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Abstract: Heart disease is a primary cause of death worldwide and is notori-
ously difficult to cure without a proper diagnosis. Hence, machine learning
(ML) can reduce and better understand symptoms associated with heart
disease. This study aims to develop a framework for the automatic and
accurate classification of heart disease utilizing machine learning algorithms,
grid search (GS), and the Aquila optimization algorithm. In the proposed
approach, feature selection is used to identify characteristics of heart disease
by using a method for dimensionality reduction. First, feature selection is
accomplished with the help of the Aquila algorithm. Then, the optimal com-
bination of the hyperparameters is selected using grid search. The experiments
were conducted with three datasets from Kaggle: The Heart Failure Prediction
Dataset, Heart Disease Binary Classification, and Heart Disease Dataset.
Two classes can be distinguished: diseased and healthy (i.e., uninfected).
The Histogram Gradient Boosting (HGB) classifier produced the highest
Weighted Sum Metric (WSM) scores of 98.65% concerning the Heart Failure
Prediction Dataset. In contrast, the Decision Tree (DT) machine learning
classifier had the highest WSM scores of 87.64% concerning the Heart Disease
Health Indicators Dataset. Measures of accuracy, specificity, sensitivity, and
other metrics are used to evaluate the proposed approach. The presented
method demonstrates superior performance compared to different state-of-
the-art algorithms.

Keywords: Aquila optimizer (AO); feature selection; machine learning (ML);
metaheuristic optimization

1 Introduction

The heart is the vital organ that regulates blood circulation and supplements oxygen and nutrients
throughout the body. A person’s life can be lost if the heart does not function properly due to heart
disease or cardiologist disease [1]. Diseases of the heart and blood vessels, known as cardiovascular
diseases (CVDs), now account for more deaths annually than cancer. The World Health Organization
(WHO) stated that 32% of worldwide deaths are due to CVDs [2]. It was observed that more than
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two million people lost their lives over the last two decades due to heart disease [3]. The death rate is
anticipated to rise in the coming years and may reach more than 23.6 M people by 2030 [4]. The leading
causes of death in CVDs are heart attacks and strokes. Today, heart attack and stroke represent 85%
of mortality rates in low- and medium-income nations. Besides, someone has a stroke every 40 s in the
USA and dies every 3.5 min [5]. The middle east and North Africa regions have a higher percentage,
accounting for 39.2% of deaths [6].

In the medical field, heart failure prediction is a complex task that involves disparate features,
types, causes, and symptoms of heart disease that complicate diagnosis. There are no symptoms in
the early stages of CAD, and predicting cardiac patients is one of the most fundamental and difficult
health problems worldwide. The high molarity rate of these life-threatening diseases can be controlled
via rapid and accurate detection of abnormalities in heart conditions, thus providing proactive care.
Therefore, CVDs prevention and accurate early prediction enable the management of counseling and
medications, consequently saving many lives. However, CVD identification is a complex task requiring
conducting laboratory tests, equipment, wearable sensor data, and Physicians’ experience [7], which are
insufficient. Besides, the medical staff diagnoses a huge amount of data, which is sometimes difficult
to analyze [8]. Therefore, patients should access appropriate technology and medication to support
continuous observations for managing heart attacks.

Artificial intelligence (AI) is a promising tool for building decision-making systems that use
computers to learn and discover hidden insights without manual programming. Artificial intelligence
is becoming increasingly popular in the healthcare industry because of its importance in diagnosing
serious diseases, including heart disease, diabetes, and cancer. It can improve precision medicine at
every stage of a patient’s journey through the clinical pathway, from diagnosis, treatment, guidance,
and surveillance, with further research and development. For example, using various data modalities
as input, new artificial intelligence-based diagnostic algorithms improve heart disease detection rates
with more generated data than expert cardiologists [9]. Mathematical models are used in artificial
intelligence, known as machine learning (ML), to help computers learn new things independently.
In machine learning, algorithms are employed to analyze data for patterns. These regularities are
then used to create a data model for foreseeing potential outcomes. As a result, machine learning can
provide intelligent decisions for predicting the occurrence, progression, treatments, and determinants
of individual chronic diseases in various contexts and based on multiple data [10]. Because of
its potential to increase accuracy, efficiency, and early identification of cardiovascular problems,
automated heart disease diagnosis using ML has received substantial interest in recent years. Machine
learning algorithms can examine vast information, discover patterns, and construct prediction models
to help diagnose cardiac disease.

However, several difficulties with automating the detection of cardiac disease must be carefully
resolved. One of the key issues is the identification and interpretation of relevant features. The accuracy
of the predictions made by machine learning models depends on the input attributes. Effective
diagnosis depends on selecting the most relevant features from a wide range of possible ones, such
as age, blood pressure, cholesterol levels, and medical history. Further, the quality and availability of
data provide another difficulty. ML algorithms need large, diversified, and well-annotated datasets to
discover patterns and generate precise predictions. However, gathering high-quality data that includes
complete clinical information might be difficult. Missing values, consistency issues, and biases in data
gathering can affect the accuracy and dependability of machine learning models. Another crucial
factor is ensuring the robustness and generalizability of the generated models. Machine learning
algorithms trained on a particular dataset may have trouble coping with new populations different
from the training set. To ensure the models work in actual clinical settings, it is essential to test and
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verify them on various populations. Ethical issues and model interpretability are additional problems.
The ML algorithms frequently operate as black boxes, making it impossible to understand the logic
behind their predictions fully. To establish confidence and assure responsibility in crucial healthcare
applications (e.g., the detection of heart disease), accessible and understandable models are essential.
Understanding how ML models generate decisions might help healthcare professionals and patients
make more informed decisions, potentially improving patient outcomes. Despite these difficulties,
automated heart disease detection utilizing ML algorithms has huge potential advantages. Making
timely and precise predictions can help healthcare practitioners by facilitating early identification, risk
stratification, and individualized treatment strategies. Additionally, decreasing delays in the detection
and treatment of cardiac disease can potentially optimize healthcare resource allocation and enhance
patient outcomes.

Doctors can provide on-time patient treatment by using this vast amount of data to gain and
extract critical information optimally and valuable insights [11]. However, feature extraction for
cardiovascular disease prediction is challenging. Therefore, many heart disease diagnosis systems
employ feature selection strategies for selecting the most important features from a large set of
candidates. Feature selection aims to solve problems such as overfitting and high computational cost
and improve classification accuracy. These selected features are then fed into classification methods
in the second stage [12]. The primary motivations of this study are as follows: (1) Diagnosing CVD is
critical in clinical practice. Unfortunately, it is a highly complicated task requiring many tests that
take time, effort, and money. (2) The huge number of heart disease features tremendously affects
classification accuracy and system processing complexity. (3) Reduce the burden of CVDs detection
via an AI-based automated heart diagnosis framework that provides accurate prediction with minimal
time and effort. (4) Introducing a reliable health system requires significant investment to manage
CVDs effectively.

The following are some key contributions from the present study:

• Using machine learning algorithms, grid search (GS), and an Aquila optimizer (AO) to auto-
matically and accurately classify heart disease based on numerical records. The AO algorithm
offers several benefits across various areas, including early convergence and achieving optimized
fitness values compared to alternative algorithms. Additionally, it demonstrates competitive and
promising outcomes.

• In comparison to natural-inspired algorithms, Aquila outperformed. A binary version of AO
is deployed to determine the optimal attribute set for better classification accuracy.

• Grid search is used to choose the best combinations of hyperparameters. The framework is
adaptable; hyperparameters are not assigned manually.

• The new methodology exceeds most related studies regarding the accuracy and other measures.

The rest of the paper is organized as follows: The Related work is reviewed in Section 2. Then,
Section 3 describes the proposed heart disease framework and algorithms. Then, the experiments are
presented in Section 4, and the results are analyzed. Finally, in Section 5, the paper is concluded.

2 Related Work

Long et al. [12] studied the problem of a high-dimensional dataset, uncertainty, and high
computational cost of heart disease diagnostic systems. As a result, a two-stage diagnosis system was
proposed using a hybrid learning process for feature selection (FS) and classification. At the FS level,
data is normalized before the chaos firefly technique is used for parameter adjustment via attribute
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reduction based on rough sets (CFARS-AR). Then, type-2 fuzzy logic operates using the remaining
attributes as inputs. Using the heart disease dataset (13 attributes) and SPECTF dataset (44 attributes),
the CFARS-AR attained an accuracy of 88.3%, a Sensitivity of 94.2%, and a Specificity of 93.3%.
However, the proposed system needs further improvement to manage many attributes. An automated
system for diagnosing heart disease was developed by Shah et al. [1], which would take a patient’s
test results, lifestyle choices, and other data as input. In addition, the use of probabilistic principal
component analysis for feature extraction was carried out. Finally, the Support Vector Machine (SVM)
classifier was used to classify and diagnose cardiac disease. For the Cleveland, Hungarian, and Swiss
datasets, the suggested method had accuracies of 82.18%, 85.82%, and 91.30%, respectively.

An ensemble learning platform for heart disease classification using MATLAB environment
and WEKA was introduced [13]. Different machine learning algorithms and classifications were
performed using ten-fold cross-validation. The Hungarian heart disease dataset used contains 294
samples (14 attributes). The J48 and Subspace Discriminant methods outperformed other methods
with classification accuracy at 67.7%. However, the classification results are not high. Using the
Rapid Miner tool, Bashir et al. [14] provided a method for selecting features. In the first stage, pre-
processing was performed for data cleaning, transformation, and reduction. Feature selection and
classification are then performed using different algorithms. The approach achieved an accuracy of
84.85% using Logistic Regression SVM as a feature selection technique. However, the proposed system
needs training on a larger dataset for better results.

Alotaibi [7] investigated improving heart failure prediction accuracy using the UCI heart disease
dataset. After performing data pre-processing to clean the data, five different models were used to
predict heart disease. The Five-fold cross-validation method was applied to enhance precision and
reduce the duplicate entries’ likelihood. As a result, there was a 93.19% improvement in accuracy
using the Decision Tree method. However, the main limitation of this study is using a small dataset
size. A DCNN model for heart disease prediction was introduced [14] using a Talos optimizer. The
proposed model involves DATA Acquisition and cleaning, Feature extraction, and classification using
various learning algorithms, training, testing, and model deployment. The best classification accuracy
was achieved via hyperparameter optimization using Talos with an accuracy of 90.78%.

Yazdani et al. [4] developed a model to aid in predicting cardiovascular disease using weighted
associative rule mining (WARM). Five steps comprise the model: cleansing the data, narrowing down
the features to use, calculating the weights for those features, implementing WARM, and finally,
assessing the model’s performance. Selecting significant features and their relationships used seven
classification models. Experiments on the UCI dataset indicated a 98% confidence score in diagnosing
cardiac disease. The major drawback was in the feature selection phase, which employed only a few
machine learning methods. Sharma et al. [15] investigated and assessed various cardiac prognostic
approaches and machine-learning classification techniques. Classifications of severity were made using
eight strategies and the Cleveland dataset (14 features). The accuracy of the Hybrid Random Forest
with a Linear Model method was reported in the testing to be 88.7%.

Different machine learning algorithms for heart disease prediction were deployed in [8,16]. The
steps for the prediction process are as follows: first, data Extraction from two different datasets was
used. Then, data pre-processing via normalization. Finally, training and testing of different classifiers.
The experiments showed that the SVM, Logistic Regression (LR), and Artificial Neural Network
(ANN) achieved the same accuracy of 93%. Authors in [17] analyzed how well machine-learning
techniques can identify heart disease classifications. Three models were implemented: Random Forest
(RF), LR, and SVM algorithms using eleven features from five heart disease datasets. A Grid Search
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with 10-fold repeated cross-validation was carried out for hyperparameter optimization. The RF
model outperformed other models with an accuracy of 92.9%. Using a variety of machine-learning
methods, Chang et al. [11] developed machine-learning-based software to forecast heart disease.
The main phases were data collection, performing logistic regression, and evaluating the dataset’s
attributes. As a result, RF and K-neighbor classifiers achieved 87% and 83% accuracy using a dataset
comprising 14 characteristics for 100 persons.

Zhuang et al. [18] developed a machine learning framework using regularized regression and
random survival forest (RSF) method. Four distinct models were used to select features and build
the models. Thirty-eight different variables were picked from the ARIC dataset. The model per-
formance was evaluated via discrimination, accuracy, interpretability, and five-fold cross-validation.
Hassan et al. [19] proposed a three-class DL approach for classifying cardiovascular autonomic
neuropathy. Pairwise multi-class ROC feature selection, deep convolutional neural network (DCNN)
feature augmentation and generation, multimodal feature fusion approaches, and classification were
all incorporated into the suggested method to produce a multistage fusion model. Using only a subset
of features generated by this LDA-based method, a decision tree classifier attained an accuracy of
88.959%.

Sanni et al. [20] compared the accuracy of various machine-learning approaches in predicting
cardiac disease based on the UCI dataset. Estimating the likelihood of heart failure using machine
learning algorithms was introduced in [10]. The process starts with pre-processing and continues
with feature selection, elimination, training, and testing. For the maximum accuracy of 85.33%, the
Decision Tree algorithm was the best choice. Several machine-learning algorithms were applied and
analyzed to predict heart disease [21] for diagnostic purposes. They used Weka for data mining and
Python for data analysis and visualization. The importance score was used for feature ranking. Three
classification algorithms were used KNN, DT, and RF. The RF algorithm achieved 100% utilizing
a dataset from Kaggle with 14 features. A DCNN system was proposed for feature rearrangement
to predict heart failure mortality [22]. The system handled the data imbalance problem and achieved
better feature representation. The proposed approach was evaluated on a dataset of 10,198 patients
and proved that CVD and lung complications are the leading cause of heart failure mortality.

Li et al. [23] proposed an automated DCNN-Recurrent neural network (RNN) model for
automatically staging heart failure diseases. For better classification performance, they first performed
segmentation and augmentation. Then, feature extraction based on CNN is combined with the clinical
features. Finally, CNN is combined with RNN for classification. A chest pain dataset collected from
573 patients was used. The results of the experiments demonstrated that the proposed model was
accurate to 97.6%.

Numerous architectures have been proposed concerning cardiac patients’ automatic monitoring
and detection of heart failure; however, they involve several issues and challenges. First, heart diseases
are hampered by a large amount of cardiac patient data. Due to the lack of a sophisticated framework
that can use many data sources, these systems cannot manage high-dimensional datasets. Furthermore,
most proposed systems use conventional techniques to select features that cause performance degra-
dation and are time-consuming. Finally, extracting relevant and meaningful features is tedious for
cardiac disease prediction. In this vein, to detect unnoticed heart problems and foresee a heart attack
or other cardiac emergency, a smart system is needed to automatically fuse the gathered information
from various sources and analyze the acquired data.
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3 Methodology

This study offers an approach that, with machine learning algorithms, grid search (GS), and an
Aquila optimizer (AO), can automatically and accurately classify heart disease based on numerical
records. In short, the AO selects the most promising features that lead to the best performance metrics.
Also, the GS is used to choose the best combinations of hyperparameters. Fig. 1 depicts the suggested
framework. The proposed framework consists of multiple stages, where the numerical data is acquired
in the first stage. After that, the data is pre-processed, and the initial population is generated. The
pre-processed data and machine learning model evaluate each solution’s fitness function. Finally,
the population is updated, and the last two stages are repeated for several iterations. Algorithm 1
summarizes the overall stages in short. As presented in it, the last two steps repeatedly run for several
iterations Tmax.

Figure 1: The suggested heart disease framework
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Algorithm 1: The framework overall stages in short

3.1 Stage 1: Data Acquisition
The datasets are accessible via many means, including digital libraries. The datasets are retrieved

from Kaggle for this particular investigation. The tests are conducted on three datasets: Heart
Failure Prediction Dataset, Heart Disease Binary Classification, and Heart Disease Dataset. They
are partitioned into Diseased and Healthy (i.e., non-diseased).

3.1.1 Dataset 1: Heart Failure Prediction Dataset

Eleven different clinical characteristics related to heart disease are included in the dataset. This
dataset was produced by integrating various datasets that were previously accessible separately but
had never been integrated. This dataset was created by combining five heart datasets using eleven
common characteristics. The five datasets utilized for its curation are Cleveland: 303 observations,
Hungarian: 294 observations, Switzerland: 123 observations, Long Beach, VA: 200 observations, and
Stalog (Heart) Data Set: 270 observations. Although there were 1190 observations in total, 272 were
duplicates, making the final dataset contain only 918 observations. The dataset can be retrieved from
Kaggle [24]. Table 1 describes the dataset columns and their meaning. It is important to note that
other possible risk factors for heart disease, such as lifestyle factors (e.g., smoking or alcohol intake)
or genetic predispositions, were not considered in this dataset and that it only considers a small number
of demographic and clinical characteristics.

Table 1: The heart failure prediction dataset dataset columns and their meaning

Column Description Range Unit

Age Age of the patient [28: 77] Years
Sex Gender of the patient [M, F] –
ChestPainType Type of chest pain [TA: Typical Angina, ATA:

Atypical Angina, NAP:
Non-Anginal Pain, ASY:
Asymptomatic]

–

RestingBP Blood pressure at rest [0: 200] mmHg
Cholesterol Cholesterol in blood [0: 603] mm/dl

(Continued)
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Table 1 (continued)
Column Description Range Unit

FastingBS Blood sugar level at fasting [0: 1] mg/dl
RestingECG Results of the resting

electrocardiogram
[Normal, ST, LVH] –

MaxHR Heart rate attained at the
maximum

[60: 202] –

ExerciseAngina Angina induced by exercise [Y, N] –
Oldpeak Depression is a numerical

value
[−2.6: 6.2] –

ST_Slope Exercise ST segment slope [Up Upsloping, Flat, Down:
Downsloping]

–

HeartDisease The output class [0, 1] –

3.1.2 Dataset 2: Heart Disease Health Indicators Dataset

The dataset comprises 21 clinical features from the cleaned Behavioral Risk Factor Surveillance
System (BRFS) 2015. This dataset includes 253,680 observations largely utilized for the binary
categorization of heart disease. It is important to note that there is a significant racial disparity in this
dataset, with 229,787 respondents not having or never having experienced heart disease compared to
23,893 who had. The dataset can be retrieved from Kaggle [25]. Table 2 describes the dataset columns
and their meaning.

Table 2: The “Heart Disease Health Indicators Dataset” dataset columns and their meaning

Column Description Range Unit

HighBP Adults with high blood pressure who
are told by a doctor, nurse, or other
medical professional

[0, 1] –

HighChol Has a healthcare professional ever told
you that your blood cholesterol is high?

[0, 1] –

CholCheck Checked cholesterol within the past ve
years

[0, 1] –

BMI The Body Mass Index (BMI) [12, 98] –
Smoker Did you smoke a total of at least 100

cigarettes in your life?
[0, 1] –

Stroke Did anyone ever tell you that you had a
stroke?

[0, 1] –

Diabetes Have you ever had diabetes? [0: No diabetes,
1: Pre-diabetes,
2: Diabetes]

–

(Continued)
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Table 2 (continued)
Column Description Range Unit

PhysActivity Participants reported engaging in
physical activity or exercise other than
their regular job in the past 30 days.

[0, 1] –

Fruits Eat one or more fruits [0, 1] times/day
Veggies Consume one or more vegetables [0, 1] times/day
HvyAlcoholConsump Heavy drinkers (more than 14 drinks

per week for men and seven drinks per
week for women)

[0, 1] –

AnyHealthcare Have you considered health insurance,
prepaid plans like HMOs, or
government plans like Medicare or the
Indian Health Service?

[0, 1] –

NoDocbcCost Did you ever need to see a doctor in the
past 12 months but couldn’t afford it?

[0, 1] –

GenHlth In general, how would you rate your
health?

[1, 5] –

MentHlth In the past 30 days, how many days
have you experienced stress, depression,
or emotional difficulties?

[0, 30] –

PhysHlth In the past 30 days, how many days did
you have poor physical health,
including illness and injury?

[0, 30] –

Di Walk Do you have trouble walking or
climbing stairs?

[0, 1] –

Sex Male or female [0, 1] –
Age Fourteen-level age category [1, 13] –
Education Your highest school grade or year [1, 6] –
Income What is your household’s total annual

income?
[1, 8] –

HeartDiseaseorAttack Respondents that have ever reported
having CVDs

[0, 1] –

3.1.3 Dataset 3: Heart Disease Dataset

The dataset consists of 13 clinical features from 1988. It consists of 1,025 observations. The dataset
can be retrieved from Kaggle [26]. Table 3 describes the dataset columns and their meaning.

Table 3: The “Heart Disease Dataset” dataset columns and their meaning

Column Description Range Unit

Age Age in years [29: 77] Years
Sex The gender [0: Female, 1: Male] –

(Continued)
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Table 3 (continued)
Column Description Range Unit

Cp The chest pain type [0: 3] –
trestbps The resting blood pressure [94: 200] mmHg
Chol The serum cholesterol [126: 564] mg/dl
Fbs The fasting blood sugar [0, 1] mg/dl
Restecg The resting electrocardiographic results [0, 1, 2] –
Thalach The maximum heart rate Achieved [71: 202] –
Exang The exercise-induced Angina [0: No, 1: Yes] –
oldpeak The ST depression induced by exercise

relative to rest
[0: 6.2] –

Slope The slope of the peak exercise ST segment [0: 2] –
Ca The number of major vessels colored by

uroscopy
[0: 4] –

Thal [0: Normal, 1: Fixed defect,
2: Reversible defect]

–

Target [0: No disease, 1: Disease] –

3.1.4 Interpretability of the Selected Features

The interpretability and relevance of selected features in heart disease diagnosis can vary depend-
ing on the specific features chosen. Age is a crucial factor in diagnosing heart disease, as the likelihood
of developing cardiovascular issues increases with age. Heart attacks, coronary artery disease, and
heart failure are more common in older individuals. Gender also plays a role in understanding heart
disease risk factors. For example, compared to women, men often have a higher chance of developing
heart disease at an earlier age, although women’s risk catches up after menopause. High blood pressure
(hypertension) significantly contributes to heart disease, as it strains the heart and can lead to coronary
artery disease, heart failure, and strokes. High levels of low-density lipoprotein (LDL) cholesterol are
associated with an increased risk of heart disease. Diabetes poses a higher risk of heart disease due to
various factors, including the effects of high blood sugar on blood vessels, increased inflammation, and
the presence of other cardiovascular risk factors. Smoking is a well-known risk factor that damages
blood vessels, promotes plaque formation, and reduces oxygen flow to the heart. Obesity is also linked
to an increased risk of heart disease, including conditions like coronary artery disease, type 2 diabetes,
and hypertension. These are just a few examples of the features commonly considered in heart disease
diagnosis. It’s important to note that the significance and interpretability of these features may vary
depending on the specific dataset, statistical models used, and the context in which the analysis is
conducted.

3.2 Stage 2: Data Pre-Processing
The second phase involves pre-processing the datasets through four procedures. Cleansing,

labeling, scaling, and separating the data into test and training sets are all employed.

Data Cleaning: The dataset cleaning means neglecting the null and empty rows. Also, the
duplicated rows are removed. Label Encoding: The numerical values in the categorized columns have
been encoded. The “Heart Failure Prediction Dataset” dataset is used in this analysis. For example,
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the “ChestPainType” column converted from [TA, ATA, NAP, ASY] to [0,1,2,3]. Data Scaling: Five
scaling techniques are used in this study. They are (1) normalization, (2) standardization, (3) min-max
scaling, (4) max-abs scaling, and (5) robust scaling. The equations behind them are shown in Eqs. (1)
to (5), respectively.

Xoutput = X
max(X)

(1)

Xoutput = X − μ

σ
(2)

Xoutput = X − Xmin

max(X) − Xmin

(3)

Xoutput = X
|max(X)| (4)

Xoutput = X − median(X)

IQR
(5)

where X is the input image, Xoutput is the scaled image, μ is the image mean, σ is the image standard
deviation, and IQR is the interquartile range. Different parts of the dataset are used for training,
testing, and validation. The ratio of the split is 85% of the data was used for training and validation,
whereas only 15% was used for actual testing.

3.3 Stage 3: Formation of the First Population
During the feature selection process, the population is created at random once. At most Nmax

different solutions in a population sample. Each solution will have a 1 × D vector with values ∈ [0, 1].
The randomization of the population start can be seen in Eq. (6).

Xoutput = rand × (UB − LB) + LB (6)

The entire population is denoted by X , the lower boundary of each solution is denoted by LB, the
upper boundary of each solution is denoted by UB, and a random value in [0, 1] is denoted by rand.
The number of features in the dataset will be used to calculate the value of D. The D value should
match its feature count, which, if 16, would imply a value of 16.

3.4 Stage 4: Fitness Function Evaluation
After pre-processing the datasets, the fitness function evaluation stage comes in. This stage utilizes

the AO, cross-validation, and grid search to select the most promising features and hyperparame-
ters. Three machine learning classifiers are used in the current study. They are Adaptive Boosting
(AdaBoost), Hist-gradient Boosting (HGB), and Decision Tree (DT). They are selected concerning
their speed compared to other algorithms. For each classifier, the whole stages are run. To select or
ignore the features, the solution should be encoded in binary (i.e., true and false). How are the solutions
encoded? Each solution in the population is sized 1 × D where each element ∈ [0, 1]. A threshold of
0.5 is selected to determine which value will be one and which will be 0. They follow Eq. (7).

Xi,j =
{

0, if (Xi,j < threshold)

1, otherwise
(7)
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The j-th cell of the i-th solution is denoted by Xi,j. For example, if the solution is [0.5486, 0.4564,
0.0564, 0.9945, 0.5885], the encoded solution will be “10011”. For the encoded solution, “10011,” as
an example, the second and third columns are dropped as they have zeros in the encoded solution. So,
there are three remaining columns. These three columns enter the classification process. It utilizes the
cross-search mechanism and cross-validation. Cross-validation is a resampling technique employed to
assess ML models on a limited dataset. Cross-validation is used to detect overfitting (i.e., failing to
generalize a model). This approach has only one parameter called “K” where the input data is split
into K-folds (i.e., subsets of data). In the current work, the K was set to 5. The grid search tries to select
the best hyperparameters concerning the selected classifier. It uses cross-validation to avoid overfitting
and achieve the best performance metrics. The combinations of hyperparameters explored during the
grid search are listed in Table 4.

Table 4: Summary of the hyperparameters utilized in the grid search for each classifier and their ranges

Classifier Hyperparameter Range

DT Criterion Gini and entropy
Splitter Best and random
Max depth Unlimited

AdaBoost Estimators # [300]
Learning Rate [0.01, 0.1, 1.0]

HGB – –

Variance thresholding is also used in the classification pipeline to remove all low-variance features
below a specific threshold. The variance threshold technique is also included in the grid search
process with different thresholds. They are [0, 0.001, 0.005, 0.01]. The classifier is evaluated on the
whole entered dataset to validate its generalization. Various performance metrics are assessed to
judge the model performance. They are Accuracy (Eq. (8)), Balanced Accuracy (Eq. (9)), Precision
or Positive Predictive Value (PPV) (Eq. (10)), Specificity or True Negative Rate (TNR) (Eq. (11)),
Recall, Sensitivity, True Positive Rate (TPR), or Hit Rate (Eq. (12)), F1-score, Dice, or Overlap Index
(Eq. (13)), Negative Predictive Value (NPV) (Eq. (14)), Fallout or False Positive Rate (FPR) (Eq. (15)),
False Negative Rate (FNR) (Eq. (16)), Intersection over Union (IoU) or Jaccard Index (Eq. (17)),
Error Rate (Eq. (18)), and False Discovery Rate (FDR) (Eq. (18)). Further, Eq. (20) is used to derive
a weighted sum measure from the 16 metrics mentioned earlier [27–29].

Accuracy = TP + TN
TP + TN + FP + FN

(8)

Balanced Accuracy = Recall + Specificity
2

(9)

Precision = PPV = TP
TP + FP

(10)

Specificity = TNR = TN
TN + FP

(11)
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Recall = Sensitivity = TPR = Hit Rate = TP
TP + FN

(12)

Dice = F1 = Overlap Index = 2 × TP
2 × TP + FP + FN

= 2 × Precision × Recall
Precision + Recall

(13)

NPV = TN
TN + FN

(14)

FPR = Fallout = FP
FP + TN

(15)

FNR = FN
FN + TP

(16)

Jaccard = IoU = TP
TP + FP + FN

(17)

Error Rate = FP + FN
TN + TP + FP + FN

(18)

FDR = FP
TP + FP

(19)

WSM = 1
16

× (Accuracy + BalancedAccuracy + 2 × Precision + 2 × Specificity + 4 × Recall

+ 3 × F1 + 2 × IoU + NPV) (20)

3.5 Stage 5: Population Updating
Concerning the fitness function evaluating score, the population is sorted from top to bottom so

that the best option is at the top and the worst option is at the bottom. This is crucial for determining
X t

best and X t
Worest if needed during the population update procedure [30–32]. In the current research,

features are chosen with the help of the AO meta-heuristic optimizer [33–36]. It functions in all four
stages of discovery: (1) broad exploration, (2) targeted exploration, (3) broad exploitation, and (4)
targeted exploitation. The enlarged exploration process is represented by Eq. (21), and the restricted
search process is indicated in Eq. (22). The expanded exploitation process is represented by Eq. (23).
Finally, the limited exploitation process is described by Eq. (24).

X (t + 1) = Xbest (t) ×
(

1 − t
Tmax

)
+ (XM (t) − Xbest (t) × rand) (21)

X (t + 1) = Xbest (t) × levy (D) + XR (t) + (y − x) × rand (22)

X (t + 1) = (Xbest (t) − XM (t)) × α − rand + ((UB − LB) × LB) × δ (23)

X (t + 1) = QF × Xbest (t) − (G1 × X (t) × rand) − G2 × levy (D) + rand × G1 (24)

where X t is the solution at iteration t, t is the current iteration number, rand is a random number
∈ [0, 1], XM (t) is the locations mean, Levy(D) is the levy flight distribution function, XR (t) is a random
solution, y and x are used to present the spiral shape in the search, α and δ are the exploitation
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adjustment parameters, QF denotes a quality function used to equilibrium the AO searching strategies,
G1 indicates various motions of the AO that are used to track the prey during the elope, and G2
presents decreasing values from 2 to 0.

4 Experiments and Discussions

This section explores the experimental studies conducted to prove the validity of the proposed
framework. A summary of the common setups used in all of the experiments used in this study is
depicted in Table 5.

Table 5: The common experiments configurations

Configuration Specifications

Apply dataset shuffling? Yes (Random)
Metaheuristic optimizer Aquila optimizer (AO)
Size of AO population 10
Number of AO iterations 10
Train split ratio 85% to 15% (i.e., 85% for training (and validation) and 15% for

testing).
Cross-validation �
Number of cross-validations 5
Grid search �
Variance threshold range [0, 0.001, 0.005, 0.01]
ML classifiers DT, AdaBoost, and HGB
ML classifiers ranges Tab. 4
Scaling techniques Normalization, standardization, min-max scaling, max-abs

scaling, and robust scaling
Scripting language Python
Python major packages Scikit-learn, NumPy, OpenCV, and Matplotlib
Working environment Google Colab (i.e., Intel(R) CPU @ 2.00 GHz, Tesla T4 16 GB

GPU, CUDA v.11.2, and 12 GB RAM)

4.1 The “Heart Failure Prediction Dataset” Experiments
The framework steps are carried out on the “Heart Failure Prediction Dataset.” Each algorithm

reported multiple encoded solutions that led to the same WSM value. Table 6 reports the best-encoded
solutions for each classifier. It shows that each classifier produced a top-1 encoded solution. The mark
“�” indicates that the feature is used, while the mark “ ” means the feature is neglected. It shows that
selecting all features gives state-of-the-art WSM value.

The performance metrics are presented in Table 7. In addition, Table 8 reports the corresponding
hyperparameters produced by the encoded solutions using the “Heart Failure Prediction Dataset”
dataset. They show that the best WSM value is 98.65%; the HGB machine learning classifier produces
that with a variance threshold value of 0 and the standardization scaling technique.
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Table 6: The best-encoded solutions for each classifier using the “Heart Failure Prediction Dataset”
dataset

Classifier DT HGB AdaBoost

Encoded solution 11111111111 11111111111 11111111111
Age � � �
Sex � � �
ChestPainType � � �
RestingBP � � �
Cholesterol � � �
FastingBS � � �
RestingECG � � �
MaxHR � � �
ExerciseAngina � � �
Oldpeak � � �
ST_Slope � � �

Table 7: The best performance metrics reported by the encoded solutions using the “Heart Failure
Prediction Dataset” dataset

Classifier DT HGB AdaBoost

Encoded solution 11111111111 11111111111 11111111111
Accuracy 98.47% 98.80% 89.11%
Balanced accuracy 98.50% 98.82% 88.84%
Precision 98.42% 98.76% 89.09%
PPV 98.42% 98.76% 89.09%
Specificity 98.50% 98.82% 88.84%
TNR 98.50% 98.82% 88.84%
Recall 98.50% 98.82% 88.84%
Sensitivity 98.50% 98.82% 88.84%
TPR 98.50% 98.82% 88.84%
Hit rate 98.50% 98.82% 88.84%
F1 98.46% 98.79% 88.95%
Overlap index 98.46% 98.79% 88.95%
Dice 98.46% 98.79% 88.95%
IoU 96.96% 97.61% 80.12%
JAC 96.96% 97.61% 80.12%
NPV 98.42% 98.76% 89.09%
Fallout 1.50% 1.18% 11.16%
FPR 1.50% 1.18% 11.16%
FNR 1.50% 1.18% 11.16%

(Continued)
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Table 7 (continued)
Classifier DT HGB AdaBoost

Error rate 1.53% 1.20% 10.89%
FDR 1.58% 1.24% 10.91%
WSM 98.29% 98.65% 87.83%

Table 8: The best hyperparameters for each classifier using the “Heart Failure Prediction Dataset”
dataset

Classifier Encoded
solution

Scaling
technique

Variance
threshold

Criterion Splitter Learning
rate

DT 11111111111 Max-Abs 0.01 Entropy Random –
HGB 11111111111 Standardization 0 – – –
AdaBoost 11111111111 Normalization 0 – – 0.1

Fig. 2 summarizes the performance metrics graphically. The x-axis shows the metrics, while the
y-axis shows the scores. It indicates that the AdaBoost classifier produced the lowest scores while the
HGB classifier produced the highest scores.

Figure 2: Graphical summary of the “Heart Failure Prediction Dataset” performance metrics

4.2 The “Heart Disease Health Indicators Dataset” Experiments
The framework steps are executed on the “Heart Disease Health Indicators Dataset.” Each

algorithm reported multiple encoded solutions that led to the same WSM value. Table 9 reports the
best-encoded solutions for each classifier. It shows that each classifier produced a top-1 encoded
solution. The mark “�” indicates that the feature is used, while the mark “ ” means the feature is
neglected.

Table 10 reports the performance metrics, and Table 11 reports the corresponding hyperparame-
ters produced by the encoded solutions using the “Heart Disease Health Indicators Dataset” dataset.



CSSE, 2023, vol.47, no.2 2615

They show that the best WSM value is 87.64%, produced by the DT machine learning classifier with
a variance threshold value of 0.01 and the max-abs scaling technique. The best DT hyperparameters
are the entropy criterion and random splitter.

Table 9: The best-encoded solutions for each classifier using the “Heart Disease Health Indicators
Dataset” dataset

Classifier DT HGB AdaBoost

Encoded solution 111111111111111000000 111111111111111000000 100001010011001000000
HighBP � � �
HighChol � �
CholCheck � �
BMI � �
Smoker � �
Stroke � � �
Diabetes � �
PhysActivity � � �
Fruits � �
Veggies � �
HvyAlcohol
Consump

� � �

AnyHealthcare � � �
NoDocbcCost � �
GenHlth � �
MentHlth � � �
PhysHlth
DiffWalk
Sex
Age
Education
Income

Table 10: The best performance metrics reported by the encoded solutions using the “Heart Disease
Health Indicators Dataset” dataset

Classifier DT HGB AdaBoost

Encoded solution 111111111111111000000 111111111111111000000 100001010011001000000
Accuracy 96.43% 90.97% 90.71%
Balanced accuracy 85.87% 55.14% 53.41%
Precision 92.20% 76.55% 73.07%
PPV 92.20% 76.55% 73.07%
Specificity 85.87% 55.14% 53.41%

(Continued)
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Table 10 (continued)
Classifier DT HGB AdaBoost

TNR 85.87% 55.14% 53.41%
Recall 85.87% 55.14% 53.41%
Sensitivity 85.87% 55.14% 53.41%
TPR 85.87% 55.14% 53.41%
Hit rate 85.87% 55.14% 53.41%
F1 88.71% 56.93% 54.12%
Overlap index 88.71% 56.93% 54.12%
Dice 88.71% 56.93% 54.12%
IoU 80.99% 50.58% 48.84%
JAC 80.99% 50.58% 48.84%
NPV 92.20% 76.55% 73.07%
Fallout 14.13% 44.86% 46.59%
FPR 14.13% 44.86% 46.59%
FNR 14.13% 44.86% 46.59%
Error rate 3.57% 9.03% 9.29%
FDR 7.80% 23.45% 26.93%
WSM 87.64% 61.16% 58.99%

Table 11: The best hyperparameters for each classifier using the “Heart Disease Health Indicators
Dataset” dataset
Classifier Encoded solution Scaling technique Variance threshold Criterion Splitter Learning

rate
DT 111111111111111000000 Max-Abs 0.01 Entropy Random –
HGB 111111111111111000000 Min-Max 0.001 – – –
AdaBoost 100001010011001000000 Normalization 0 – – 0.1

4.3 The “Heart Disease Dataset” Experiments
The framework stages are run on the “Heart Disease Dataset” dataset, and each algorithm

reported multiple encoded solutions that lead to the same WSM value. Table 12 reports the best-
encoded solutions for each classifier. For example, it shows that the DT classifier produced eight
solutions, the HGB classifier produced nine solutions, and the AdaBoost classifier produced five
solutions. The mark “�” indicates that the feature is used, while the mark “ ” means the feature is
neglected.

Table 12 shows that the HGB and AdaBoost classifiers matched with two encoded solutions
(i.e., “1111111110111” and “1111111111111”). The encoded solutions “1100000000000” and
“1100100000000” do not seem to be reasonable as they depend on age, gender, and resting blood
pressure only. The repeating percentages of each column in the different encoded solutions are
represented in Table 13. The last column shows the final solution. The column is considered if the
percentage is above or equal to 50%; otherwise, it is neglected. It shows that the encoded solution
“1111111100111” is the most reasonable one.



CSSE, 2023, vol.47, no.2 2617

Table 14 reports the performance metrics, and Table 15 reports the corresponding hyperparame-
ters produced by the encoded solutions using the “Heart Disease Dataset” dataset. A comparison of
the suggested methodology and the relevant studies can be seen in Table 16. The current research is
superior to most other studies in this field.

Table 12: The best-encoded solutions for each classifier using the “Heart Disease Dataset” dataset

Classifier Encoded solution age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
DT 1100000000000 � �
DT 1100100000000 � � �
DT 1100110000000 � � � �
DT 1101010000000 � � � �
DT 1110110000000 � � � � �
DT 1111110000000 � � � � � �
DT 0011000110101 � � � � � �
DT 0110111000000 � � � � �
HGB 0001111111010 � � � � � � � �
HGB 0011111101010 � � � � � � � �
HGB 0111111011111 � � � � � � � � � � �
HGB 1110100001001 � � � � � �
HGB 1110110011101 � � � � � � � � �
HGB 1110110111111 � � � � � � � � � � �
HGB 1111111101111 � � � � � � � � � � � �
HGB 1111111110111 � � � � � � � � � � � �
HGB 1111111111111 � � � � � � � � � � � � �
AdaBoost 1011111100111 � � � � � � � � � �
AdaBoost 1101010011010 � � � � � � �
AdaBoost 1111111100111 � � � � � � � � � � �
AdaBoost 1111111110111 � � � � � � � � � � � �
AdaBoost 1111111111111 � � � � � � � � � � � � �

Table 13: The repeating percentages of each column in the different encoded solutions of the “Heart
Disease Dataset” dataset

Column Percentage Final Solution

age 77.27% �
sex 81.82% �
cp 72.73% �
trestbps 63.64% �
chol 81.82% �
fbs 81.82% �
restecg 50.00% �
thalach 50.00% �
exang 45.45%
Oldpeak 45.45%
Slope 50.00% �
Ca 54.55% �
Thal 54.55% �
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Table 15: The best hyperparameters for each classifier using the “Heart Disease Dataset” dataset

Classifier Encoded
solution

Scaling
technique

Variance
threshold

Criterion Splitter Learning
rate

DT 1100000000000 Max-Abs 0 Gini Random –
DT 1100100000000 Min-Max 0 Entropy Random –
DT 1100110000000 Standardization 0 Entropy Best –
DT 1101010000000 Min-Max 0.001 Entropy Random –
DT 1110110000000 Max-Abs 0.01 Entropy Best –
DT 1111110000000 Standardization 0.001 Entropy Random –
DT 0011000110101 Min-Max 0.001 Gini Random –
DT 0110111000000 Max-Abs 0.01 Entropy Best –

HGB 0001111111010 Normalization 0 – – –
HGB 0011111101010 Normalization 0 – – –
HGB 0111111011111 Standardization 0 – – –
HGB 1110100001001 Normalization 0 – – –
HGB 1110110011101 Normalization 0 – – –
HGB 1110110111111 Max-Abs 0.01 – – –
HGB 1111111101111 Max-Abs 0.01 – – –
HGB 1111111110111 Standardization 0 – – –
HGB 1111111111111 Standardization 0 – – –

AdaBoost 1011111100111 Normalization 0 – – 1.0
AdaBoost 1101010011010 Normalization 0 – – 1.0
AdaBoost 1111111100111 Normalization 0 – – 1.0
AdaBoost 1111111110111 Normalization 0 – – 1.0
AdaBoost 1111111111111 Normalization 0 – – 1.0

Table 16: Comparison between the suggested approach and related studies

Study Approach Dataset # Best metric(s)

Long et al. [12] Interval Type-2 Fuzzy
Logic System + ML

2 88.3% Accuracy, 94.2%
Sensitivity, and 93.3%
Specificity

Shah et al. [1] Parallel Probabilistic
Principal Component
Analysis

3 91.30% Accuracy

Ekiz et al. [13] ML 1 67.7% Accuracy

(Continued)



2620 CSSE, 2023, vol.47, no.2

Table 16 (continued)
Study Approach Dataset # Best metric(s)

Bashir et al. [14] Minimum Redundancy
Maximum Relevance
Feature Selection
(MRMR) + ML

1 84.85% Accuracy

Alotaibi et al. [7] ML 1 93.19% Accuracy
Sharma et al. [15] Talos Hyperparameter

Optimization + DL
1 90.78% Accuracy

Yazdani et al. [4] Strength Scores with
Significant Predictors

1 98% Confidence Score

Sharma et al. [15] Hybrid Random Forest
with a Linear Model
(HRFLM)

1 88.7% Accuracy

Katarya et al. [8] ML + DL 1 93.40% Accuracy and 90.70%
Recall

Current study Hybrid (Aquila
Optimizer + ML)

3 100% WSM for Heart Disease
Dataset
98.65% WSM for Heart
Failure Prediction Dataset
87.64% WSM for Heart
Disease Health Indicators
Dataset

5 Conclusions and Future Work

Heart disease is a significant health problem and a leading cause of death worldwide. Therefore,
early and accurate diagnosis is essential for proper treatment and prevention of the disease. In
this study, we proposed a quantitative framework for automatic and precise classification of heart
disease based on numerical data records, using Aquila optimization and machine learning algorithms.
Three datasets from Kaggle were used for the experiments, and the results show that our method
outperforms other state-of-the-art algorithms in accuracy. The proposed framework is a significant
step towards automating the diagnosis of heart disease, which can lead to earlier detection and
improved patient outcomes. However, several limitations need to be addressed in future work. For
instance, the framework could be improved by incorporating additional data sources such as medical
images and patient history. Furthermore, more extensive datasets with more diverse patients must
be used to validate the framework’s effectiveness in real-world settings. Future directions include
exploring other optimization techniques and machine learning algorithms to improve the framework’s
performance. Furthermore, integrating the proposed framework into clinical decision-making systems
could be investigated to aid physicians in making more accurate diagnoses and providing better care
for heart disease patients. Future research in the field of heart disease classification can focus on
several key areas. These include incorporating additional data sources such as medical images and
patient history, validating the proposed framework on larger and diverse datasets, exploring alternative
optimization techniques and machine learning algorithms, and integrating the framework into clinical
decision-making systems.
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