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Abstract: Nowadays, Web browsers have become an important carrier of
3D model visualization because of their convenience and portability. During
the process of large-scale 3D model visualization based on Web scenes with
the problems of slow rendering speed and low FPS (Frames Per Second),
occlusion culling, as an important method for rendering optimization, can
remove most of the occluded objects and improve rendering efficiency. The
traditional occlusion culling algorithm (TOCA) is calculated by traversing all
objects in the scene, which involves a large amount of repeated calculation and
time consumption. To advance the rendering process and enhance rendering
efficiency, this paper proposes an occlusion culling with three different opti-
mization methods based on the WebGPU Computing Pipeline. Firstly, for the
problem of large amounts of repeated calculation processes in TOCA, these
units are moved from the CPU to the GPU for parallel computing, thereby
accelerating the calculation of the Potential Visible Sets (PVS); Then, for the
huge overhead of creating pipeline caused by too many 3D models in a certain
scene, the Breaking Occlusion Culling Algorithm (BOCA) is introduced,
which removes some nodes according to building a Hierarchical Bounding
Volume (BVH) scene tree to reduce the overhead of creating pipelines; After
that, the structure of the scene tree is transmitted to the GPU in the order of
depth-first traversal and finally, the PVS is obtained by parallel computing. In
the experiments, 3D geological models with five different scales from 1:5,000
to 1:500,000 are used for testing. The results show that the proposed methods
can reduce the time overhead of repeated calculation caused by the computing
pipeline creation and scene tree recursive traversal in the occlusion culling
algorithm effectively, with 97% rendering efficiency improvement compared
with BOCA, thereby accelerating the rendering process on Web browsers.
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1 Introduction

In recent years, both computer and communication technologies are one of the main support
services to realize the “Digital and Transparent Earth” [1]. Geospatial information science and
technology is composed of 3D geological modeling, visualization, and other related disciplines [2].
However, it is very difficult for the 3D geological models to be visualized due to the large volume
properties and complex hierarchical relationships. Especially for the rendering of large-scale 3D
models on the Internet, many issues, such as the relatively poorer rendering performance, delayed
displaying, and slower transmission of large amounts of data, still exist. Therefore, how to render and
visualize graphics on the Internet with a higher efficiency has gradually become a hot research field in
computer graphics.

In the scene of graphics rendering, different sizes of graphics often contain relatively significant
occlusion relationships, thus only a small proportion of the corresponding scenes can be inspected
from a specific viewpoint. Occlusion culling is the key technique for large scene rendering, which tries
to cull out the invisible part of the scene and it will not have a great impact macroscopically. In this
way, only the visible parts of the scene usually need to be transmitted to the GPU for rendering, which
greatly reduces the rendering pressure of the computers to a large extent [3,4].

Research on occlusion culling can be divided into two ways: one is to depend on the off-line
calculation, reducing the number of subsequent real-time rendering objects substantially; the other
is to perform real-time calculations during rendering, thereby discarding the parts that do not need to
be rendered in each frame. However, the former will lead to a long-time and low-efficiency calculation
when the amounts of preprocessing are too large. The latter is a real-time dynamic calculation,
which will occupy a large amount of memory and CPU resources, declining the machine’s rendering
capability. For the problems that existed in the traditional occlusion culling, starting from the breaking
occlusion culling, this paper proposed three specific acceleration algorithms to accelerate the 3D model
rendering according to reducing the time consumption of off-line preprocessing.

The rest of this paper is organized as follows. Section 2 briefly discusses related works.
Section 3 describes the details of the proposed methods. Section 4 shows the experimental results.
Finally, Section 5 concludes the paper.

2 Related Work

2.1 Occlusion-Culling-Related Algorithm
Early in the 1950s, specialists from abroad had already started the research of 3D geological

modeling techniques. Accompanied by the development of computer technologies, based on the 3D
virtual environment, a variety of demands, such as spatial information management, spatial analysis,
and prediction, geological statistics, and interpretation, could be satisfied, in which not only a fine 3D
geological model is obtained, but also a variety of corresponding geological characteristics are better
described [5]. Thanks to the rapid development of computer graphics in recent years, a breakthrough
has been made in both 3D visualization and rendering technologies, which plays an important role in
utilizing 3D data and determining whether the data can be observed and used by human beings [6]. For
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improving the computer’s rendering efficiency and reducing the rendering pressure simultaneously, the
concept of occlusion culling was proposed.

For example, Hierarchical Z-Buffering [7] is proposed in the 1990s, in which the space was
separated by the Octree and down-sampled by the Z-Buffer. But each triangle in a certain scene
needed to be checked caused a huge consumption of graphics processing. Reference [8] proposed
the novel microarchitectural technique, the Omega-Test, in which the Coherent Hierarchical Culling
(CHC) was introduced in the Z-Buffer algorithm, predicting the image visibility by using both Z-Test
result information discarded by GPU and the frame-by-frame coherence. Reference [9] proposed the
Coherent Hierarchical Culling algorithm, according to the spatiotemporal consistency between two
adjacent frames, for the invisible objects in the previous frame, occlusion query is inserted without any
rendering. By contrast, for the observed ones, their corresponding visibilities are updated according
to the query, and the objects added in the adjacent frame will be rendered subsequently. Reference [10]
have made some improvement on this basis, in which the objects observed in the previous stage are
selected as the invisible ones, and the occlusion culling processes will be performed according to the
depth of the given scene management tree.

Although these aforementioned methods could partly solve the problems of occlusion culling,
some defects still exist, such as the CPU suspension and GPU starvation caused by occlusion query
and the huge quantities of computing resources, especially for the cases of the visualization of the large-
scale complicated scene on the Internet [11]. The 3D model visualization based on the web browser
client, however, might bring a possible way to overcome these issues, which is more convenient and
advanced than the traditional desktop [12]. Specifically, for a network-based 3D visualization system at
or above the city level, the amount of rendering data might reach the TB magnitude, in which the higher
demands are proposed on the web browser clients in terms of rendering or data transmission. In recent
years, the graphics computing units could be transferred from CPU to GPU owing to the outstanding
computing performance. For example, the GPU-based point-cloud rending computation reduces the
computational burden on the CPU, which improves the whole rendering efficiency with one magnitude
of performance higher than the hardware pipeline [13–15]. The problems of computing-intensive and
slow rendering speed caused by the complicated 3D scene have always been one of the key factors for
visualization. Reference [16] combined the visibility-judgement-based slice culling algorithm with the
clipping algorithm, PVS-based culling algorithm, and ROAM strategy so that a new culling method
with both improved ROAM and dynamic PVS is created. From the perspective of the graphics, it
improves the calculation and retrieval efficiency of the geoscience data. However, due to the highly
non-linear, complex, and nonstationary properties of the 3D geological models, how to render them
with a higher efficiency still needs to be improved. Therefore, it becomes a possible way to solve this
issue according to accelerating the computation speed by using the GPU units.

2.2 Occlusion Culling
For the given 3D scene and viewing angle, the occlusion relationships could be judged and the

invisible graphical objects will be discarded so that it can reduce the complexity and improve the
realism for the whole scene, thereby realizing the low-load creation and network transmission, which
is shown in Fig. 1 below [17].

The common classifications for occlusion culling are described as follows [18]:

Based on the granularity, the occlusion can be divided into Object precision with object level and
Image precision with pixel level.
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According to the viewpoint, the occlusion culling can be divided into Point-based ones and Cell-
based ones, which are calculated point by point and region by region respectively.

Based on the organization of the occlusion objects, they could be classified into Cell-and-Portal
ones and Generic Scene ones. For the former one, the region will be divided into many cells, and
different viewing frustums are rendered according to different cell structures and portals’ locations.
For the latter one, there is no limitation of the occlusion objects.

According to the calculation-occurred time, it includes break-time and real-time occlusion culling.
The pre-processing is conducted before rendering in the former one, while both the rendering and
occlusion culling happens simultaneously in the latter one.

Figure 1: The schematic diagram of the occlusion culling algorithm

2.3 Break-Time Occlusion Culling Algorithm
For improving the frame rate of the real-time rendering, the reductant computing resources should

be moved to the pre-processing steps in the Break-time Occlusion Culling Algorithm (BOCA) so that
the Potentially Visible Sets (PVS) could be calculated in advance with a relatively lower rendering
pressure [19]. The PVS refers to the candidate set of the non-occluded objects in the 3D scene obtained
by the Break-time computing. PVS could finish the occlusion culling quickly when creating the 3D
scene [20]. As is shown in Fig. 2, the white part is the objects of PVS in the current viewpoint, which
are transmitted to the GPU to perform the rendering. In the same way, the objects in the gray part can
be viewed as occlusion objects, which will be removed from the same viewpoint.

The main process of BOCA includes four parts, named: Building the scene tree, intersection testing
for overall rays iteratively, obtaining the PVS, and real-time rendering. The flow chart of BOCA is
shown in Fig. 3:

Pre-processing aims to get the PVS sets. For each viewpoint, many light rays via the objects are
projected into it correspondingly so that the visible objects could be obtained. Therefore, for different
viewpoints, many rays are launched from the corresponding coordinates to substitute direct-incident in
the real environment. Then, the intersection test between the objects and rays in the scene is conducted.
After that, the object initially intersected with each ray is selected and saved in the PVS. When all the
rays are traversed in a certain viewpoint, the corresponding PVS is established. Repeating the operation
many times and the PVS of all viewpoints is obtained.
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Figure 2: PVS diagram

Figure 3: The flowchart of the BOCA

For the BOCA, especially in the Web client, the problems of an unstable computing environment,
longer computing time, and huge resource consumption are more significant. Specifically, when the
BVH tree is constructed, parallel computing might exist between the intersection testing and distance
calculation from the viewpoint to the selected bounding box (Dis (Viewpoint → BoudingBox)), while
these computing processes are finished on the CPU with a serial computing way instead, which brings
a relatively lower computing efficiency and higher rendering pressure on them. For the GPU, however,
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with an excellent parallel computing capability, such computing processes could be performed on
them. Therefore, both two steps are performed on the GPU so that it cannot only reduce the computing
time but also improve the computing efficiency to some extent.

Therefore, this paper proposed three occlusion culling algorithms based on WebGPU, including
the Improved WebGPU-Computing-Pipeline-based Algorithm (IWCPA), the BVH-based Algorithm
(BVHA), and the Strategy-Adjustment-based Algorithm (SAA). These algorithms will be described
specifically in the next chapter.

3 Methodology

3.1 WebGPU
A Graphics Processing Unit (GPU) is initially used as the electronic subsystem for graphics

processing. For the unique architecture, however, a variety of algorithms could be implemented by
the developers, named GPU Computing. WebGPU is a new graphics API that can bring all the
functions of the GPUs to Web browsers [21]. Reference [22] used WebGPU to implement a peer-to-
peer cluster, and matrix multiplication and Mandelbrot sets are adopted to evaluate the performance.
The experimental results show that the problem of parallel computing can be extended, with a 75%
improvement in efficiency. Therefore, the WebGPU is used to optimize the BOCA so that the time
consumption of the rendering might be relatively reduced.

Before the concept of the pipeline is proposed, point-to-point information transmission could be
conducted between CPU and GPU with a more frequent communication level. Being limited to the
higher utilization frequency, the computing abilities of GPU cannot be fully presented. Fig. 4 shows the
transmission speed among different memories. The WebGPU introduces the conception of rendering
and computing pipeline so that the extra consumption between CPU and GPU is reduced. Meanwhile,
Resource Binding is also introduced into it so that the global sharing of data among different pipelines
could be possibly realized. The multi-dimensional data processing could make resource binding more
convenient. Therefore, the WebGPU is used as the graphic API.

Figure 4: The bandwidth speed with different memory

3.2 Overall Architecture
Based on the WebGPU characteristics, the IWCPA is first proposed. Then, for the problem of

huge overhead caused by the computing pipeline creation in the IWCPA, the BVHA is adopted. In
practice, it can be found that a large time consumption is cost by the BVH traversing process in the
BVHA, so the SAA is finally proposed. By traversing the BVH on GPU, SAA greatly improves the
efficiency of this process. The flow chart of the three methods is shown in Fig. 5:
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For the IWCPA, all the computing units are removed to the GPU with a relatively lower
computing pressure on the CPU. The object selection is performed without the BVH, and although the
parallel computing for the GPU is relatively stronger, all the objects in the scene cannot be obtained
effectively in a very short period. Therefore, the BVH tree is introduced in the BVHA, in which the
Dis (Viewpoint → BoudingBox) calculation is removed to the GPU, and the rest computing parts are
still conducted on the CPU. However, the computing pressure of the CPU is much higher and the
utilization of the GPU is relatively lower. Therefore, this article introduces the SAA, which can also be
viewed as the combination of the aforementioned two methods, with a balance of utilization between
the CPU and GPU. Specifically, the BVH is established in the CPU and the intersection testing is
performed on the GPU, then the Dis (Viewpoint → BoudingBox) is calculated, which can improve the
computing efficiency to a large extent.

Figure 5: The thought flow chart of three methods

3.3 BVH Scene Tree and Slab Algorithm
During the intersection texting for all the objects in the scene, each ray of the viewpoint should

be calculated, with huge consumption of computing resources and time overhead. Therefore, for a
certain scene, the space could be divided into many subspaces and calculated separately. Such the space
division pattern could be regarded as the scene management tree. The common scene management tree
includes Octree, KDtree, and so on.

BVH tree uses the bounding box with a simple geometric shape to approximately describe the
complicated geometric objects, which can reduce the complexity of the 3D geological models and
reduce the subsequent calculations [23,24]. It overcomes the disadvantages of low searching efficiency
in Octree due to the spatial unbalanced aggregation for 3D geological models, which causes the depth
of the Octree might be much deeper than usual [25]. Although the KD tree is better in searching
efficiency, owing to the huge volume of characters of 3D geological models, it occupies a much larger
computing memory [26]. Therefore, the BVH tree is adopted to manage the objects in the scene.

As is shown in Fig. 6, it shows the geological model and the corresponding BVH visualization in
the southwestern region of Guizhou Province. For the constructed BVH tree in this paper, only the
leaf nodes of the tree will contain the real object and non-leaf nodes will not contain it. Meanwhile, the
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Axis-aligned Bounding Box (AABB) is adopted to construct the BVH tree, which could be regarded
as the smallest bounding box for the internal objects. Due to its simple geometric information, it
can reduce the calculation process and ensure calculation precision, which reduces the probability of
culling models in visible regions by mistake.

Fig. 7 shows the BVH construction in the 2D space. Fig. 7a represents the corresponding
bounding box, with serial numbers 1, 2, 3, and 4. Firstly, an AABB is constructed to surround all the
bounding boxes, as shown in Fig. 7b. Then, the center coordinates with the longest axis are selected
and divided into two nodes (bounding box), as is shown in the red part of Fig. 7c. Such iterations are
repeated many times until all the bounding boxes of the real objects should correspond to a leaf node,
as is shown in Fig. 7d.

Figure 6: Geological models from different perspectives and their corresponding bounding boxes in
southwestern Guizhou

Figure 7: The build of the BVH Tree

Among various intersection testing methods, the slab is used in this paper [27]. The key to the
slab is that the bounding box is regarded as the space in three pairs of parallel planes. If the ray is
sandwiched by every pair of parallel planes and any part of them are remained, it will intersect the
bounding box. For example, as is shown in Fig. 8, O is regarded as the viewpoint, and light is launched
from it. A, B, C, and D represent the intersection point of the ray with planes X0, Y0, X1, and Y1

respectively. The red point and green point represent the input and out ray’s location of corresponding
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planes respectively, and t represents the distance between the certain point on the ray and viewpoint
O. Slab judges the intersection between ray and plane according to whether the maximum value of t
at which the ray enters the plane (as is shown in t0 of Fig. 8) is smaller than the minimum value of t at
which the ray leaves the plane (as is shown in t1 of Fig. 8).

Figure 8: Semantic diagram of the slab algorithm. Among them, t0 refers to the maximum distance
between the viewpoint and the intersection ray leaving the plane, while t1 refers to the minimum
distance between the viewpoint and the intersection ray entering the plane

3.4 Proposed Methods
3.4.1 Improved WebGPU-Computing-Pipeline-Based Algorithm

The key to IWCPA is that parallel computing is performed between the ray and the bounding
box of the objects in the scene, with a 2D resource binding so that the calculation could be easily
understood. The schematic diagram for parallel computing is shown in Fig. 9. During the 2D parallel
computing of WebGPU, each calculation unit could be viewed as a parallel process, and both the
ordinate and abscissa can be regarded as the ray and the bounding box of each corresponding
object respectively. Each rectangular is viewed as a computing unit, and intersection testing could
be performed on it. In the experiment, the 16 × 16 computing units are adopted to perform the
parallel computing and 256 computing units could be finished at one time. In contrast, such a process
could be finished according to serial computing 256 times for CPU, so the computing performance is
significantly improved.

Figure 9: The schematic diagram of the concurrent calculation of IACPW
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The main steps for IWCPA are as follows: firstly, the bounding box should be created according to
the rendering requirements and meshes. After creating the AABB (as shown in Fig. 6), the information
for both ray and AABB are transmitted into GPU, and the slab algorithm is used to perform the
intersection testing between each ray and all bounding boxes. Take a certain ray as an example, if
the ray intersects with one of the bounding boxes, then the distance between them will be returned.
Otherwise, it will return an invalid value of −1. When the intersection testing is finished, the bounding
boxes will be discarded with the return value −1, and others will be sorted by distance. The meshes
which have the closest distance with the viewpoint will be input into PVS. Such operation will be
repeated many times and finally, the PVS corresponds to the viewpoint that could be obtained, and
finally, the corresponding data will be loaded and rendered by the rendering pipeline. The pseudocode
of the IWCPA steps is shown in Table 1.

Table 1: Pseudocode of IWCPA

Algorithm IWCPA

Input: the information of meshes, the data of 100 ∗ 100 rays created by viewpoint raytarget
Output: a box array consisting of boxes that access intersection test ans

Create AABB bounding box for each mesh
box = AABB box array
//set the number of GPU parallel computing units
@workgroup_size(16, 16)
//do intersection tests in the GPU and output in ans array
ans = rayout(box, raytarget)
return ans;

3.4.2 BVH-Based Algorithm

BVHA is combined with the IWCPA and BOCA. The BVH is firstly established to realize the
object management in the scene and traverse the BVH to perform intersection testing. Based on it,
the computing pipeline will be created, and all the nodes obtained by intersection testing will be input
into the pipeline so that the Dis (Viewpoint → BoudingBox) will be calculated on GPU and PVS will
be obtained finally.

In the CPU, when traversing the non-leaf nodes, if it intersects with the ray, then continue
traversing the corresponding child nodes and judging whether they intersect with the ray. When
traversing the leaf nodes, if it intersects with the ray, then the corresponding internal 3D model will be
recorded and input into PVS. Finally, the intersection testing for PVS is performed on GPU according
to the slab algorithm.

After calculation on GPU, the rays derived from the viewpoint might intersect with many
objects, but, due to the occlusion relationships among different objects, the first one intersected with
the ray could be observed. Therefore, the nodes obtained by the intersection test will be further
selected, and the objects first intersect with the ray will be input into PVS. Then, for the BVHA,
the Dis (Viewpoint → BoudingBox) will be calculated on GPU, and these nodes are classified and
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compared with each other according to different rays. Finally, the PVS could be obtained to perform
rendering. The pseudocode of BVHA steps is shown in Table 2.

Table 2: Pseudocode of BVHA

Algorithm BVHA

Input: the information of meshes, the data of 100 ∗ 100 rays created by viewpoint raytarget
Output: a box array consisting of boxes that access intersection test ans

Create AABB bounding box for each mesh
box = AABB box array
//root refers to the root node of BVH
root = create BVH in CPU
//traverse BVH tree and put potential PVS nodes’ information into tmpbox
tmpbox = TraverseTree(root)
// Set the number of GPU parallel computing units
@workgroup_size(256)
// Do intersection tests in the GPU and output in ans array
ans = rayout(tmpbox, raytarget)
return ans;

3.4.3 Strategy-Adjustment-Based Algorithm

The main process for SAA is that the computing pipeline is created after constructing BVH. The
nodes in the BVH are passed into the computing pipeline in terms of an array according to the order
of depth traversal, named Arra. An array named Arrb with the same length as Arra is also passed in,
and the elements in the Arrb represent the number of sub-nodes corresponding to the elements of Arra.
During the subsequent intersection testing, if one node cannot pass, then the subsequent testing will
be canceled; if passed, the depth-first traversal will be continued. 256 calculating units are adapted to
perform parallel computing, and each unit represents the depth traversal calculation for the BVH tree.

After constructing the AABB and BVH, the subsequent traversal, calculation, and rendering will
be performed on GPU. Because the data cannot be transmitted in the form of tree structures, so
traversing the BVH in depth-first order, and the results will be restored in the list, and intersection
testing will be performed on GPU, which is shown in Fig. 10. If the node passed, continue to judge
whether the corresponding sub-nodes exist. If not existing, then the Dis (Viewpoint → BoudingBox)

will be calculated and recorded. If existing, then continue traversing. By contrast, if the node is
not passed, then the subsequent traversing process will be canceled. After parallel calculations are
performed, the nodes with minimum distance will be input into PVS and rendered. The pseudocode
of the SAA steps is shown in Table 3.

Figure 10: The schematic diagram of the concurrent calculation of SAA
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Table 3: Pseudocode of SAA

Algorithm SAA

Input: the information of meshes, the data of 100 ∗ 100 rays created by viewpoint raytarget
Output: a box array consisting of boxes that access intersection test ans

Create AABB bounding box for each mesh
box = AABB box array
minbox = box.min
maxbox = box.max
// Set the number of GPU parallel computing units
@workgroup_size(256)
while nodeindex < the length of the box array then

//when doing an intersection test
//if they don’t intersect then return −1,
//else return Dis (Viewpoint → BoudingBox)

dist = Intersected (raytarget, minbox [nodeindex] , maxbox [nodeindex])
//if the node doesn’t intersect with the ray
if dist == −1 then

nodeindex += the amount of children of this node
else

if the node is a leaf node then
put the node into a boxes array that accesses the intersection test

else
continue traversal

end if
end if

end while
return ans;

4 Experimental Results

In this paper, five 3D geological models with different scales are selected to verify the rendering
efficiencies. The original models are visualized in Fig. 11, and the corresponding statistical information
and experimental environment are shown in Tables 4 and 5 respectively.

Table 6 represents the rendering time statistical results of five models based on different algo-
rithms. Among them, due to the large scale of models 4 and 5, both of them will cause huge time
consumption in TOCA and BOCA, so they will not participate in rendering time comparison analysis.
As is seen, the IWCPA rendering efficiencies for all models are greater than the ones of TOCA.
However, compared with the ones of BOCA, the rendering efficiencies improve by 54.1%, 87.2%,
89%, 97.3%, and 90.5%. The BVHA rendering time is relatively longer for five models, in which the
efficiencies improve by 48.5%, 4.4%, −26.2%, 21.8%, and −0.5% respectively (“–” means the efficiency
reduction) respectively compared with the ones of BOCA. SAA has the fastest rendering speed for
models 1, 2, and 3, but the rendering speed is relatively slower than the ones of IWCPA for other
models, in which the efficiencies improve by 88.74%, 94.04%, 93.49%, 96.64%, and 88.65% respectively
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compared with BOCA. As a result, SAA has the highest rendering efficiencies for large-volume 3D
models, and the IWCPA rendering times consumption cannot be impacted by the model’s volume.

Figure 11: The visualization of original models. (a) represents model 1; (b) represents model 2; (c)
represents model 3; (d) represents model 4; (e) represents model 5

Table 4: Model basic data. Model 1—Wuzhishan geological model; Model 2—Wuzhishan Strata;
Model 3—Purmont model; Model 4—the model of Northeast Guizhou; Model 5—Guizhou overall
model

Model name Amount of triangle faces Mesh number Model sizes Scale

Model 1 9,234,330 1371 406 MB 1:5000
Model 2 27,512,307 2684 1.22 GB 1:25000
Model 3 46,731,152 4433 1.88 GB 1:50000
Model 4 263,103,774 6744 10.6 GB 1:250000
Model 5 90,415,179 17773 8.12 GB 1:500000

Table 5: Hardware environment

Name Environment

CPU Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz 3.19 GHz
GPU NVIDIA Quadro P620
Memory 32.0 GB
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Table 6: Time consumption statistics

Model name/methods TOCA BOCA IWCPA BVHA SAA

Model 1 919.8 170.5 78.2 87.8 19.2
Model 2 1434.9 537.2 68.5 513.4 32
Model 3 2180.1 616.3 67.5 777.6 40.1
Model 4 - 2591.6 70.7 2027.1 87.1
Model 5 - 782.2 74.4 785.9 88.8

In addition, the coordinate (40000, 0, 0) was selected as the viewpoint V . The model’s center was
placed on (0, 0, 0), and 10,000 rays were launched uniformly from V in the visible region according
to the length-width ratio of the screen. Fig. 12 represents the results of both occlusion culling and
completely rendering ones from the angle of V and overlook respectively. As is shown, the occlusion
culling could reduce the rendering numbers, which the result is similar to the complete rendering ones.
Meanwhile, the rendering effects of the three proposed methods are the same, because the rendering
results mainly depend on the ray distribution and the bounding boxes, and the three proposed methods
have the same spread of rays and configuration of bounding boxes, with the same rendering results.

Take model 4 as an example, based on V , the corresponding rendering times are compared and
visualized in Fig. 13, in which time consumption is the same in the three proposed methods. Among
them, the rendering time for red regions is longer, with more PVS numbers, while the one for green
regions is shorter, with fewer PVS numbers. The geological and detailed texture information of the
original models is rendered effectively. It indicates that the occlusion culling algorithms mainly focus
on the PVS rendering, which can reduce the rendering time consumption of invisible parts, accelerating
the whole rendering efficiency with a relatively lower accuracy loss.

Figure 12: (a) Effect comparison figure from viewpoint; (b) Effect comparison figure of elimination
effect
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Figure 13: The ratio picture of rendering time consumption

5 Conclusion

In this paper, due to the problem of longer rendering time for large-scale 3D geological mod-
els, the IWCPA, BVHA, and SAA are proposed. For IWCPA, all the bounding boxes and rays
are input into GPU to perform parallel computing. The scene management tree is introduced in
BVHA, in which the BVH is established to perform intersection testing on the CPU, then the
Dis (Viewpoint → BoudingBox) will be calculated. For SAA, after constructing the BVH on the CPU,
the intersection testing and Dis (Viewpoint → BoudingBox) calculation will be performed on GPU.
Five 3D geological models with different scales were selected to verify the experiment. The results show
that the SAA has the fastest rendering speed for large-volume models, and rendering time for BVHA
will not be impacted by the model’s size. The drawbacks still exist in these algorithms. For example,
some important information about 3D geological models might be excluded, and the parameter
settings for the WebGPU pipeline are complicated. However, the initial position of the viewpoint can
be user-defined, which means the users can focus on the geological details by moving the viewpoint
closer to the information they are interested in. By doing this, the detailed information on the sight is
rendered, while the one far to the viewpoint is possibly excluded. In the future, scene management tree
optimization and machine learning will be introduced to further improve the algorithm efficiency.
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