)

Indian Pines dataset University of Pavia dataset

1 DHLP MLC 74.64 85.89
2 LGSFA MLC 75.34 85.32
3 EHGDL MLC 77.59 90.67
4 LRTA SVM 85.88 93.65
5 GBTM SVM 93.53 94.86
6 Proposed DCNN 96.3 98.22

5 Conclusion

In this research work, the proposed depth-wise CNN model is used as a pre-processing technique
to remove the general noises in the used datasets. The pre-processed image is then fed into the
optimized SOM for solving the dimensionality reduction problem. The weight in the SOM is optimized
by using WSOA, which is briefly explained in Section 3. The experiments are conducted on IP and UP
datasets. The suggested model obtained 98% of AA and Kappa, whereas the previous models achieved
91% to 95% of AA and Kappa on the IP dataset. However, because of the huge number of parameters
and the little quantity of training data required to train the model, deep neural network models such as
CNN are prone to overfitting. Overfitting difficulties will be addressed in future studies by employing
effective deep-learning approaches considering spatial resolution and spectral bandwidth.
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