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ABSTRACT

The default scheduler of Apache Hadoop demonstrates operational inefficiencies when connecting external
sources and processing transformation jobs. This paper has proposed a novel scheduler for enhancement of the
performance of the Hadoop Yet Another Resource Negotiator (YARN) scheduler, called the Adaptive Node and
Container Aware Scheduler (ANACRAC), that aligns cluster resources to the demands of the applications in the
real world. The approach performs to leverage the user-provided configurations as a unique design to apportion
nodes, or containers within the nodes, to application thresholds. Additionally, it provides the flexibility to the
applications for selecting and choosing which node’s resources they want to manage and adds limits to prevent
threshold breaches by adding additional jobs as needed. Node or container awareness can be utilized individually
or in combination to increase efficiency. On top of this, the resource availability within the node and containers
can also be investigated. This paper also focuses on the elasticity of the containers and self-adaptiveness depending
on the job type. The results proved that 15%—20% performance improvement was achieved compared with the
node and container awareness feature of the ANACRAC. It has been validated that this ANACRAC scheduler
demonstrates a 70%-90% performance improvement compared with the default Fair scheduler. Experimental
results also demonstrated the success of the enhancement and a performance improvement in the range of 60%
to 200% when applications were connected with external interfaces and high workloads.
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1 Introduction

The advent of technology in the digital age has led to an explosion of data being created every
nanosecond. This has accelerated the growth of new platforms that can work with these prolific data
volumes, naturally called big data, due to its massive volume, velocity and variety of characteristics.
In today’s world, when massive amounts of data are widely available on easily-processed platforms,
information has become the most effective asset influencing business strategy. Adopting information
and insights to drive decisions in the business industry has led to the need for technology platforms
with extensive computing capabilities and high performance. Several challenges distributed computing
solutions had to overcome to meet increasing computing demands. The significant challenges of
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traditional computing platforms are the absence of heterogeneous performance, inefficient resource
management, unfair resource usage, and delayed performance. The Hadoop MapReduce framework
[1] gained considerable popularity as compared to others because it has addressed the above-
mentioned computing challenges. Apache Hadoop MapReduce was created by Doug Cutting and
Mike Cafarella in April 2006, combining the existing ideas from the MapReduce white paper in 2004
[2] and the Google file system white paper published in 2003 by Google [3]. Splitting the entire process
into chunks of map-reduce operations, moving code to data, and processing in a distributed fashion
enabled Hadoop to solve many use cases in big data processing.

Apache Hadoop is widely accepted in the industry and is used in petabyte-scale workloads for
structured and unstructured data processing in internet companies like Yahoo Inc. However, the first
generation of the framework, Hadoop MapReduce v1, had many inherent resource management and
scheduling limitations, leading to a few enhancements. The second generation of Hadoop, YARN[1,4],
was created, which separated resource management and scheduling from application management,
providing vast opportunities for performance improvement. In Hadoop YARN, an application is
categorized into various individual tasks and executed in smaller execution units named containers.
The YARN framework divides the application jobs into numerous tasks called “Map and Reduce”
and distributes them to different worker nodes in the cluster, getting their execution accomplished
in parallel. In contrast to Hadoop v1, where there was no dedicated resource management service,
YARN resource management enabled Hadoop v2 to cater to applications with diverse resource needs.
The scheduler in YARN identifies the application’s resource requirements and allocates resources to
individual tasks [5].

The First-In-First-Out (FIFO) Scheduler, the Fair Scheduler, and the Capacity Scheduler are
the three default scheduling algorithms available in Apache Hadoop, which have been developed
considering the out-of-the-box scheduling method. The Apache Hadoop default schedulers still
presented challenges when connecting to external sources and processing enormous transformation-
demanding workloads, despite considerable performance increases in cases where the data resided
within the distributed cluster. Connecting to external systems that are either data sources or recipients
is a common use case for Hadoop jobs in the real world of big data. The YARN schedulers, specifically
the most popular Fair Scheduler [6], have limitations in connecting with many external connections
and running applications simultaneously on the platform. Connection overload and frequent task
breakdowns due to multiple concurrent external connections are among the most common problem
spaces with such workloads. While various attempts have addressed this issue, the key challenge
has been effectively improving the application performance when ingesting vast volumes of data
from diverse application sources. A more adaptive and resource-aware scheduler would solve many
common problems that arise as the orchestration of stages of the job can be tweaked mid-job, and the
resources allocated to the job can be increased or decreased as the workload demands it. Node and
container awareness also aids in distributing jobs in specific machines with external connectivity or
the ability to host more Central Processing Unit (CPU) or Input Output (IO)-intensive jobs, especially
in a heterogeneous environment. The node and container awareness feature allows an application to
indicate the preferences for nodes and partitions in which the application intended to execute the tasks.

1.1 Innovation

This paper has focused on eliminating the above-mentioned barriers to computational perfor-
mance precisely where there is an ineffective utilization of containers and available resources. The main
innovations of this research to improve the performance of Hadoop YARN are described below:
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e It has developed a new scheduler, namely ANACRAC, for enhancing the performance of the
Fair Scheduler, which will facilitate to scale of data science and data analytics applications
running on massive amounts of data, taking into account the dynamic nature of workloads
and the heterogeneity of Hadoop clusters.

e It has also emphasized the resource availability of the nodes and containers, which restrains
tasks from being assigned to nodes and containers that have reached the specific threshold value.

e This paper has also demonstrated the adaptability of the container capacity and dynamically
adjusting the application using the available CPU and memory.

1.2 Organization of the Article

This paper is organized as follows: Section 2 explains the related work, and Section 3 describes
the problem statement and the proposed model. The implementation details outlines in Section 4.
Section 5 discusses the results and comparison with the existing work. The paper concludes with
Section 6.

2 Literature Review
2.1 Review

Hadoop is designed to process large amounts of data in parallel. The HDFS [1] splits files into
blocks and distributes the files across a cluster of machines, along with a metadata file containing a
list of other blocks that should be read from or written to. Hadoop minimizes network overhead by
moving computation adjacent to the data, and multiple copies of this data block enable fault tolerance.
The concept of data blocks enables the storage of huge data and processing efficiency through
the MapReduce [1] algorithm. To improve the HDFS architecture and MapReduce framework’s
performance for massive data analytics, Hadoop schedulers were developed. Hadoop YARN reduces
the challenges of the MapReduce scheduler by separating the ResourceManager from the Application
Manager. Early approaches to schedules were, in general, made at system design time and were static.
They failed to account for the dynamic scheduling [ 7] associated with operating systems where schedule
changes are usually possible only in real-time. So, the underlying scheduling algorithm [8] determines
how well the whole system can compute.

Schedulers were developed to satisfy the behaviour of a homogeneous environment in the past.
Those previous schedulers were inattentive to the resource-specific constraints and outlines. In this
regard, schedulers depend on policies to make task-assigning decisions. Resource capacity allocation
[9] was grounded in the concepts of fairness, avoidance of halts, and allocation of adequate capacity,
depending on pre-defined findings, to tasks in the queue. While the multi-tenant concept has been
broadly adopted in this context, the premise for this efficiency expectation was that the data size was
similar and that the compute resources were available throughout the cluster. The existing algorithms
[10] can meet the requirements of data locality concerning two basic categories: space and time.
When both of these conditions exist for a given set of data, they can exploit the locality of reference
to improve the performance of the task without degrading its correctness. The real-life use cases
of Hadoop computing are quite different from the ideal scenario. To be processed, data originate
from sources external to the Hadoop environment. They might include various sources and formats,
such as application logs, online services, transactions, pictures, and so on. Real-time data streaming,
cloud-based applications, and heterogencous environments bring a lot of complexity to the Hadoop
environment to the parameters of space and time.
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The edge node is a gateway connecting the Hadoop cluster with external systems and often forms
the single point of failure depending on the quantum of factors involved. The ingestion speed is
influenced by the number of hops and the amount of data that can be stored, making it unsuitable for
enterprise-level streaming applications such as Netflix, Amazon prime, and Hotstar. Other factors
influence the efficiency, such as the connectivity to external services for all the nodes. If this is
limited due to security and other controls, the efficiency of existing schedulers within the cluster is
impacted. Frequently occurring task breakdowns slow down the cluster substantially as the nodes
need to reset the parameters enabling them to pick up from their broken state. Because of these things,
a new scheduling policy [11] was needed to prevent and fix data ingestion problems and meet the
computing needs of all kinds of applications without slowing them down. Distributed systems have
traditionally centralized task breakdowns to achieve fairness between tasks. However, this does not
equitably distribute resource [10,12] usage to nodes in the system, resulting in increased execution
time and latency of certain tasks. The elimination of task breakdown necessitates the awareness of the
resources available in individual nodes [1 3] and the number of slots or containers available [14]. Solving
the above-mentioned problems also demands delayed scheduling based on the available containers [15].

Recent analytic applications demand the use of streaming information, computations, and com-
putations for real-time data processing. High computing and real-time data processing have exposed
that the former operational principles of fairness and deadline-based scheduling were insufficient
to produce proportional uses in heterogeneous settings [16]. The high-consumption environment
demands a highly efficient scheduler to get the best computing power and meet consumer expectations.
This gap points out the need for resources such as the alignment of CPU and memory usage to the
application’s requirements. The former methods of scheduling in heterogeneous clusters and the cloud
being oblivious of the machine-oriented specifications could not handle these benefits. Hence, there
was an explicit requirement to assign application processing to the infrastructure facility of the cluster
and accomplish the performance elevation through monitoring and controlling resource availability
[17] and eradicating resource waste.

Numerous works have been performed to optimize big data. Yi et al. [18] have developed an
adaptive Non-dominated Sorting Genetic Algorithm, the third version (NSGA-III), to optimize the
big data efficiently and cost-effective. The performance of the NSGA-III can be improved by utilizing
the operators such as Simulated Binary (SBX), Uniform Crossover (UC), and Single point (SI)
crossovers [19]. Nath et al. [20] have created a novel decentralized Deep Deterministic Policy Gradient
(DDPG) algorithm to use surrounding Multi-access Edge Computing (MEC) servers’ collaboration
to provide the best designs for multi-cell MEC systems. Simulation findings show that the suggested
approach works better than other already used techniques, including Deep Q-Network (DQN).
Bi et al. [21] have investigated the issue of determining the best offloading strategy to maximise the
system utility for balancing throughput and fairness. The suggested algorithms can achieve effective
performance in utility and accuracy, according to experimental findings. Several researches were
conducted to develop an efficient scheduler framework to process big data effectively and solve the
above-mentioned data. Zhang et al. [22] have presented a resource-aware MapReduce scheduler to
handle this problem by segmenting job execution into three stages: processing, storage, and data
transfer (network). An Adaptive Task Allocation Scheduler (ATAS) was created by Yang et al. [23] to
boost the efficiency of Longest Approximate Time to End (LATE) schedulers in a heterogeneous cloud
computing environment. To improve the backup task success rate, ATAS uses a technique to analyze
the jobs that contributing to latency, compute the reaction time, and optimize the backup process.
Mao et al. [24] offered a fine-grained dynamic MapReduce scheduling technique, which greatly reduces
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task delay and maximizes resource efficiency. Each node’s data, both past and present, is monitored

so inefficient ones may be constantly identified and addressed.

A scheduler with elastic container configuration depends on real-time calculations [25] and
improved efficiency on multi-tenant Hadoop backgrounds where repeated applications execute. A
self-adaptive task tuning algorithm [13] has been accomplished to meet the resource adaptiveness [26]
objective and achieve an exceeding performance from the heterogeneous cluster. Table | shows the

summary of major existing works related to this study.

Table 1: Summary of the literature review

Authors Title of the article Objectives

Findings

Hsin-Yu Shih; Jhih-Jia Dynamic slot-based task To avoid underutilization

Huang; Jeng-Shiou scheduling based on node of resources, this study
Leu workload in a proposes a slot-based
MapReduce computation task scheduling method
model that takes the physical
burden on each node into
account.
Norman Lim; MapReduce constraint ~ This paper focuses on the
Shikharesh Majumdar; programming based allocation of resources
Peter Ashwood-Smith resource management on the cloud and
(MRCP-RM): A cluster-based framework
technique for resource by utilizing Mapreduce

allocation and scheduling and Service Level
of MapReduce jobs with Agreement (SLA).
deadlines

Qi Zhang; Mohamed PRISM: Fine-grained A phase-level scheduling

Faten Zhani; Yuke resource-aware scheduling technique has been

Yang; Raouf Boutaba for MapReduce developed, which

David. R. increases execution

Cheriton;Bernard parallelism and resource

Wong usage without creating
stragglers.

The evaluation results
suggest that the
proposed technique
may improve the
efficiency of
computing across
heterogeneous nodes
in the cloud.

The performance
evaluation’s findings
provide insights into
system behaviour and
performance and
show how well
MRCP-RM/ Hadoop
Constraint
Programming based
Resource
Management
(HCP-RM) performs
in creating a schedule
that results in a low
percentage of tasks
missing their
deadlines (P).

This study ensured a
significant
optimization of
resource utilization
and 1.3 times
improvement of
performance.

(Continued)
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Table 1 (continued)

Authors

Title of the article

Objectives

Findings

Jisha S. Manjaly;
Varghese S. Chooralil

Shivaswamy Rashmi,
Anirban Basu

Lauritz Thamsen;
Benjamin Rabier;
Florian Schmidt; Ode;j
Kao

Bin Ye; Xiaoshe Dong;
Pengfei Zheng;
Zhengdong Zhu;
Qiang Liu; Zhe Wang

Jiazhen Han;
Zhengheng Yuan;
Yiheng Han; Cheng
Peng; Jing Liu;
Guangli Li

TaskTracker aware
scheduling for Hadoop
MapReduce

Resource-optimized
workflow scheduling in

Hadoop using stochastic

hill climbing technique

Scheduling recurring

distributed dataflow jobs

based on resource
utilization and
interference

A delay scheduling
algorithm based on
history time in
heterogeneous
environments

An adaptive scheduling
algorithm for
heterogeneous Hadoop
systems

To develop a task tracker
algorithm for improving
the performance during

computing in terms of
working with data from
external sources.

The authors of this paper

use a Stochastic hill
climbing (SCH) soft

computing technique to
improve cloud workload,
workflow response time,

and resource utilization
efficiency.
This study describes a

technique for scheduling

recurrent data analysis
tasks in shared cluster
settings to maximize

resource usage and work

performance.

The authors of this study

suggest a novel

scheduling method for a

multi-user Hadoop

cluster that incorporates

the history time of the
completed jobs and the
strategy of the Delay
scheduler.

To reduce the amount of

tasks that are delayed,
they created the
CP-Scheduler (CPS)
method, which employs

an optimizer to evaluate

the optimal schedule.

The task tracker
algorithm improved
the performance of
MapReduce Hadoop.

The SCH soft
computing technique
has improved the
performance of the
mentioned
parameters.

According to the
results of their
analysis, using an
implementation based
on Hadoop YARN
may improve resource
usage and reduce task
runtimes.

The proposed
algorithm has ensured
a high performance
while maintaining
fairness in a shared
heterogeneous
environment.

According to
experimental findings,
in scenarios of various
sizes, the proportion
of missed deadline
work decreases by an
average of 60%.

(Continued)
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Table 1 (continued)

Authors

Title of the article

Findings

Shin-JerYangYi-
RuChen

Yingchi Mao; Haishi
Zhong; Longbao
Wang

Xiaoan Ding; Yi Liu;
Depei Qian

Dazhao Cheng; Jia
Rao; Yanfei Guo;
Changjun Jiang;
Xiaobo Zhou

Design adaptive task
allocation scheduler to
improve MapReduce
performance in
heterogeneous clouds

A Fine-grained and
dynamic MapReduce task
scheduling scheme for the
heterogeneous cloud
environment

To develop new
innovative ATAS.

A Fine-Grained and
dynamic MapReduce
scheduling technique
(FiIGMR) is offered as a
means to boost cluster
performance in a
heterogeneous cloud

JellyFish: Online
performance tuning with
adaptive configuration
and elastic container in
Hadoop yarn

This article suggests
using JellyFish, an online
performance tuning
system, to boost the
efficiency of MapReduce
tasks and make better
use of Hadoop YARN’s
available resources.

Improving performance
of heterogeneous
MapReduce clusters with
adaptive task tuning

They introduced Ant, a
self-adaptive task-tuning
technique that searches
automatically for the best
settings for particular
jobs across several nodes.

Their experimental
results showed that

ATAS can reduce 30%
execution time.

FiGMR provides
higher map nodes to
initiate backup map
tasks.

According to
experimental findings,
JellyFish can
outperform default
YARN in MapReduce
task performance by
an average of 65% for
jobs performed
repeatedly and 24%
for jobs executed for
the first time.

The average time it
takes to do work is
reduced by 31%
according to
experiments
performed on a
heterogeneous
physical cluster with
widely different
hardware capabilities.

2.2 Research Gap

From the above-mentioned literature survey, it is evident that most authors have developed a
framework to enhance the computing performance of the Hadoop platform by considering resource-
aware, performance-aware, resource-aware and interference-aware approaches. The existing frame-
work shows inefficient computing performance while connecting to external sources and processing
enormous transformation-demanding workloads. The common problems of the existing framework
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are connection overload and frequent task breakdowns. This study has developed an Adaptive Node
and Container Aware Scheduler with a Resource Availability Control method to eliminate those
issues and enhance computing performance. This research has focused on the node and container
for resource allocation, which is unique from another developed framework. This paper proposes an
improved version of the fair scheduler combining the node resource and container awareness with delay
scheduling to eliminate task breakdowns. The proposed scheduler combining the elastic container
behaviour and real-time self-adaptive task tuning ventured on functional containers put forward with
resource consumption.

2.3 Step of the Model

Fig. | represents the whole steps of this manuscript. This study started with a rigorous literature
review to find the performance gap of Hadoop YARN.

| Conductrigorous literature review to find research gap |

ik

| Statement of the problem |

i

| Formulate objectives |

i

| Propose anew scheduler called ANACRAC |

-

| Elaborate algorithm and mathematical model of ANACRAC |

=

| Implement of the ANACRAC in existing work |

-

| Analysis the performance of the ANACRAC |

-

| Results and comparison with existing work |

|

Discussion and recommendations

Figure 1: Workflow chart of steps of the manuscript

3 Problem Statement

The default schedulers of Apache Hadoop show significant workloads challenges during comput-
ing the data from external sources. Although the FIFO Scheduler, the Fair Scheduler, and the Capacity
Scheduler are very effective in cases where the data resides within the distributed cluster, they show
inefficient performance in connecting the data from external sources. One common issue with YARN
is that its schedulers, especially the widely used Fair Scheduler, cannot handle too many simultaneous
connections to external resources or processes. One of the most typical issues with such workloads is
connection overload, which often leads to tasks failing due to having too many external connections
open simultaneously.
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3.1 Assumptions

The proposed new scheduler aims to solve the drawbacks of Fair Scheduler’s current imple-
mentation, especially in data ingestion applications dealing with external connectivity. The proposed
scheduler ANACRAC, which the following three approaches to enhance the performance of the Fair
Scheduler. ANACRAC builds on Fair Scheduler by introducing node-level control and container-
aware partitioning (Section 3.1) with resource awareness (Section 3.2) and adaptiveness (Section 3.3).
The scheduler was created by leveraging the Hadoop YARN’s pluggable architecture to add new
features and extend the default out-of-the-box schedulers. Table 2 represents the notations of the
symbols of the equations.

Table 2: Notation of the symbol

Symbol Description

A Represent an application in a node

N The total set of the nodes in the cluster

M the set of eligible nodes for application

i Number of nodes

Jj Number of container

AN, The node restriction for the i node for application A

C The number of containers present in a node

P The maximum number of concurrent containers per node

AC;, The container restriction for j* Container in the i node for
an application A

ur The time spent in user mode,

NT The time spent in nice mode

ST The time spent in system mode.

LCT The Last Cumulative CPU Time

ST Sample Time

LST The Last Sample Time

NP The Number of Processors

DSS Difference in Disk Status

DS The Disk Status

LDS The Last Disk Status

SDST The Sample Disk Status Time

LSDST The Last Sample Disk Status Time

10U Input Output Usage

N;R The total resource usage of application A in node j

R, The resource usage of i active container

TR Total resource usage of application A across the cluster

AC, The new container allocation for application A at time “t”

K The default container

R, The threshold value of the resource for adaptiveness
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3.2 Mathematical Model
3.2.1 Node and Container Awareness Mathematical Model

The node and container awareness feature allows an application to indicate the preferences for
nodes and partitions in which the application intends to execute the tasks. The framework will adhere
to these preferences as much as possible and ultimately schedule these applications using the available
resources. The default schedulers of a Hadoop cluster do not have any flexibility in choosing which
resources to utilize. The node awareness feature significantly impacts applications that require shared
contents or connections to external sharing nodes. One of the best candidates for node awareness
is the Extract Transfer and Load (ETL) pipeline within data warehouses, where there is a need to
connect with many external sources. This feature allows applications to be queued for the targeting
node with the least running instances. These features aid in scheduling applications to best utilize the
nodes. The ANACRAC scheduler’s node awareness feature prevents tasks from running and failing
if the NodeManager’s load exceeds the application’s threshold. This constraint eliminates the task
breakdown at NodeManager by keeping the task limit under the threshold for the application.

Many existing schedulers used for scheduling nodes in large clusters dynamically allocate
resources to application containers based on the applications’ resource requirements and the overall
cluster resource utilization [27,28]. However, those schedulers cannot effectively utilize resources if
too many containers are within a single node. The container-awareness feature has been designed to
allow the application to restrict the number of containers that can run concurrently in a node. This
feature is provided by an overlay aware of the container information in the nodes. When an overlay
receives a request to allocate a container, it checks the container allocation in its nodes. If the number
of containers of the requested type on the node already exceeds the threshold, it refuses the request.

Node and container awareness scheduling algorithm distributes containers evenly across the
YARN host. It will keep a new incoming task on hold if there is an unavailability of enough resources
on the host. It also checks and validates the active containers and hosts before allocating the tasks to
any active containers and nodes.

Node restriction can be calculated as follows:
1, ifieM
AN, = | Ve M (1)
0, Otherwise
Container restriction can be calculated as follows:
I, ifj<P
ACi'r = 2
’ [0, Otherwise @
Node and container restriction together can be calculated as follows:
I, ifieM,j<P
0, Otherwise

ANirCijr = I (3)

3.2.2 Resource Awareness Mathematical Model

The resource utilization ranges for the various frameworks supported by YARN depend on the
application. Few applications require a large amount of CPU to process, and some others demand
excessive 10 resources. The data locality consideration in the Fair Scheduler, which is the parent
scheduler of ANACRAC, leads to resource skewing and negatively impacts the Hadoop platform’s
performance. In addition, most organizations follow heterogeneous Hadoop cluster configurations
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due to the on-demand addition of nodes to cater for the exponential growth of data analytics. This
leads to irregularity in resource availability as different nodes are configured with diverse computing
resources such as CPU, memory and Input-Output potentials.

To solve the performance limitations caused by resource availability, ANACRAC suggested
the resource-awareness feature. A dynamic resource computing module proposed at the node level
calculates the aggregated resource usage of the individual node at a point in terms of CPU and 10
usage. The resource usages are calculated every second and sent back to the ResourceManager for
further improvement of the ANACRAC scheduling algorithm.

Dynamic resource-awareness of the node supports scheduling of the applications with better
performance of applications with high CPU or 1O resource utilization. ANACRAC scheduler shows
configuration parameters to list the application type, CPU/IO, and utilization threshold to limit the
container allocation.

CPU Usage
Cumulative CPU Time (CCT) is computed as below:

CCT =UT + NT + ST 4
From Eq. (4), CPU usage ‘(CU)’ can be computed as below:

CU = (CCT — LCT) % 100F x NP [29] %)
B ST — LST .

10 Usage
Difference in Disk Status (DSS) is computed as below:

DDS = DS — LDS (6)

The Difference in Time is computed as below:
DT = SDST — LSDST @)

From Egs. (6) and (7), Input Output Usage ‘(IOU)’ can be computed as below:

100
10U = ((DDS) *ﬁ) [29] (8)

3.2.3 Adaptive Scheduling

Although applications are categorized and assigned containers depending on the resource con-
trollability components, the resources may not be utilized entirely or over-utilized depending on the
dynamic behaviour of applications and data. YARN schedulers assign resources to containers in a
static manner that ignores actual application usage. ANACRAC has also focused on the resource
utilization of individual nodes. As a result, containers of various applications running in the same
node and resource usage do not denote the actual usage of the individual applications. CPU and
memory are the configurable resources in the YARN containers. The resource requirements of
containers in an application are computed at the early stage of application execution, and the Resource
Manager allocates the necessary resources when required. Resource consumption of an application
is dynamically calculated at a particular point in time, the resource utilization of active containers
requires to be computing individually and grouping at the application level.
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The application-level resource utilization can be computed on either the ApplicationMaster or
the ResourceManager side. Resource awareness proposed a resource calculator module at the node
level and broadcasted the calculated information to the ResourceManager. The adaptive scheduling
reuses the architecture with an advanced version of container-level resource computation. Adaptive
scheduling calculates the vCPU and physical memory usage of individual containers. This design
points to leading the fine-grained container-level data back to the ResourceManager for extended
computations. In addition to giving back information about resources, the scheduler looks at user
configuration files to set the right values for a newly created container. Let ‘N’ is the total number of
the nodes in the cluster. Each ‘N’ includes a different number of active containers for each application.
Let ‘m’ is the total set of active containers for application A in j® Node N;.

The total resource usage of application A in node j is denoted as “N;R”.
NR=>Ri )
i=1
Total resource usage of application A across the cluster is denoted by “TR”

TR= > NR (10)

j=1

The average resource usage of application A at time “t” is denoted as “U,,”
U,=TR/M (11

The new container allocation for application A at time “t” is denoted as “AC,,”

K, if Uat < Rs
P, Otherwise

ACjt = [ (12)

3.3 Solution Approach

3.3.1 Proposed System Architecture

The ANACRAC scheduler consists of four new modules that provide additional functionality to
the Fair scheduler. These are the configuration loader, node check, container check and resource check.
The configuration loader evaluates the eXtensible Markup Language (XML) configuration files that
which evaluates the XML configuration files that are unique to the application during the application
submission and updates the scheduler. Every time a new application is submitted, the scheduler looks
for two configurations-the names of the nodes and the pre-defined threshold of concurrent containers
which can run for the application. Fig. 2 shows the system architecture of the ANACRAC scheduler.

An application check module associated with the configuration loader is used to ensure com-
pliance for applications on new request submissions. This module can read an attached file on
submission, update its property using information from this XML configuration file, and update
the NodeManager property on schedule. After scheduling, the NodeManager sends periodic status
messages to ResourceManager explaining whether applications are compliant. Node check verifies
that nodes are available by checking the scheduler module’s node threshold property before allocating
containers onto nodes. If both modules validate, ApplicationMaster allocates the container to the node
that is running that application.
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Resource Manager

ion Resource Reg) with actual utilization
Node |
Node Check siatos|with
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Info. NM1

Container Check

Node Resource
Application Calculator @

1
Submission ‘ontainer r ¢

m Resource check Calculator Paaciss
Calculate actual Application Calculator

utilization and dynamically

<Node> allocate container resources
<Containers>

<Resource

<CPU increment> Core YARN Scheduler

<Memory increment>
<CPU threshold>

<Memory threshold> Y 'y @ @

ANACRAC.xml

* NM: Node Manager l NM3 I@
*+ C: Container
T

» CI1A1,C2A1,C3A1- Containers allocated to Application]
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To calculate the typical CPU and IO use of individual nodes, a resource calculator module
was developed. This component gathers node status data from the /proc/stat file and the iostat
service and then calculates the resource use at the node level in each second and reports it to the
ResourceManager. The YARN module employs the serialization standard known as Google protobuf.
As defined and built by NodeResourceProto, its primary purpose is to serialize the dynamic resources’
details before passing them on to ResourceManager from NodeManager. ANACRAC algorithm
accepts the node resource information and verifies it with the user-submitted resource configuration.
ANACRAC also lists the new tasks in the available containers of the node depending on the resource
availability information delivered from the node. CPU and IO-intensive jobs are assigned to the
node with the most CPU and 10O. Adaptive scheduling is tied up with a resource check calculator
module that computes the actual usage of application resources depending on the container resource
usage. With the aid of Hadoop registry data, which examines the vCore and physical memory
utilization, the container resource usages are calculated at each NodeManager. This container-level
resource utilization is integrated into a map of active containers in the node and sent back to the
ResourceManager aggregated with NodeStatus. To keep track of individual container status for inter-
process communication, a new ContainerStatusProto is created. This resource information is verified
with the threshold parameters offered by the user over the configuration file, and fine-tuning the
container resource request depends on the actual usage. The scheduler assigns more resources to
the newly spawned containers if the actual resource usage is high. So, adaptive scheduling improves the
performance of a cluster by assigning resources based on how applications dynamically use resources.
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3.3.2 Uniqueness of ANACRAC Scheduler

o ANACRAC offers node-specific application submission and regulates the number of containers
execute per node with the support of application-specific configuration parameters to improve
the performance of data ingestion applications.

e ANACRAC introduces dynamic resource awareness along with node and container awareness
for performance elevation of data analytics applications.

e ANACRAC manages data ingestion and analytic applications cooperatively in the homoge-
neous and heterogeneous environment, enhancing the scheduling algorithm using adaptive
container resource allocation in the specific containers.

3.3.3 Algorithm of ANACRAC Scheduler
The working process of the ANACRAC scheduler has been detailed in the below algorithm:

Algorithm: ANACRAC scheduler
Input: Heartbeat with container resource status received from the NodeManager
Output: Assigns the task to the node with updated container resource.
1. Initialize each application with “0” wait time and priority as “Normal”
2. Initialize application active containers registry with empty map
3. Read and set value of hostname, number of containers, application type, application threshold and
container resource thresholds from application configuration
If heartbeat is received from the NodeManager then
5. Read the node status from the heartbeat
6. Read the hostname, running containers information, node resource report and container
resource usage from node status
7. Update application’s active containers registry with running containers resource usage from the
Node
8. Calculate dynamic application resource usage from active container registry.
9. Sort applications by hierarchical scheduling policy with priority
10. Repeat until container allocation is done
11. Read application from the top of the sorted list
12. If the hostname of the NodeManager is belongs to the hostname list from configuration then
13.  Filter the running containers of the application from the containers list
14.  If the number of filtered containers less than the number of containers read from the
configuration then

b

15. If node has a local container then
16. If the node resource usage is within the application threshold then
17. If application resource usage is within the threshold
Allocate container to the application and return
18. Else increment container resource and allocate container to the application and return
19. Else Log high resource usage and return
20. Else If priority is maximum then
21. Reset the waiting time as “0” and priority as “Normal&rdquo;
22. Allocate the container to the application and return
23. End If

(Continued)
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Algorithm (continued)
24.  EndIf
25. End If
26. If the waiting time is greater than the maximum waiting time then set priority as “HIGH”
27. Else increment the waiting time by “1”
28. Remove the application from the list
29. End If
30. End if

4 Implementation of the Solution to Existing Project

The ANACRAC scheduler was implemented in Hadoop version 2.7.6. The pluggable architecture
of YARN has enabled the scheduler to be apposite as a component for the hadoop-yarn-server-
resource-manager module. ResourceManager is the master component, and NodeManagers act as
the slaves in the YARN architecture. YARN implemented two-way communication between master
and slave to handle the lifecycle of application and fault management. ResourceManager in scheduler
is in charge of allocating resources to running applications based on the capacity and configuration
constraints assigned to the nodes, whereas the NodeManager contains a set of containers, each of
which can run one or more applications. The ResourceManager allows applications to use cluster
resources following the constraints defined by the scheduler. ANACRAC updates the ResourceMan-
ager to implement the node and container awareness feature.

The scheduler updated two packages from the ResourceManager module to implement node and
container awareness and their associated configuration changes. Those packages are built with the
Eclipse IDE and Java 1.8, while RMAppImpl serves as the interface to an application in the Resource-
Manager. Then the updated class reads the new job configurations and transmits them to the scheduler
to facilitate decision-making. The configurable components are all defined as XML properties, which
can be converted to Java constants for application purposes. The scheduler implemented these new
values to store attributes that were not previously specified, and the FairScheduler configuration class
was created to house these new parameters. The original scheduling algorithm was implemented in a
class called FSAppAttempt.

This study has evaluated the performance of the newly developed scheduler system. It has
also compared the performance between the existing Hadoop schedulers and the newly developed
ANACRAC scheduler. First of all, a twenty-node Hadoop YARN cluster was created in Amazon Web
Service (AWS) [30] and configured with the scheduler. The node awareness functionality was tested
by restricting connections to only 6 DataNodes (DataNodel-6), while the container awareness feature
was tested by hard-wiring each node to a unique value. Table 3 shows the implementation details of
ANACRAC scheduling systems.



3098

Table 3: Implementation of ANACRAC

CSSE, 2023, vol.47, no.3

Package

Class

Description

hadoop.yarn.server.ResourceManager.x ResourceTrackerService

hadoop.yarn.util

hadoop.yarn.server.api.records.s

RMNode and RMNodelmpl

RMNodeStatusEvent

FairSchedulerConfiguration

RMAppImpl

FSAppAttempt

LinuxResourceCalculatorPlugin

NodeResourceStatus

NodeResourceStatusPBImpl

Retrieve container
resource status from
heartbeat message and
set to ResourceManager
context

Getter and setter
methods for container
resource usage status of
Node at
Resource-Manager side
Update container
resource status to
ResourceManager Node
event.

Retrieve all
configurations from
XML file.

Retrieve the application
configuration object
from configuration file
This is the main method
which implemented
ANACRAC algorithm.
This class read all
configurations from
Application
configuration object and
set container resource
based on adaptive
resource calculations.
Calculate the current
CPU and IO usage of the
node.

Class to hold node
resource status
information.

Google protobuf
implementation of
NodeResourceStatus for
serialization.

(Continued)
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Table 3 (continued)

Package Class Description
ContainerStatusProto and CPU and memory
ContainerStatusPBImpl utilization of container in
Google protobuf format.
hadoop.yarn.server.nodemanager NodeStatusUpdaterImpl Calculate the container

resource usages from
Hadoop Metrics registry
and return a list of active
containers with status.
This class also calculate
the overall resource usage
of the node.
ContainerImpl Calculate the actual
usage of CPU and
physical memory in
percent based on registry
use and current
allocation of container.
hadoop.yarn.server.util BuilderUtils Add container resource
usage with existing
container status object.

The resource awareness feature was developed on the node and container awareness scheduler.
Various modules were implemented for resource availability computation and data transfer between
NodeManager and ResourceManager. The scheduler was assessed with the same configurations
that were used for node and container awareness, and the results showed a significant increase in
performance related to the former version.

The Resource-awareness capability of the scheduler was further enhanced with Adaptive schedul-
ing to cater for the application’s need to expand resources allocated dynamically for each stage
of the process to achieve greater performance. Different classes and methods were implemented
for calculating the resource consumption and availability in each container spawned and for the
application-level aggregation of these container-level metrics. The scheduling algorithm was expanded
with the supplementary modules, and the adaptive scheduler was developed as a pluggable scheduler
for YARN. The scheduler was assessed with the same configurations used for other schedulers
benchmarking, and the results showed a significant uptick in performance related to the former
version.

ANACRAC scheduler is designed with a user configuration XML file that accepts the hostnames
to run the job and schedule it on the configured nodes. The XML file supports the maximum number
of concurrent containers in a node and resource requirements. The ANACRAC scheduler verifies an
application’s number of active containers in a node with the value received in the configuration. The
scheduler restricts the container allocation if the number of active containers exceeds the configuration
boundary. The two configuration properties for choosing nodes and containers can be set separately or
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together with other properties based on resources in the node. The resource requirement configurations
decide the behaviour of resource awareness and adaptive scheduling. Resource awareness properties
can be used to define node-level CPU or 10 usage thresholds. Adaptive scheduling properties can be
used to control the adaptive scheduling behaviour based on the container-level resource usage. Table 4
specify the configuration properties that users can manage independently to control the application.

Table 4: Node and container awareness configuration details

Configuration properties

Description

yarn.scheduler.anacrac.hosts

yarn.scheduler.anacrac.tasks.maximum

yarn.scheduler. anacrac.job.type

yarn.scheduler. anacrac.cpu.threshold

yarn.scheduler.anacrac.io.threshold

yarn.scheduler.anacrac.container.job.type

yarn.scheduler.anacrac.container.cpu.threshold

This property accepts the hostname of the
nodes separated by a comma. Node and
container awareness selects the nodes based
on the value retrieved from this property.
This property sets the number of maximum
concurrent containers runnable for an
application in a node.

This property sets the type of the application.
CPU, 10 and ALL are the different job types
available.

This property sets the threshold value of
CPU usage of the node for the application.
Accepted values-An integer value between
50-99. ANACRAC skip the task allocation if
the calculated Node CPU usage goes beyond
the limit.

This property sets the threshold value of 10
usage of the Node for the Application.
Accepted values-an integer value between
50-99. ANACRAC skip the task allocation if
the calculated Node 10 usage goes beyond
the limit.

This property sets the resource type for
Adaptive control of the application. CPU,
Memory and ALL are the different job types
available.

This property sets the threshold value of
CPU usage of the application. Accepted
values-Integer value between 50-99.
ANACRAC increment the container vCPU if
the calculated CPU usage goes beyond the
limit.

(Continued)
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Table 4 (continued)
Configuration properties Description

yarn.scheduler.anacrac.container.memory.threshold  This property sets the threshold value of
Memory usage of the application. Accepted
values-Integer value between 50-99.
ANACRAC increment the container physical
memory allocation if the calculated memory
usage goes beyond the limit.

yarn.scheduler.anacrac.container.cpu.increment This property sets the CPU increment value
for ANACRAC. Number of virtual cores
allocation of container increment by this
value.

yarn.scheduler.anacrac.container.memory.increment This property sets the memory increment
value for ANACRAC. Memory in
Megabytes.

5 Results and Comparison

To evaluate this scheduler’s performance in heterogeneous and homogeneous clusters against
different schedulers, many different sets of Hadoop applications such as SFTP file download, Sqoop
import [31], TeraGen, TeraSort, Pi and Wordcount were set up in the environment. All these
applications were used to test the performance in both types of clusters set up on the AWS public
cloud.

To evaluate the effectiveness of the suggested scheduler, this study utilized a Sqoop import task,
which transferred data from a single table in a relational database management system (RDBMS)
to the HDFS. Sqoop imports data in parallel from the source database to HDFS. Characteristics
of Sqoop import with a record size of up to 1.7 million rows assessed under multiple scheduler
configurations. A distributed file download application used to evaluate the performance of external
connections to the Hadoop cluster. The file download application uses the host machine’s IP address,
username, password, input path of files to download, output HDFS path and HDFS username as
parameters. The file downloaded the job indexes the files specified in the remote input path and
downloads the files into the HDFS path in a distributed way using the Secure File Transfer Protocol
(SFTP). The SFTP file download job produces N number of containers where N was the number of
files in the remote input path.

TeraGen takes as input the number of rows to be made and uses multiple mappers to make the
rows of data simultaneously. The ideal number of mappers was the total number of vCPU-1 if TeraGen
was the only application running in the cluster. Users could control the number of maps and reduce
tasks by providing the configuration parameters while running the TeraSort application. By default,
the number of mappers spawned in the Terasort is the number of input splits generated from TeraGen.
The PI application can accept two parameters: the first parameter is the number of mappers, and the
second is the number of samples per map. The wordcount application reads input text files and outputs
the unique number of words and its occurrence in the entire dataset. Wordcount can be configured with
n number of mappers where n can be configured as an input split of a single document; MapReduce
split size or number of lines.
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The ANACRAC scheduler was evaluated against the default Hadoop schedulers using different
data sets. The scheduler was evaluated in 20 AWS Elastic Compute Cloud (EC2) machines with various
types, container formats and node types. Evaluations were carried out on experimental traces for
data ingestion workloads across different cluster topologies and sizes, along with multi-tenant clusters
using the multi-tenant feature of Hadoop YARN. Three different machine types, namely t2.medium,
t2.xlarge and t2.2xlarge, were utilized for testing. ANACRAC scheduler was assessed in the above
environments with node and container awareness, resource awareness and adaptive resource awareness.
Tables 5 and 6 explain the performance comparison of various improvements in ANACRAC against
the Fair scheduler in the homogeneous and heterogeneous configurations in AWS environment. The
node restriction is set to 6 and container restriction set to 2 for the evaluation purpose. All the values
in the table are recorded in seconds.

Table 5: Comparison of fair, ANACRAC with NCA, RA and AS in public homogeneous cluster

Scheduler Mode File WordCount TeraGen Pi  Sqoop TeraSort SFTP Total time
Size in import down-
GB load
Fair N/A 21 65 98 102 240(F) 197 312(F) 1014(F)
ANACRAC NCA 63 84 74 21 163 202 607
RA 58 82 72 20 157 139 528
AS 55 74 67 18 133 119 466
Fair N/A 64 72 124 112 377(F) 222 412(F) 1319(F)
ANACRAC NCA 67 121 76 25 203 224 716
RA 65 78 62 22 144 169 540
AS 62 73 57 20 126 137 475

Note: NCA-Node and Container Awareness; RA—Resource Awareness; AS-Adaptive Scheduling; N/A-Not applicable; F—Failed status.

Table 6: Comparison of fair, ANACRAC with NCA, RA and AS in public heterogeneous cluster
Scheduler Mode File  WordCount TeraGen Pi Sqoop TeraSort SFTP Total time

Size import down-
in GB load
Fair N/A 21 58 91 114 233(F) 177 285(F) 958(F)
ANACRAC NCA 55 79 58 17 161 180 550
RA 53 62 59 14 138 128 454
AS 51 58 55 15 114 112 405
Fair N/A 64 67 118 108 356(F) 214 420(F) 1283(F)
ANACRAC NCA 63 113 70 18 206 204 674
RA 61 68 55 15 128 160 487
AS 60 60 54 14 112 121 421

Note: NCA-Node and Container Awareness; RA—Resource Awareness; AS—Adaptive Scheduling; N/A-Not applicable; F-Failed status.

~

Figs. 3 and 4 show the diagrammatic representation of Tables 5 and 6. Here, ‘s’ indicates the
time in seconds. Fig. 3 displays the performance of various Fair schedulers and ANACRAC in a
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homogenous platform for different tasks such as WordCount, TeraGen, Sqoop Import, Terasort
and SFTP download. From Fig. 3, it is evident that Fair scheduler has performed better than the
proposed ANACRAC scheduler. When the data sources reside into the Fair Scheduler platform, the
performance of the fair scheduler improves significantly. Fig. 4 represents the performance of Fair
schedulers and ANACRAC in a heterogeneous platform for different tasks such as WordCount,
TeraGen, Sqoop Import, Terasort and SFTP download. Now, the Fair scheduler shows less efficient
performance than the proposed scheduler. When the data are supplied from external sources, the
performance of the fair scheduler decreases significantly.

Time Fair, ANACRAC with NCA, ANACRAC with RA & ANACRAC with AS in Public Heterogenecous Cluster
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Figure 3: Comparison of fair, ANACRAC with NCA, RA and AS in public homogeneous cluster
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Figure 4: Comparison of fair, ANACRAC with NCA, RA and AS in public heterogeneous cluster

The Hadoop YARN implementation of the scheduler registered significant performance improve-
ments in both homogeneous and heterogeneous clusters compared to the existing schedulers. It was
noticed that the performance gain is better in large workloads for data ingestion applications. The
SFTP file download with more than 2 GB datasets and Sqoop import from MySQL [32] with more
than 300 K records proved a significant performance improvement in the testbed environment. Table 7
and Fig. 5 demonstrate the comparison study of FIFO, Fair, Capacity and ANACRAC schedulers
against the testbed applications listed.
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Table 7: Comparison of ANACRAC scheduler with Hadoop existing schedulers

Scheduler WordCount TeraGen Pi Sqoop  TeraSort SFTP Total
import download time
FIFO 66 120 113 364(F) 217 424F)  1304(F)
Fair 64 116 110 327(F) 214 418(F)  1249(F)
Capacity 67 118 108 356(F) 209 420(F)  1278(F)
ANACRAC 60 60 54 14 112 121 421
Time Comparison of ANACRAC with existing schedulers
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Figure 5: Comparison of ANACRAC scheduler with Hadoop existing schedulers

5.1 Comparison

In Table 7 and Fig. 5, it is evident that the newly developed ANACRAC scheduler has shown the
best performance. ANACRAC scheduler has taken less time than other schedulers like FIFO, Fair and
Capacity. The existing scheduler in Hadoop YARN lowers the computational speed when the data are
supplied from external sources. There is a lack of availability of resource management in the context of
massive external data. When the data is located in internal sources, the existing scheduler of Hadoop
YARN performs very well. The computational speed becomes high when the data are collected from
internal sources. This study has developed a new scheduler system called ANACRAC which has
eliminated the performance leggings of the Fair scheduler in terms of data from external sources. The
newly developed ANACRAC scheduler has enhanced the performance of the Fair scheduler, which
can facilitate to scale of data science and data analytics applications running on massive amounts of
data, taking into account the dynamic nature of workloads and the heterogeneity of Hadoop clusters
and data sources. The existing Fair Scheduler supports the batch processing of data, and it is not
suitable for small data. Too many connections to external resources or processes at once are a typical
problem for YARN’s schedulers, notably the commonly used Fair scheduler. Connection overload is a
common problem with such workloads; when there are too many external connections open at once,
processes can’t complete. This study has solved the issues of connection and slow computational speed
by developing a novel ANRACRAC scheduler for the Hadoop YARN.

5.2 Discussion

Node and container awareness was tested and evaluated with node and container restrictions.
The results have validated that this ANACRAC scheduler demonstrates a 70%-90% performance
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improvement compared with the default Fair scheduler. The performance exploration of the SFTP
download and Sqoop import application for Fair scheduler and node and container awareness feature
of the ANACRAC scheduler validates with 20 node homogenous and heterogeneous clusters with
AWS EC2. Resource awareness offers resource availability of the specific nodes for scheduling.
The resource awareness feature of the ANACRAC scheduler was assessed under the same AWS
cloud. The results proved that 15%-20% performance improvement was achieved compared with the
node and container awareness feature of the ANACRAC. The adaptive feature of the ANACRAC
scheduler has been implemented and tested in the same cloud. The results are verified with both
heterogeneous and homogeneous set-ups. The ANACRAC scheduler dynamically fine-tunes the
freshly spawned containers depending on the run-time characteristics of the application. This dynamic
fine-tuning improved the efficiency of the ANACRAC scheduler over the default schedulers. This
scheduler showed a 30%—-40% performance improvement compared to the resource awareness feature
of ANACRAC.

The ANACRAC scheduler outperforms the default schedulers of the Hadoop package with
varying input data sizes. The throughput and average latency improvement of the ANACRAC
scheduler increased as the input data size. There was a noticeable speedup in performance with the
increment of node numbers. It was also observed that there was a considerable reduction in the number
of task breakdowns with ANACRAC scheduler implementation. After analysis of the results from
Tables 5 and 6, the newly developed ANACRAC scheduler has shown more efficient performance
than the existing schedulers. Though the parameters were the same for all schedulers, the ANACRAC
scheduler has shown better performance than others. It is estimated that the ANACRAC scheduler
has completed the task 60% to 200% faster than the previously developed scheduler. These percentages
were calculated by comparing each scheduler system’s required time of action in Tables 5 and 6.

6 Conclusion

The ANACRAC scheduler has been designed to enhance the performance of the Fair scheduler,
the default scheduler provided by Apache Hadoop. The Fair scheduler cannot fulfil performance
specifications for some applications due to an inability to allocate resources for applications deal-
ing with external data sources or in situations of greater resource consumption. The scheduler’s
node and container awareness is a more flexible mechanism for applications, allowing them to
request the resources they need in the cluster. Implementing newly developed ANACRAC scheduler
enables Hadoop applications to tailor the resource requirements and helps to prevent resource
breakdowns-thus optimizing utilization across the entire cluster. The scheduler’s resource awareness
offers application-level partitioning by leveraging application-specific information to prevent over-
subscription of resources. The adaptiveness feature further enhances the performance of the scheduler
using the container elasticity and dynamic resource consumption of the application at various stages
of the runtime.

The major findings of this study are given below:

e The ANACRAC scheduler demonstrates a 70%-90% performance improvement compared
with the default Fair scheduler.

e The results proved that 15%-20% performance improvement was achieved compared with the
node and container awareness feature of the ANACRAC.

e The adaptive feature of the ANACRAC scheduler showed a 30%-40% performance improve-
ment compared to the resource awareness feature of ANACRAC.
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Overall, the ANACRAC scheduler achieves a performance improvement minimum of 60% to
a maximum of 200% compared to the existing schedulers regarding data ingestion applications. The
unique features of the ANACRAC scheduler make it a top pick for data ingestion use cases. Except the
methods used in the paper, some of the most representative computational intelligence algorithms can
be used to solve the problems, like monarch butterfly optimization (MBO), earthworm optimization
algorithm (EWA), elephant herding optimization (EHO), moth search (MS) algorithm, Slime mould
algorithm (SMA), hunger games search (HGS), Runge Kutta optimizer (RUN), colony predation
algorithm (CPA), and Harris hawks optimization (HHO).

6.1 Managerial Insights and Practical Implications

The suggested scheduler system will be very efficient to conduct big data analysis. The company
which require to the analysis of a large amount of data can utilize this model to analyze their data
efficiently. Data saved in HDFS for batch processing, stream processing, interactive processing, and
graph processing may now be processed and performed with the aid of ANACRAC. Thus, it facilitates
the operation of distributed applications apart from MapReduce.

6.2 Limitations and Further Study

This work has some limitations regarding the effectiveness of the proposed framework
ANACRAC. This study has evaluated the effectiveness of the ANACRAC using a single cloud service
called Amazon Web Service (AWS) which may indicate less accurate results. This limitation can be
eliminated by using multiple cloud services. Further study can be taken place by considering more
external databases like oracle and TerraData. Further research can also be conducted by considering
other new parameters to improve the efficiency of the newly developed algorithm.
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