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Abstract: Spatio-temporal heterogeneous data is the database for decision-
making in many fields, and checking its accuracy can provide data support
for making decisions. Due to the randomness, complexity, global and local
correlation of spatiotemporal heterogeneous data in the temporal and spatial
dimensions, traditional detection methods can not guarantee both detection
speed and accuracy. Therefore, this article proposes a method for detecting
the accuracy of spatiotemporal heterogeneous data by fusing graph convo-
lution and temporal convolution networks. Firstly, the geographic weighting
function is introduced and improved to quantify the degree of association
between nodes and calculate the weighted adjacency value to simplify the com-
plex topology. Secondly, design spatiotemporal convolutional units based on
graph convolutional neural networks and temporal convolutional networks to
improve detection speed and accuracy. Finally, the proposed method is com-
pared with three methods, ARIMA, T-GCN, and STGCN, in real scenarios
to verify its effectiveness in terms of detection speed, detection accuracy and
stability. The experimental results show that the RMSE, MAE, and MAPE
of this method are the smallest in the cases of simple connectivity and com-
plex connectivity degree, which are 13.82/12.08, 2.77/2.41, and 16.70/14.73,
respectively. Also, it detects the shortest time of 672.31/887.36, respectively.
In addition, the evaluation results are the same under different time periods
of processing and complex topology environment, which indicates that the
detection accuracy of this method is the highest and has good research value
and application prospects.

Keywords: Spatiotemporal heterogeneity data; data accuracy; complex
topology structure; graph convolutional networks; temporal convolutional
networks

1 Introduction

Spatio-temporal heterogeneity data (STD) [1–3] is the data basis for applying big data analysis
technology to solve decision-making problems in urban operation and maintenance [4], oil and gas
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development [5], medical decision-making [6], life sciences [7] and other fields, and its accuracy
detection is undoubtedly important [8,9]. Due to the stochasticity and complexity of STD in the
temporal dimension and the global and local correlation in the spatial dimension, which makes
detection extremely difficult, related research has also become a research hotspot for data analysts [10].
The current STD Accuracy Detection Method (SAM) mostly uses rule-matching algorithms based on
expert experience, for example, network traffic detection [11,12], land classification management [13],
and behavior pattern monitoring [14]. Although it is possible to screen out anomalous data to some
extent, the following problems remain. On the one hand, the reliability of some experts’ experience
has not been checked, leading to possible errors in the test results. On the other hand, it is difficult
for experts to cover all the rules, which makes some anomalous data become to slip through the
net, especially logical errors that do not satisfy the spatiotemporal correlation of data and are often
overlooked.

With the rapid development of artificial intelligence, deep learning technology has roared in
the field of data quality control with its powerful spatiotemporal data analysis capability, the key
techniques include graph convolutional networks and temporal convolutional networks. Based on
graph theory, Graph Convolutional Networks (GCN) [15–17] uses Fourier transform and Convolution
Theorem to capture the spatial dependence of data objects, and thus implement data detection.
Therefore, it is suitable for application scenarios containing spatial information such as action
recognition [18] and image classification [19]. In the paper [20] presents a novel intelligent system based
on graph convolutional neural networks to study road crack detection in intelligent transportation
systems. In the paper [21], a group behavior pattern recognition algorithm based on spatiotemporal
graph convolutional network is proposed, aiming at group density analysis and group behavior
recognition in video. However, since the graph itself cannot reflect the time-varying, the GCN is
not suitable for the accurate detection of time series data. Temporal Convolutional Networks (TCN)
use Dilated Causal Convolutions and residual connectivity to extract temporal features of the data
[22–24], which can effectively solve the problem of accurate detection of log data [25] and network
data [26]. In the paper [27], a time-convolutional network (TCN)-based spectrum sensing method is
designed, which improves the detection probability by using temporal features to enhance the spectrum
sensing performance. In this paper [28], a denoising temporal convolutional recurrent autoencoder
(DTCRAE) is proposed to improve the performance of the temporal convolutional network (TCN)
on time series classification (TSC). However, it is difficult to solve the accuracy detection problem of
data with spatial characteristics because it cannot describe space variation.

Therefore, this article proposes a method to detect the accuracy of spatiotemporal heterogeneous
data by fusing graph convolution and temporal convolution networks, based on the hybrid intelligent
algorithm design idea of “divide and conquer, complementary advantages” [29,30]. Firstly, the geo-
graphic weighting function is introduced and improved to quantify the degree of association between
nodes and calculate the weighted adjacency value, thus achieving the purpose of simplifying the
complex topology. Secondly, the spatiotemporal convolution unit is designed based on the graphical
convolutional neural network and temporal convolutional network, while the temporal activation
function is optimized to improve the detection speed and detection accuracy. Finally, this article
designs a series of comparative experiments in real application scenarios to verify that this method
has obvious advantages in terms of detection speed and detection accuracy.

The innovations in this article include:

1. This article fuses GCN and TCN to solve the problem of feature extraction and analysis for
spatiotemporal heterogeneous data.
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2. This article proposes an adaptive geographically weighted function for enhancing the saliency
of model spatial feature extraction. At the same time, the activation function of the temporal
convolutional network is optimized to avoid the overfitting of the network, which in turn enhances
the generalization ability of the network.

The method proposed in this article has a good application effect in many real-world scenarios.
For example, while checking data quality with its data interchange platform, the Research Institute of
an Oilfield Co., Ltd., chose this method to check data accuracy. In the actual application, this method
has a faster run time, and the accuracy is superior to the original method. Thus, it saves considerable
time and economic cost for the scientific research institution and greatly promotes the information
management of the oilfield.

The structure of this article is shown below. Section 2 gives the application scenarios, describes
the basic concept and formula, and generalizes the key problems. Section 3 expounds on how to deal
with complex topology structures. Section 4 elaborates on the operation mechanism and improvement
points of FAGTN. Section 5 verifies the validity of the method. Section 6 summarizes the study and
prospects for future work.

2 Fundamental Work

This section gives the definition of the scenario and the basic concepts and described the key
problems to be solved.

2.1 Scenarios and Basic Concepts
Define scenario H: In the spatiotemporal heterogeneity environment composed of n data objects

(nodes), the data center released a group of spatiotemporal heterogeneity data accuracy testing tasks
B, and the number of tasks is Z. Any one task is Bm ∈ B is composed of n nodes and will be solved by
an intelligent data detection method. The intelligent data detection method includes 2 stages. Stage1
calculates and filters weighted adjacency values. The complex topologies of the detected space are
pruned. Stage 2 Performs data detection based on GCN and TCN (“FAGTN”), and construct the
temporal and spatial features analysis model, as shown in Fig. 1. Any node of Bm can be expressed as
Bk

m = (Lk, A, T , X), Lk denotes the spatial location of a node vk, A ∈ Rn×n means the spatial adjacency
relationship between nodes, T indicates the time, and X represents the set of attribute values for the
node at time T .

Since the given task is advanced detection of data, the node attributes in scenario H have integrity
and satisfy the following three preconditions.

Precondition 1. Common attributes exist for all nodes in the same task, and the attribute value is
not null.

Precondition 2. The adjacency matrix of a node cannot be an identity matrix, that is, A �= IN×N.

Precondition 3. Due to the complexity of node relationships, this article constrain the node’s
adjacency relationship to be non-transitive. For example, if v1 is connected to v2, v1 is connected to
v3, and v2 is not connected to v3, then it is decided that v1 and v2 are adjacent, v1 and v3 are adjacent,
but v2 and v3 are not adjacent.
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Figure 1: Work process of FAGTN

The basic concepts, formulas, and reasoning processes can be described as follows.

I. Property Matrix. This article divides the time T into m time units, that is, T = {t1, t2, . . . , tm}.
The property matrix X represents the attribute values of n node in m time units under the current task.
X

tj
vi represents the attribute value of node vi in time unit tj. Then the property matrix can be expressed

as follows.

X =

⎡⎢⎢⎢⎣
X t1

v1
X t2

v1
· · · X tm

v1

X t1
v2

X t2
v2

· · · X tm
v2

...
... · · · ...

X t1
vn

X t1
vn

· · · X tm
vn

⎤⎥⎥⎥⎦ (1)

II . Weighted Adjacency Value. This article defines that λij represents the weight coefficient for

nodes vi and vj, dij denotes the distance between vi and vj. The weighted adjacency value
∗

Aij can be
expressed according to “Weighted Adjacency Value = Weight Coefficient Distance”.

∗
Aij = λij · dij (2)

III . Detection Space. In the target area G, any possible detection space Se(Se ⊆ G) consists of
indeterminate nodes and satisfies the following constraints.

Constraint 1. Any detection space contains at least two nodes (derived from Precondition 2), and
the number of nodes shall not be greater than n.

Constraint 2. Each node can appear in multiple detection spaces, but the nodes appearing under
the same detection space must satisfy Precondition 3.

This article randomly selects a detection space S1, and assumes that this detection space is centered
on v1 and contains all nodes adjacent to it v1. Thus, in the target area G, the number of detection spaces
that may be formed can be expressed as follows. With the increase of node number and node degree,
the number of detection spaces increases rapidly.

e =
n∑

i=1

n∑
p=1

n∑
q=1

Ai
pq (3)
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2.2 Problem Description
The “optimal” spatiotemporal data detection model means as much as possible to meet the

shortest time and best results. Shortest time means the shortest possible detection time and can be
expressed as min(g(Se)), g(Se) representing the time objective function. The value g(Se) of depends on
the number of detection spaces in a task and the time consumed by each detection space, which can be
described as formula (4). Wherein, t(Se) stands for the detection time of the detection space Se, teAepθ

represents the processing time of (ve, vp), θ is the training parameter.

min (g (Se)) = min
(∑

e · t(Se)
)

= min

(∑
θe ·

n∑
p=1

teAep

)
(4)

Best results mean “the most accurate possible detection result”, which is reflected in giving
accurate nodes’ attribute reference values at the current moment. X

tj
vi represents the attribute value

of the child node vi in a time unit tj. The time series Tvi of child nodes vi can be expressed as{
X t1

vi
, X t2

vi
, . . . , X tm

vi

}
. The spatiotemporal sequence of the target detection task can be represented as{

Tv1
, Tv2

, . . . , Tvn

}
. The value X t+1

vi
depends on the historical attribute values of the detection space

centered on this node. Therefore, this article can establish the mapping relationship f (A, X) between
historical attribute values and reference values, which can be described as formula (5).

X t+1
vi

= f (A, X) = f
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(5)

In the end, the data accuracy detection problem can be described as the optimizing problem with
min(g(Se)) and f (A, X) as the objective functions, and all objective functions are expected to obtain
the best value.

This article collectively refers to node regions with prominent spatiotemporal heterogeneity as
complex topology structure regions, and the more obvious such structural features are, the lower model
processing speed and accuracy will be. Therefore, this article can preprocess the complex topology
structure to improve the detection speed and detection accuracy.

In summary, the problems solved in this article can be described below.

I . How to handle the complex topology structure.

II . How to establish an excellent mapping relationship between historical attribute values and
reference values in an environment with prominent spatiotemporal heterogeneity.

3 Handling Complex Topology Structure

Based on the definition of complex topology structure in the 2.2 problem description, this article
introduces the concept of a graph to model the complex topology structure and uses the graph structure
to describe the complex spatiotemporal relationships between nodes. The problem of “how to deal
with complex topology structure” is transformed into “how to reflect the strength of node adjacency
relationships in graph structure”.
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3.1 Construction of Graph Model
To reflect the spatiotemporal heterogeneity of the data, this article designed a time-varying graph

layer group with several depths, as shown in Fig. 2. Firstly, this article describes the spatial distribution
of nodes with graphs, then stack the graphs according to time series, and finally store the task
information of nodes as attribute features.

Figure 2: Overall design of time-varying graph layer groups

According to the 2.1 scenario description, this article defines the graph structure G (V , E, A, X),
G describes all information about the nodes at a given time. V = {v1, v2, . . . , vn} represents all nodes
to be detected in the task, E = {

(vi, vj)|1 ≤ i ≤ n, i ≤ j ≤ n, i �= j
}

means all edges that exist between
nodes, A ∈ Rn×n indicates the adjacency matrix and X represents the property matrix for the node.

After modeling the scenario as a graph structure, this article calculates the weight coefficient
among the nodes to achieve the operation of “weighting” [31,32]. On the whole, we achieve the effect
that the sample points close to the center have more weight, otherwise the opposite. In the following,
this article will discuss how to calculate the weight coefficient between nodes to describe the strength
of the adjacency relationship.

3.2 Rules for Calculating the Weight Coefficient
This article usually uses the adjacency matrix to represent the connectivity between nodes. This

article defines that Aij represents the adjacency value for nodes vi and vj, the value range and value
condition Aij are shown in formula (6).

Aij =
{

0, disconnected
1, connected

(6)

Formula (6) cannot reflect the strength of connectivity between nodes. This article proposes an
adaptive geographically weighted function for nodes to determine the relationship between weights
and distances, and the calculation rule is shown in Formula (7). Wherein, d∗

ij stands for the Euclidean
distance of nodes vi and vj, δ denotes the detection radius with the central node as the core. The function
exhibits a monotonically decreasing trend, that is, the weight decreases as the distance increases.
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λij = exp
(

−(d∗
ij)

2

2δ2

)
(7)

In the geographic weighting process, this article refers to the detection radius as the bandwidth,
which is a trainable parameter whose magnitude affects the function’s slope. The time-varying layer
group we built contains several detection spaces with different node locations and connectivity, which
makes it impossible to use the same bandwidth value to calculate the weights.

Therefore, this article proposes an adaptive mechanism to determine the bandwidth value, which
follows the principle of full coverage of nodes. In each detection space, the center node is taken as the
circle center, and the farthest node distance is taken as the radius to form the weight calculation range.
Assuming Si = {vi, vj, vm, vn} in the detection space Si with vi as the central node, δ can be expressed as
formula (8).

δ = max{d∗
ij , d∗

im, d∗
in} (8)

This article defines the coordinates of the node as (xv, yv), the final expression of the weight

between nodes that can be obtained according to the Euclidean distance d∗
ij =

√(
xvi − xvj

)2 + (
yvi − yvj

)2

of the two nodes, as shown in the formula (9). Wherein, k ∈ {k|∀k(Aik = 1), 0 < k ≤ n} represents the
subscripts of all nodes that are connected with node vi.

λij =

⎧⎪⎨⎪⎩e
−

(
xvi −xvj

)2+
(

yvi −yvj

)2

2(max{(xvi −xvk )2+(yvi −yvk )2},k∈{k|∀k(Aik=1),0<k≤n}) , (vi, vj) ∈ E, i ≤ n, j ≤ n;
0, (vi, vj) /∈ E.

(9)

3.3 Handling Complex Topology Structure
According to the calculation rule for the weight coefficient, this article gives a processing method

similar to “weight pruning”. The process is described as follows.

Step 1. Calculate the weight coefficient of the edge in the time-varying graph layer group according
to formula (9), and obtain the weighted adjacency value (weights) of the edges by multiplying the
weight coefficients with the edge lengths (distances) according to formula (2).

Step 2. Delete the edges with zero weighted adjacency value between nodes to achieve the initial
pruning of complex topology structure. On this basis, all nodes are taken as central nodes in turn,
according to the adjacency matrix, retain the edges directly adjacent to the central node and delete the
rest to complete the secondary pruning of complex topology structure.

Step 3. When forming a set of detection spaces, according to the serial number of the central node,
this article arranges all the structures after secondary pruning and store them as the node’s structural
attributes.

The processed complex topology structure can better reflect the strength of the adjacency
relationship between nodes. Taking Fig. 3 as an example, select some regions of the time-varying
layer group at time t1 are selected for processing. The processing only considers nodes with degrees
greater than 1 as central nodes, and obtains four detection spaces with weighted adjacency values in
Figs. 3(1)–3(4), wherein, only the weights among the nodes have changed. The weight is greater and
the relationship is tighter, otherwise the opposite.
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Figure 3: Handle some complex topology structures at a time t1

4 Construct a Spatiotemporal Feature Analysis Model

STD’s accuracy detection is influenced by time series and entity space features. This article
constructs the spatiotemporal feature analysis model and gives the model design idea and model
framework.

4.1 Model Design Ideas
GCN’s core is to define convolution operations on graphs possessing complex topology structures

to achieve spatial feature extraction. TCN’s core lies in performing convolutional operations on
temporal data to learn temporal features. Based on this, this article fused GCN and TCN (named
FAGTN) and made improvements, which are described below.

I. For enhancing the saliency of spatial feature extraction, this article proposes an adaptive weight
coefficient calculation method.

II. This article chooses the PReLU activation function to improve the residual module for
temporal feature extraction.

Unlike conventional image convolution operations, graphs with complex topology structures
cannot be convolved in the spatial domain by conventional methods. Therefore, the concept of Fourier
transform is introduced to transform the graph from the spatial domain view to the frequency domain
view for processing. The scaling operation is performed on each dimension, and the adjacent nodes
are aggregated to complete the convolution operation, and finally return to the Spatial domain. The
transformation process is shown in formula (10).

Lx = UλUTx (10)

L(L = D − A) is the Laplacian matrix of the graph, and D is the degree matrix of the graph,
which indicates the nodes’ connectivity in the graph. A indicates the graph’s adjacency matrix, which
x is a n dimension column vector that represents the node’s characteristics. Both U and UT are
orthogonal matrices. To solve the problem of gradient disappearance or gradient explosion caused
by the increased number of calculations, the Chebyshev polynomial is used as the restriction function
of matrix eigenvalue A. After the regularization and renormalization tricks, the formula for calculating
one layer GCN in FAGTN is obtained as shown below.

X (n+1) = σ(AX (n)W) (11)

X represents the characteristic matrix, σ represents the non-linear activation function. Transform
the adjacency matrix according to A = D− 1

2 ÃD− 1
2 and Ã = I + A, and W represents the trainable

weight matrix. For enhancing the saliency of spatial feature extraction, this article proposes an adaptive
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weight coefficient calculation method to preprocess complex topology structures and generate a weight
matrices corresponding to each detection space. Meanwhile, this article uses two graph convolution
layers to implement spatial feature extraction to avoid the Over-Smoothing phenomenon.

This article introduces and improves TCN, which solves the problem of learning temporal features.
A one-dimensional fully convolutional network structure (FCN) is adopted to ensure the same
length between layers by zero padding. Dilated causal convolutions are added to achieve exponential
expansion of the receptive field. At the same time, it also ensures that the output at a certain time
is only convolved with elements at that time and earlier. When training a deeper network structure,
the residual connection structure is used to transfer information across layers. This article selects the
PReLU activation function to improve the residual module and enhance the ability that the model to
learn effective temporal features by training the learnable parameters θ . The formula for calculating
one layer TCN in FAGTN is obtained as shown below.

H(s) =
∑

f (·)XF(x) (12)

f (·) represents the convolution kernel, X represents the time series data, F(x) = Wσ(·) + α means
residual function, W means weight function, σ(·) means the activation function.

4.2 Framework and Algorithm Implementation of FAGTN
The structure of FAGTN (spatiotemporal Feature Analysis Model Fused by GCN and TCN) is

shown in Fig. 4. FAGTN consists of three modules: complex topology structure processing module,
spatiotemporal feature extraction module, and spatiotemporal fusion convolution module. Firstly,
this article converts the complex topology structure into a graph model for processing, and outputs
a detection space with a weight matrix; secondly, this article achieves spatial feature extraction by
stacking two layers of GCN, and using one layer of TCN to complete temporal feature extraction;
finally, this article obtain the network output by fusing spatiotemporal features through convolution
operation.

The pseudo-code form of FAGTN is shown in Algorithm 1, wherein, “/∗∗/” indicates the
annotation.

4.3 Evaluation Function of FAGTN
This article uses three evaluation metrics to evaluate the accuracy of FAGTN. They are the

root mean square error (RMSE) [33], the mean absolute error (MAE) [34], and the mean absolute
percentage error (MAPE) [35]. The specific calculation formula is as follows.

PRMSE =
√

1
γ

∑(
X̂ t+1

vi
− X t+1

vi

)2

(13)

PMAE = 1
γ

γ∑
i=1

|X̂ t+1
vi

− X t+1
vi

| (14)

PMAPE = 1
γ

γ∑
i=1

|X̂ t+1
vi

− X t+1
vi

|
X t+1

vi

(15)

X t+1
vi

represents the actual value of the node vi at the next time point (t+1), X̂ t+1
vi

means the reference
value of the node vi at the next time point (t + 1), and γ indicates the number of nodes. Both RMSE
and MAE can reflect the error between the actual value and reference value, and the smaller value of
both, the higher model’s accuracy will be. MAPE can reflect the ratio between error and actual value.
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Figure 4: The structure of FAGTN

Algorithm 1. FAGTN
Input:
l_graph_matrix_Info: The location information of nodes in the graph structure, includes node

adjacency matrix A and node coordinate matrix Q.
l_attribute_matrix_info: Nodes’ property matrix, each property matrix is coded by the form of the

formula (1), and contains information such as nodes’ number n, number of
time units m, the attribute value X of node v in time unit t.

parameter setting: Including time unit span t; number of convolution kernels k_1, k_2; activation
function learnable parameters w.

Output:
reference_best: optimal reference value matrix
Begin
01 for i = 0 to l_graph_matrix_Info.length do

/∗Circular adjacency matrix.∗/
(Continued)
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Algorithm 1 (continued)
02 for j = 0 to l_graph_matrix_Info.length/2 do

/∗Adjacency matrix of circular non-repetitive parts.∗/
03 set l_graph_matrix_Info.A[i][j] = λ;

/∗Calculate the weighted adjacency value between the nodes by formula (9).∗/
04 set W = A[i][j]∗λ;

/∗Generate the weight matrix of each detection space.∗/
05 end for

/∗End of cycle.∗/
06 end for

/∗Loop through all nodes.∗/
07 for i = 0 to l_graph_matrix_Info.n do

/∗End of cycle.∗/
08 matmul(sparse_tensor_dense_matmul(A,X), k_1,W);

/∗Extract spatial features by formula (11).∗/
09 TempConvNet(X, k_2, w);

/∗Extract temporal features by formula (12).∗/
10 reference_best = ConcatConv();

/∗Fuse spatiotemporal features through convolution operation.∗/
11 end for

/∗End of cycle.∗/
12 return reference_best

/∗Return the optimal reference value matrix.∗/
End

5 Example Verification

In this part, this article verifies the effectiveness of the spatiotemporal heterogeneity data accuracy
detection method proposed in this article by comparing the performance indicators of a similar model.
A brief description of the experimental design is shown below.

I. Explain the experimental preparation work. Introduce the experimental environment, experi-
mental data, and comparison model.

II. Analyze the performance indicators’ changes of FAGTN and comparison model in various
conditions, to demonstrate that FAGTN has obvious advantages in detection speed, model accuracy,
and stability.

III. Compare the performance indicators’ changes of FAGTN and comparison model before and
after handling complex topology structure, and discuss the influence of handling complex topology
structure on the detection speed and model accuracy.

5.1 Experiment Preparation
I. Experimental environment. This article simulated the subsystem of the data quality inspection

system of an onshore oilfield in the laboratory. The simulation environment structure is shown
in Fig. 5. In the real environment, the control center is responsible for the intelligent scheduling
of resources, the convergence platform is responsible for data detection tasks, the data center is
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responsible for providing data support, and the detection model is responsible for data accuracy
detection.

II. Data description. This article took the accurate detection of oilfield data as the engineering
background, selected an oilfield as the target area for the study, and chose real data sets from the
oilfield to train and validate the model. The dataset contains key attributes of the field development
dynamic data, such as well location information, well-to-well connectivity, and various parameters of
the well at different periods. The target detection area contains multiple well groups, and each well
group has no less than 130 wells. The well distribution and some wells’ connectivity in the target area
are shown in Fig. 6.

Figure 5: Experimental environment structure

Figure 6: The well distribution and some wells’ connectivity in the target area

The oilfield data is summarized once a month. This article selected the data between 2008 and
2018, chose the first ten years as the training set, and the rest were used as the validation set and test
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set respectively. This article represented multiple attribute parameters of the data as different detection
tasks, and wrote each data item as Data = 〈WellId : Time, Coordinate, Attributes[1], Attributes[2],
Attributes[3], . . .〉 .

III. Comparing model. The experiments involve the performance experiment of FAGTN, and the
experiment of handling complex topology structures. This article selected ARIMA [36], T-GCN [32],
and STGCN [37] as comparing models. These models are all used to solve the correlation analysis
problem of spatiotemporal data.

5.2 Performance Test of FAGTN
This article compared performance indicators of FAGTN, ARIMA, T-GCN, and STGCN in

different levels of connectivity and different time periods. The performance indicators include the
average detection time and the model accuracy. The aim is to verify that FAGTN has obvious advan-
tages in terms of detection speed, detection accuracy, and stability. Table 1 shows the basic parameter
settings of the model. kTCN represents the initial expansion factor in the temporal convolution module,
θ represents the activation function parameter.

Table 1: Parameters setting in performance experiment

Parameter Initial learning rate Batch size kTCN θ Number of iterations

Value 0.001 32 2 0.25 50

5.2.1 Performance Experiments with Different Degrees of Connectivity

This article tested the average detection time and the model accuracy obtained by the four models
in different degrees of connectivity. This aims to observe the influence of the complexity of the
connectivity between nodes on the detection speed and accuracy of the models.

In the performance experiment with different degrees of connectivity, this article divided the
training set into two parts and defined the node set that satisfies |D| ≥ 5 as the complex connected area,
and the one that satisfies 0 ≤ |D| ≤ 4 as the simply connected area. This article selected an attribute
of the data from January 2008 to December 2017 to participate in the experiment. The experimental
results are shown in Table 2.

Table 2: Performance experiment results with different degrees of connectivity

Model Different degrees of connectivity (simple connected area/complex connected area)

MAE MAPE (%) RMSE Detection time (s)

ARIMA 23.80/21.16 4.75/4.34 22.98/20.38 15878.62/16692.85
T-GCN 17.91/15.79 3.58/3.16 21.04/19.13 981.35/1013.54
STGCN 15.25/13.03 3.05/2.61 18.11/15.81 776.12/970.03
FAGTN 13.82/12.08 2.77/2.41 16.70/14.73 672.31/887.36

By analyzing the experimental results, this article obtained the following conclusions.

(1) The traditional time series model (ARIMA) performed poorly in the experiment. When dealing
with STD, this model only considered the temporal characteristics of the data and ignored the spatial
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characteristics of the data, which is a poor fit for data with prominent spatiotemporal heterogeneity,
so the accuracy of the model is lower.

(2) As shown in Table 2, T-GCN, STGCN, and FAGTN can better capture the spatiotemporal
dependence of data. Comparing FAGTN and STGCN with good performance, this article found that
the MAE, RMSE, and detection time of FAGTN are lower than STGCN, indicating that FAGTN has
an execution efficiency superior to STGCN.

(3) When dealing with different degrees of connectivity, the four models all showed better
performance in complex connected areas. It indicated that complex connected areas can adapt to
deeper spatial feature mining.

5.2.2 Performance Experiments with Different Periods

This article tested the model accuracy obtained by the four models in different periods. This aims
to observe the influence of the historical time series length on the detection accuracy of the models.

In the performance experiment with different periods, this article selected all nodes to participate
in the experiment. To highlight the influence of the length of the period on the model performance, this
article divided the training set into 10-time units according to the year, and each time unit contained
12-time points corresponding to the 12 months of each year. This article designed a self-increasing
time series Ti(1 ≤ i ≤ 10) and the increment is one time. The specific design is shown in Table 3.

Table 3: Time division of experiments with different periods

Period The number of
time unit

Time point
details

Period The number of
time unit

Time point
details

T1 12 201701–201712 T6 72 201201–201712
T2 24 201601–201712 T7 84 201101–201712
T3 36 201501–201712 T8 96 201001–201712
T4 48 201401–201712 T9 108 200901–201712
T5 60 201301–201712 T10 120 200801–201712

Comparing the experimental performance of the four models, the experimental results are shown
in Fig. 7.

By analyzing the experimental results, this article obtained the following conclusions.

(1) As shown in Figs. 7a–7c, with the increase of period, the accuracies of the four models all
show an increasing trend. Among them, the effects of STGCN and FAGTN are significantly better
than T-GCN and ARIMA models.

(2) Compared with the STGCN which has better performance, FAGTN’s performance always
has obvious advantages in different periods. This article found that when the historical time series
increases, the accuracy of FAGTN is always the highest, indicating that FAGTN maintains its
advantages in the processing of long historical time series.
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Figure 7: Different periods’ experiment results

5.2.3 Stability Experiments of the Model

This article selected the STGCN which has better performance as the comparison model, and
tested the models’ accuracy in different detection tasks and the different numbers of experiments. This
aims to analyze the models’ stability. This article took the types of detection tasks and the number of
experiments as variables and used the control variable method to test the changes in the accuracy of
the model.

This article performed 5 groups of experiments for different detection tasks, selected different
data attributes as detection tasks, and repeated each group of experiments 10 times. The experimental
result is the average of all experimental results. Fig. 8a shows the influence of different detection tasks
on the stability of the two models.

This article performed 50 groups of experiments for the different numbers of experiments added
an experiment as a new group each time (the first group had one experiment), and took the average
of the experimental results of each group. Figs. 8b–8c show the influence of the different number of
experiments on the stability of the two models.

As a supplementary instruction, Table 4 shows the values of various indicators of the two models
in the experiment.

By analyzing the experimental results of the model’s stability, this article obtained the following
conclusions.
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Figure 8: Experimental results of models’ stability

Table 4: Various indicators’ values of the two models in the stability experiment

Experimental project Indicators STGCN FAGTN

Accuracy interval [0.9346, 0.9458] [0.965, 0.9694]
Different detection tasks Maximum difference (%) 1.12 0.44

Minimum difference (%) 0.04 0.01
Standard deviation 0.0044 0.0017

Accuracy interval [0.9391, 0.9508] [0.9651, 0.9693]
Different number of Maximum difference (%) 1.17 0.42
experiments Minimum difference (%) 0 0

Standard deviation 0.0032 0.0010

(1) As shown in Fig. 9a, when the detection task changed, the two models’ accuracy both
fluctuated within a certain range, and the standard deviation of the FAGTN was smaller than that
of the STGCN. It indicated that FAGTN has stability superior to STGCN.
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Figure 9: Influence of handling complex topology structure on the model

(2) As shown in Figs. 9a–9b, with the increase in the number of experiments, FAGTN’s accuracy
fluctuation was significantly smaller than STGCNs’. The standard deviations for FAGTN and
STGCN were 0.0032 and 0.001, respectively. Therefore, it indicated that FAGTN has stability superior
to the STGCN in the different number of experiments.

5.3 Influence of Handling Complex Topology Structure on the Detection Accuracy and Speed
This article compared and analyzed the following indicators before and after handling complex

topology structures.

I. The accuracy of the model before and after handling complex topology structures.
II. The average detection time of the model before and after handling complex topology
structures.

This article designed this experiment to analyze the effect before and after handling complex
topology structures on detection accuracy and detection speed. This article selected the number of
nodes as a variable (the nodes in the experiment can form multiple detection spaces) and compared
the models with different numbers of nodes. This article performed 100 groups of experiments for
accuracy added 10 nodes as a new group each time (the first group has 100 nodes), and took the
average of the experimental results of each group. This article performed 5 groups of experiments for
detection speed and added 50 nodes as a new group each time (the first group had 100 nodes). The
experimental results are shown in Fig. 9.

By analyzing the experimental results, this article obtained the following conclusions.

(1) As shown in Fig. 9a, with the increase of the nodes’ number, the accuracy of the model which
preprocessed complex topology structure showed an upward trend. When the node reached a certain
number, the accuracy fluctuation tends to level off. The accuracy of the model whose complex topology
structure has not been preprocessed is generally lower than the model that has been preprocessed.
When the node reached a certain number, the accuracy of the model showed a downward trend.
It showed that the continuous increase of the nodes’ number will lead to the increase of invalid
connectivity. If the complex topology structure was not preprocessed, the model’s ability to extract
spatial features would be reduced.
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(2) As shown in Fig. 9b, when the number of nodes increased, the detection time of the model
also increased. The detection time of the model which preprocessed complex topology structure is
generally lower than the model that is not preprocessed. It indicated that preprocessing complex
topology structure had a certain effect on improving the model detection speed.

6 Conclusion

This article proposed a spatiotemporal heterogeneity data accuracy detection method by fusing
graph convolution networks and temporal convolution networks, which are divided into two main
stages. In the first stage, the geo-weighting function is improved, which in turn leads to a simplification
of the complex topology. In the second stage, the spatiotemporal feature analysis model (FAGTN)
is designed based on GCN and TCN to improve the detection speed and accuracy. Summarized as
follows.

I . The experimental results show that compared with similar models, FAGTN has obvious
advantages in detection speed, detection accuracy, and stability.

II . The degree of connectivity between nodes and the historical time series length will affect the
model’s detection speed and detection accuracy. When the two factors changed, compared with similar
models, FAGTN had obvious advantages.

III . Preprocessing the complex topology structure can optimize the detection space and improve
the detection accuracy of the model.

The problem of STD accuracy detection cannot be ignored. When applying the method proposed
in this article to a real scenario, some more specific problems need to be solved. For example, how to
add the influence of the nodes’ attribute value, and how to quickly model the node. These problems
need to be further resolved in the future.
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