
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.040162

ARTICLE

CeTrivium: A Stream Cipher Based on Cellular Automata for Securing
Real-Time Multimedia Transmission

Osama S. Younes1,2,*, Abdulmohsen Alharbi1, Ali Yasseen1, Faisal Alshareef1, Faisal Albalawi1 and
Umar A. Albalawi1,3

1Faculty of Computer and Information Technology, University of Tabuk, Tabuk, 71491, Saudi Arabia
2Faculty of Computers and Information, Menoufia University, Menoufia, 13829, Egypt
3School of Computing & Data Science, Wentworth Institute of Technology, Boston, 02115, USA

*Corresponding Author: Osama S. Younes. Email: usama_younas@ci.menofia.edu.eg

Received: 07 March 2023 Accepted: 12 June 2023 Published: 09 November 2023

ABSTRACT

Due to their significant correlation and redundancy, conventional block cipher cryptosystems are not efficient in
encrypting multimedia data. Stream ciphers based on Cellular Automata (CA) can provide a more effective solution.
The CA have recently gained recognition as a robust cryptographic primitive, being used as pseudorandom
number generators in hash functions, block ciphers and stream ciphers. CA have the ability to perform parallel
transformations, resulting in high throughput performance. Additionally, they exhibit a natural tendency to resist
fault attacks. Few stream cipher schemes based on CA have been proposed in the literature. Though, their
encryption/decryption throughput is relatively low, which makes them unsuitable for multimedia communication.
Trivium and Grain are efficient stream ciphers that were selected as finalists in the eSTREAM project, but they
have proven to be vulnerable to differential fault attacks. This work introduces a novel and scalable stream cipher
named CeTrivium, whose design is based on CA. CeTrivium is a 5-neighborhood CA-based stream cipher inspired
by the designs of Trivium and Grain. It is constructed using three building blocks: the Trivium (Tr) block, the
Nonlinear-CA (NCA) block, and the Nonlinear Mixing (NM) block. The NCA block is a 64-bit nonlinear hybrid
5-neighborhood CA, while the Tr block has the same structure as the Trivium stream cipher. The NM block is a
nonlinear, balanced, and reversible Boolean function that mixes the outputs of the Tr and NCA blocks to produce
a keystream. Cryptanalysis of CeTrivium has indicated that it can resist various attacks, including correlation,
algebraic, fault, cube, Meier and Staffelbach, and side channel attacks. Moreover, the scheme is evaluated using
histogram and spectrogram analysis, as well as several different measurements, including the correlation coefficient,
number of samples change rate, signal-to-noise ratio, entropy, and peak signal-to-noise ratio. The performance
of CeTrivium is evaluated and compared with other state-of-the-art techniques. CeTrivium outperforms them in
terms of encryption throughput while maintaining high security. CeTrivium has high encryption and decryption
speeds, is scalable, and resists various attacks, making it suitable for multimedia communication.

KEYWORDS
Stream ciphers; cellular automata; securing real-time streaming; cryptography; CeTrivium

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.040162
https://www.techscience.com/doi/10.32604/csse.2023.040162
mailto:usama_younas@ci.menofia.edu.eg


2896 CSSE, 2023, vol.47, no.3

1 Introduction

The Real-time Transport Protocol (RTP) [1] is an established standard for the transmission
of real-time multimedia streams, including voice and video, over IP networks. The Secure Real-
Time Transport Protocol (SRTP) [2] is a security extension to RTP that provides confidentiality,
integrity, and replay protection for RTP data. It uses the Advanced Encryption Standard (AES)
algorithm for encryption of media streams and the RSA (Rivest–Shamir–Adleman) algorithm for
traffic authentication and management of session keys.

The block ciphers require the input data to be divided into specific block sizes. If the data are
not the required size, padding is applied before encryption to make the data a multiple of the block
size. However, this process can pose several threats when using SRTP [3]. The encrypted padding of
the message can be used to perform a brute-force attack to deduce the encryption key. Furthermore,
traditional block cipher cryptosystems, including AES, DES (Data Encryption Standard), and 3DES
face limitations when encrypting multimedia data, such as speech and video. These limitations arise
from factors such as the considerable data size, significant correlation and redundancy, increased
power consumption, and degraded encryption performance [4,5]. To overcome these limitations, novel
techniques have been introduced that use stream cipher algorithms.

Stream ciphers are a class of symmetric key encryption schemes that use a secret key to generate a
sequence of random bits, known as the “keystream”. These keystream bits are then combined with the
plaintext using the XOR operation. Stream ciphers encrypt/decrypt data one bit or byte at a time,
rather than in fixed-size blocks. This design allows them to be more efficient in encrypting large
amounts of multimedia data and can also help to preserve data quality. They are known for their
efficiency, speed, and limited error propagation [6]. Additionally, they are easy to implement in both
hardware and software and are widely used in multimedia applications such as video conferencing,
streaming audio and video, and VoIP calls.

In 2004, the eSTREAM project [7] was initiated as part of ECRYPT [8] with the objective of
establishing standard stream ciphers. The project aimed to encourage the development of stream
ciphers that are both efficient and compact, facilitating their widespread adoption. Numerous stream
ciphers were submitted to the project, undergoing extensive cryptanalysis for a period of four years.
Following this thorough evaluation, only a small number of candidate algorithms were chosen, such
as Trivium [9], Grain [10], Rabbit [11], and Salsa20/12 [12].

Trivium was designed to be a more secure and efficient replacement for DES and aimed to promote
the development of new stream ciphers. After being selected as a finalist in the eSTREAM project,
it was further accepted as the ISO standard. It uses a combination of three Linear Feedback Shift
Registers (LFSRs) to generate a keystream. Trivium is a highly efficient stream cipher that requires
minimal computational resources. It offers high encryption and decryption speeds and can be easily
adapted to various block sizes. Additionally, it has low power consumption, making it suitable for
portable and embedded devices. Despite its advantages, in both theoretical and practical studies
reported in the literature, Trivium was found to be insecure against Differential Fault Analysis (DFA)
and fault injection attacks [13,14].

Cellular Automata (CA) [15] consists of regular grids of cells, where each cell has a limited number
of states. The cells undergo state updates based on a predetermined rule, which considers the current
state of each cell and the states of its neighboring cells. While predicting future states is relatively
straightforward using this rule, inferring previous states poses significant challenges. One particularly
effective nonlinear rule is Rule 30 for 3-neighborhood CA, which exhibits good statistical properties



CSSE, 2023, vol.47, no.3 2897

such as nonlinearity and a higher algebraic degree [16]. Additionally, it has been found that that 5-
neighborhood rules outperform 3-neighborhood rules in terms of performance. The reason is that
increasing the radius or number of neighbors of CA enhances diffusion and confusion properties [17].
Consequently, CA have evolved as good pseudorandom generators, providing fast evolution and high
nonlinearity.

Recent research has highlighted the effectiveness of CA as a robust cryptographic primitive.
CA can serve as one-way functions whose inverse is challenging to determine [18]. They boast
straightforward hardware implementation, and software-based wordwise implementations can offer
high efficiency [6]. Additionally, CA enable parallel transformations, leading to enhanced throughput.
Furthermore, CA inherently exhibit resistance against fault attacks [19]. State bits within CA rapidly
diffuse, often within a single cycle. The parallel transformation of CA causes injected faults to quickly
propagate and dissipate, rendering fault tracking exceedingly challenging.

Several stream cipher schemes based on CA have been proposed in the literature [16,20–24].
However, as explained in Section 6, their encryption throughput is relatively low, which makes
them unsuitable for multimedia communication. This work introduces a novel stream cipher called
CeTrivium, which is based on cellular automata. CeTrivium is a 5-neighborhood CA-based stream
cipher, and it is inspired by the designs of Trivium and Grain. CeTrivium is constructed using three
building blocks: the Trivium (Tr) block, the Nonlinear-CA (NCA) block, and the Nonlinear Mixing
(NM) block. The NCA block is a 64-bit nonlinear hybrid 5-neighborhood CA. The Tr block has the
same structure as the Trivium stream cipher. The NM block is a nonlinear, balanced, and reversible
Boolean function that mixes the outputs of the Tr and NCA blocks to produce a keystream that resists
various attacks.

The NIST (National Institute of Standards and Technology) [25] statistical test suite has been
used for evaluating the quality of the random bitstreams generated by the proposed scheme. In
addition, we informally analyzed the security properties of the proposed scheme and showed that
it provides security protection against various attacks, including correlation, algebraic, fault, cube,
Meier and Staffelbach, and side-channel attacks. Moreover, the proposed scheme was assessed through
histogram and spectrogram analysis, along with various measurements including signal-to-noise
ratio, correlation coefficient, peak signal-to-noise ratio, entropy, and the number of sample change
rates. We also compared the proposed scheme with other state-of-the-art schemes and found that it
outperformed them in terms of both performance and security.

The remainder of the paper is organized as follows. Related work is discussed in Section 2. In
Section 3, basic concepts about Trivium and Grain stream ciphers and CA are explained. Section 4
explains the proposed stream cipher CeTrivium. The informal security analyses of CeTrivium are
discussed in Section 5. Simulation results and a performance comparison are presented in Section 6.
Finally, some conclusions are drawn in Section 7.

2 Related Work

A Pseudorandom Number Generator (PRNG) is a crucial component of stream ciphers, as it
forms the basis of the keystream used to encrypt and decrypt plaintext. Many stream cipher schemes
have been proposed in the literature based on different techniques for generating pseudorandom
numbers, such as shift registers, DNA encoding, noise sources, tree party machines, and chaotic maps.
However, as discussed in [26–28], most of them are vulnerable to attacks. Moreover, most of them
are not suitable for real-time multimedia streaming because of their low throughput, as explained in
Section 6. The following discusses the most recent and significant schemes.



2898 CSSE, 2023, vol.47, no.3

A speech encryption scheme was proposed in [29] that relies on the Cat map and Zaslavsky map
transform. Initially, the plain audio is concealed by incorporating random numbers generated via the
Zaslavsky map. Subsequently, the resulting output undergoes processing by the Cat map to bewilder
the data samples. Finally, the sampled values are rearranged using the Chen map, which reveals their
chaotic behavior.

A speech encryption scheme was proposed in [30] based on chaotic shift keying. In this scheme,
the audio signal samples are divided into four levels, and each level undergoes permutation using four
distinct chaotic generators: quadratic map, tent map, logistic map, and Bernoulli’s map. A chaotic
shift keying technique is used to dynamically assign diverse chaotic maps to diverse levels of sampled
values, thereby shuffling the speech samples at each level.

A stream cipher scheme was proposed in [31] for encrypting speech signals. The scheme utilizes a
pseudorandom generator that consists of two 256-bit shift registers, one nonlinear and the other linear.
Another speech encryption cipher was proposed by Kordov [32], which combines a pseudorandom
number generator with a permutation-substitution architecture. The architecture is implemented using
a chaotic circle map and modified rotation equations.

In [4], a secure audio transmission scheme was presented that integrates four distinct techniques
for audio encryption: dynamic DNA encoding, multichaotic maps, self-adaptive scrambling, and
cipher feedback encryption. The scheme encompasses three phases. The initial phase involves self-
adaptive bit scrambling, where the SHA512 hash of the input audio is computed to generate a secret
key used for cyclically shifting the audio binary stream. The second phase encompasses dynamic DNA
encoding, where the scrambled audio is encoded using a secret key derived from a pseudorandom
generator employing chaotic maps such as sine, Chebyshev, and logistic maps.

On the basis of the Henon-Tent chaotic pseudorandom number generation technique, an audio
encryption scheme was proposed in [5]. The method requires XORing a stream of pseudorandom
numbers with the audio file to form a cipher audio. The pseudorandom numbers are produced by the
chaotic Henon map and the tent map.

An audio encryption scheme was proposed in [33] that makes use of a dynamical system, incorpo-
rating a fractional derivative. This system demonstrates chaotic behavior across a broad spectrum
of fractional orders and parameter values. Furthermore, the scheme exhibits multiple coexisting
attractors when employing the same parameter values but different initial conditions. Additionally,
a nonlinear feedback control technique is employed to regulate the chaos of the system around its
stagnation point.

Few CA-based stream cipher schemes have been introduced in the literature. Sandip and
Dipanwita developed a stream cipher called NOCAS [20], which is based on hybrid nonlinear 3-
neighborhood CA. NOCAS was inspired by the design of Grain. CAvium [21] is a stream cipher
inspired by the design of Trivium. Basically, CAvium replaces the shift registers used in the design of
Trivium with a hybrid CA with rules 30, 60, 90, 120, 150, 180, 210, and 240. Compared to Trivium, it
has better cryptographic characteristics, including nonlinearity, resiliency and algebraic degree.

Das et al. proposed a stream cipher called CASTREAM [22], which is based on CA. CASTREAM
uses two nonlinear blocks: one based on an S-box and another based on CA. To generate the
keystream, CASTREAM uses a CA-based mixing function that combines the outputs of the two
blocks. A CA-based stream cipher called CAR30 was introduced in [18]. The cipher uses a 3-
neighborhood CA with rule 30 and is inspired by the design of Grain. CAR30 replaces the LFSR and
the Nonlinear Feedback Shift Register (NFSR) in Grain-128 with linear and nonlinear CA with radius



CSSE, 2023, vol.47, no.3 2899

one, respectively. The design of CAR30 is easily scalable and can be implemented in both hardware
and software. A stream cipher called FResCA was proposed in [23]. The design of FResCA is inspired
by Grain’s design and is based on a combination of cellular automata with radii of 1 and 2.

NOCAS, CAvium, and CASTREAM adopt 3-neighborhood CA in their designs. As proven
in [34], all nonlinear rules used for 3-neighborhood CA are not immune to first-order correlation.
Consequently, any ciphers employing these rules may successfully pass classical statistical tests for
checking randomness, but they remain vulnerable to correlation attacks.

In [24], a stream cipher named CARPenter, which is based on a 5-neighborhood cellular automa-
ton, was introduced. The cipher incorporates a linear CA and a nonlinear CA with a mixing function.
It demonstrates resilience against various attacks targeting stream ciphers and exhibits various
cryptographic properties. The analysis of CARPenter showed that it is resilient against various stream
cipher attacks and has good cryptographic properties. The hardware and software resources required
to implement CARPenter are similar to those used by other ciphers based on cellular automata,
such as CAR30 and NOCAS. John et al. [16] proposed Pentavium, a 5-neighborhood CA-based
stream cipher. Pentavium has a similar structure to CAvium [21], but instead of using 3-neighborhood
rules such as CAvium, it utilizes 5-neighborhood rules. As explained in Section 6, both CARPenter
and Pentavium have low encryption/decryption throughput, making them unsuitable for real-time
multimedia streaming.

3 Preliminaries

3.1 Cellular Automata

Cellular automata can be described as a mathematical representation of a discrete system that
comprises a grid of cells, where each cell has two possible states (0, 1) [35]. The cells in the system are
assigned a state S, which are modified at discrete time steps based on a defined transition function f .
This function, also known as a transition rule, takes into account the states of neighboring cells within
a symmetric neighborhood of radius r at the previous time steps. By employing a local transition
function, the state of each cell is updated simultaneously in discrete time steps as follows:

St+1
i = f

(
St

i−r , . . . , St
i , . . . , St

i+r

)
, 0 ≤ i ≤ N − 1 (1)

where St
i represents the state of the cell number i at instant t. The Elementary Cellular Automaton

(ECA) is the most basic form of cellular automata. The state of the ith cell in an elementary cellular
automaton at time instant t is determined by the following:

St+1
i = f

(
St

i−1, St
i , St

i+1

)
(2)

The value of the cell is determined by its current state and the states of adjacent left and right
neighbors. Therefore, ECA is called a 3-neighborhood cellular automaton. At time instant t, for the
5-neighborhood cellular automata, the next state of the cell number i is given by:

St+1
i = f

(
St

i−2, St
i−1, St

i , St
i+1, St

i+2

)
(3)

For ECA, where each cell can store one of two values (0 or 1) and the transition function operates
on three cells, the function f can take 23 = 8 various combinations of inputs. As a result, there are
28 = 256 types of outputs. Therefore, there are 223 = 256 possible rules for ECA. For 5-neighborhood
CA, there are 225 = 4,294,967,296 possible rules. Every rule can be represented as a decimal number,
indicating its output for all possible inputs. Fig. 1 shows the outputs of rule 30 for all possible inputs.



2900 CSSE, 2023, vol.47, no.3

Each square represents a cell, with a white or black square indicating a cell value of 0 or 1, respectively.
The three cells in the first row represent the input of the rule, while the cell in the second row represents
the output. Rule 30 derives its name from its output bits: in binary, it is represented as 00011110, which
is equivalent to 30 in decimal.

Figure 1: The outputs of rule 30

Because rows in CA have a limited number of cells, the boundaries of the rows do not have the
complete set of neighbors required by the update function. To address this issue, several approaches
exist. A null boundary is used when the values of the extremities’ neighbors are hardcoded as zero. On
the other hand, a cyclical or periodic boundary is applied by connecting the extremities’ neighbors to
each other. Hybrid CA involve more than one rule in generating the next state [36].

Previous studies have explored the diffusion, confusion and randomness characteristics of cellular
automata rules with 3-, 4-, and 5-neighborhood configurations. The results showed that increasing the
neighborhood radius of cellular automata improves the effectiveness of CA in various cryptographic
properties. 5-neighborhood CA have a high diffusion rate and are therefore appropriate for high-speed
applications [24]. However, this enhancement requires increased computation. Figs. 2 and 3 show 3-
and 5-neighborhood CA with 128 cells updated with rules 30 and 1452976485, respectively. The CA
have a cyclical boundary and were initialized with a random state.

Figure 2: Updating ECA with 128 cells using rule 30 for 50 rows

Figure 3: Updating 5-neighborhood CA with 128 cells using rule 1452976485 for 50 rows

3.2 Trivium Description

In the eSTREAM project, the Trivium stream cipher [9] was selected as a finalist. It has been
standardized as part of the standard ISO/IEC 29192-3 for stream ciphers. It is a synchronous and



CSSE, 2023, vol.47, no.3 2901

lightweight cipher designed to produce a keystream of fewer than 264 bits. The cipher uses a secret key
and an Initialization Vector (IV), each of which is 80 bits in length. The cipher’s structure is dependent
on three shift registers, which collectively comprise 288 bits. These shift registers have specific sizes of
93, 84, and 111 bits. The feedback for each shift register is generated by combining AND and XOR
operations, as illustrated in Fig. 4.

Figure 4: Internal structure of Trivium

The three registers of Trivium are initialized by loading the secret key and the initialization vector,
along with a sequence of predetermined zeros and ones. After 1152 iterations, Trivium produces a
stream of pseudorandom bits. The keystream is generated by performing XOR operations on specific
bits within the three shift registers. Trivium is specifically designed for applications that have limited
resources and power. However, as a widely adopted cipher and cryptosystem, it has been the subject
of various attacks that undermine its security. These include several differential analysis techniques
described in the literature [13,14].

3.3 Grain-128 Description

Grain-128 [10] is a stream cipher that falls into the category of lightweight ciphers and was selected
as one of the finalists in the eSTREAM project. The cipher comprises three main components: a
nonlinear feedback shift register (NFSR), a linear feedback shift register (LFSR), and a nonlinear
filter, as illustrated in Fig. 5. The cipher takes a 96-bit IV and a 128-bit secret key as inputs. The LFSR
operates using a feedback polynomial denoted as q (y), which is computed as follows:

q (y) = 1 + y32 + y47 + y58 + y90 + y121 + y128 (4)

The feedback function g (y) of the NFSR is a nonlinear polynomial composed of a combination
of a linear function and a bent function. The feedback function is defined as follows:

g (y) = 1 + y32 + y37 + y72 + y102 + y128 + y44y60 + y61y125 + y63y67

+ y69y101 + y80y88 + y110y111 + y115y117 (5)

The nonlinear filter function is defined as:

h (x) = y0y1 + y2y3 + y4y5 + y6y7 + y0y4y8 (6)



2902 CSSE, 2023, vol.47, no.3

where the variables y0, y1, y2, y3, y4, y5, y6, y7 and y8 correspond to positions of bits from both LFSR
and NFSR. To initialize the cipher, the 128-bit secret key is loaded into the NFSR and the 96-bit
initialization vector is loaded into the LFSR. The other 32 bits in the LFSR are set to ones. The cipher
is then iterated 256 times before generating the keystream. Throughout this initialization phase, the
output of the cipher is XORed with the input of both the NFSR and the LFSR, as illustrated in Fig. 5.
Once the initialization phase is complete, the feedback paths indicated by the dotted lines in Fig. 5 are
ignored, and the keystream output become accessible as the output.

Figure 5: Grain block diagram

4 Proposed Stream Cipher

This section specifies the details of the design of the proposed stream cipher. A high-level block
diagram of the construction is shown in Figs. 6 and 7. Fig. 6 shows the initialization phase, and Fig. 7
shows the keystream generation phase.

a3

NM

a1

69 171 264

y3 y1 y2

a2

1 94 178

Y

Y

X
Keystram

Ci

Bits no. 8, 59, 106, 135,
167, 179, 241, 282

Bits no. 1, 9, 17, 25,
33, 41, 49, 57

Bits no. 21, 73, 111, 132,
163, 181, 207, 235

Bits no. 2, 10, 18,
26, 34, 42, 50, 58

Bits no. 2, 10, 18,
26, 34, 42, 50, 58

TriviumNonlinear CA
8

88

8

Figure 6: Block diagram for the initialization phase of CeTrivium



CSSE, 2023, vol.47, no.3 2903

a3

NM

a1

69 171 264

y3 y1 y2

a2

1 94 178

Y

Y

X
Keystram

Ci

Bits no. 8, 59, 106, 135,
167, 179, 241, 282

Bits no. 1, 9, 17, 25,
33, 41, 49, 57

Bits no. 21, 73, 111, 132,
163, 181, 207, 235

Bits no. 2, 10, 18,
26, 34, 42, 50, 58

Bits no. 2, 10, 18,
26, 34, 42, 50, 58

TriviumNonlinear CA
8

88

8

Figure 7: Block diagram for the keystream generation process of CeTrivium

4.1 CeTrivium Description

CeTrivium is constructed using three main building blocks, namely, the Tr, NCA, and NM blocks.
The Tr block has the same structure as the Trivium stream cipher explained in Section 3 and shown in
Fig. 4. However, there is one key difference: bits of the output keystream are returned back and XORed
with the inputs of Trivium, as shown in Fig. 6. The NCA block is a nonlinear hybrid 5-neighborhood
CA with a length of 64 bits. The cellular automaton follows a periodic boundary configuration,
where the extreme bits (rightmost and leftmost cells) are considered to be adjacent to each other.
This arrangement enables the CA to produce more complex and varied output than the null boundary
CA [37].

The authors in [38] investigated the cryptographic properties of various nonlinear rules for 5-
neighborhood cellular automata, where the benchmark is Rule 30. After analyzing the results attained
from the NIST tests [25] and ENT (a Pseudorandom Number Sequence Test) [39], the following
selected rules performed better than others: R1 = 1520018790, R2 = 2778290790, R3 = 1520018790
and R4 = 1452976485. The cells of the NCA block are modified using one of the four 5-neighborhood
nonlinear CA rules: R1, R2, R3 and R4. The cells are updated using these rules in the same order one
after another. The rules provide high nonlinearity to the nonlinear CA block, which increases rapidly
with each iteration. Additionally, they exhibit good correlation immunity. Therefore, these rules were
chosen to generate states of the NCA block. For example, the state transition function fi of the ith cell
ci using R1 is computed as follows [38]:

fi = Si−2 · Si−1 · Si+1 · Si+2 + Si−2 · Si−1 · Si+1 · Si+2 + Si−2 · Si−1 · Si · Si+2 + Si−2 · Si−1 · Si+1 · Si+2

+ Si−2 · Si−1 · Si · Si+2 + Si−2 · Si−1 · Si+1 · Si+2 + Si−2 · Si−1 · Si · Si+2

+ Si−2 · Si−1 · Si · Si+2 (7)



2904 CSSE, 2023, vol.47, no.3

where Sj is the current state of cell j, and “−”, “+”, and “.” represent NOT, OR and AND Boolean
operations, respectively.

The nonlinear mixing block NM is a nonlinear, balanced, and reversible Boolean function [40].
NM receives eight input taps from each block and produces eight bits as output. Only the most
significant bit is considered for generating the output keystream. We denote the contents or states of
the Tr block by t1, t2, . . . , t288, and the contents of the NCA block by c1, c2, . . . , c64. The 352 memory
elements in the two blocks characterize the system state. If the input of NM consists of two n-bit
inputs, where the first one is T = t1, . . . , tn, the second one is C = c1, . . . , cn, and the output of NM
is Z = z1, . . . , zn, then the output bit number i can be computed as [40]:

zi = ti ⊕ ci ⊕ hi−1

hi−1 = t0c0 ⊕ . . . ⊕ tici ⊕ ti−1ti ⊕ ci−1ci (8)

where t−1 = c−1 = h−1 = 0, 0 ≤ i ≤ n − 1.

As shown in Fig. 6, the eight taps that are selected from the NCA block correspond to bit positions
1, 9, 17, 25, 33, 41, 49, and 57, where they are equidistant positions. The selected taps from the Tr block
correspond to bit positions 8, 59, 106, 135, 167, 179, 241, and 282. These taps are selected from the
three shift registers constructing the Tr block: two from the first register and three from each of the
other registers. The mixing block NM produces an 8-bit output Z = (z1, . . . , z8). However, only the
most significant bit z8 is considered as an output because all input variables of NM are used to compute
z8, which provides good diffusion. In each clock cycle, z8 is computed as follows:

z8 = c57 ⊕ t282 ⊕ t8c1 ⊕ t59c9 ⊕ t106c17 ⊕ t135c25 ⊕ t167c33 ⊕ t179c41

⊕ t241c49 ⊕ c21c49 ⊕ t179t241 (9)

The positions of the 16 taps selected from the two blocks are designated to influence the output
of the nonlinear mixing function by all the bits in fewer iterations.

The Trivium cipher is vulnerable to fault injection and side channel attacks [13,14] due to several
factors: (1) the Trivium initialization algorithm is reversible, (2) the initialization phase is the same as
the keystream phase, and (3) the output function of the Trivium is linear in the inner state bits. To
address these issues, the inputs of Trivium are XORed with the output keystream bits, as shown in
Fig. 6. This approach increases confusion in the Tr block in the initialization phase that prevents fault
attacks. Moreover, the outputs of NCA and NM blocks are combined with the Tr block, as shown
in Figs. 6 and 7. The NCA block quickly diffuses the state bits, forcing injected faults to propagate
rapidly and dissipate. This dynamic behavior poses challenges in tracking and analyzing faults. The
mixing function is a resilient and extremely nonlinear Boolean function that filters the cipher state
bits, preventing attacks that exploit vulnerabilities in the Trivium cipher.

4.2 Initialization and Keystream Phases

The CeTrivium cipher operates in two phases: the initialization phase and the keystream genera-
tion phase. In the initialization phase, the cipher is initialized with secret keys K and IV. The bits of
the secret key are denoted as ki, where 0 ≤ i ≤ 144, the bits of the initialization vector are denoted as
vj, where 0 ≤ j ≤ 80, and the generated keystream is denoted as X = x1, x2, . . . , xn.



CSSE, 2023, vol.47, no.3 2905

To initialize the algorithm, the Tr block is loaded with an 80-bit secret key and an 80-bit
initialization vector, and the NCA block is loaded with a 64-bit secret key as follows:

(t1, . . . , t93) ← (k1, . . . , k80, 0, . . . , 0)

(c1, . . . , c64) ← (k81, . . . , k144)

(t94, . . . , t177) ← (v1, . . . , v80, 0, . . . , 0)

(t178, . . . , t288) ← (0, . . . , 0, 1, 1, 1)

Then, the internal state of the cipher is refreshed 1152 times (rotating the Trivium registerers over
4 full cycles). After each clock cycle, the registers in the Tr block are rotated, and the cells of the NCA
block are updated according to the 5-neighborhood CA rules. Moreover, the output of NCA block
Ci iterates through all CA cells in a cyclic increasing order. As explained above, the input to the NM
block consists of 16 bits taken from the Tr and NCA blocks. For each clock cycle, the 8th bit (most
significant bit) of the NM block’s output is combined through XOR operation with the outputs of
the Tr and NCA blocks. This XORed value is the keystream output X . After every clock cycle, the
keystream bits xi are used as an input for the Tr block, as shown in Fig. 6.

Before updating the bits of the NCA and Tr blocks, the taps in the Tr block at positions 163, 181,
207, 235, 21, 73, 111, and 132 are XORed with the taps in the NCA block at positions 2, 10, 18, 26,
34, 42, 50 and 58, respectively, to update the corresponding bits in the NCA block. The initialization
phase is iterated 1152 times before producing any keystream to ensure that all bits are affected by the
IV and the keys. The initialization phase algorithm is shown in Table 1, where the function f

(
cj

)
refers

to the Boolean value obtained after applying the 5-neighborhood CA rule on a cell cj during a single
cycle.

Table 1: The initialization algorithm of CeTrivium

Input: Secret key K = (k1, . . . , k144), initialization vector IV = (v1, . . . , v80), n = 288
1 : (t1, . . . , t93) ← (k1, . . . , k80, 0, . . . , 0)

2 : (t94, . . . , t177) ← (v1, . . . , v80, 0, . . . , 0)

3 : (t178, . . . , t288) ← (0, . . . , 0, 1, 1, 1)

4 : (c1, . . . , c64) ← (k81, . . . , k144)

5 : for i = 1 to 4n do
6 : zi ← c57 ⊕ t282 ⊕ t8c1 ⊕ t59c9 ⊕ t106c17 ⊕ t135c25 ⊕ t167c33 ⊕ t179c41 ⊕ t241c49 ⊕ c21c49 ⊕ t179t241

7 : Set : y1 ← t66 ⊕ t93, y2 ← t162 ⊕ t177, y3 ← t243 ⊕ t288

8 : Yi ← y1 ⊕ y2 ⊕ y3

9 : j ← i mod 64
10 : If j = 0, j = 64
11 : xi ← zi ⊕ Yi ⊕ f

(
cj

)
12 : b1 ← t66 ⊕ t91 ⊕ t92 ⊕ t93 ⊕ t171 ⊕ xi

13 : b2 ← t162 ⊕ t175 ⊕ t176 ⊕ t177 ⊕ t264 ⊕ xi

14 : b3 ← t66 ⊕ t91 ⊕ t92 ⊕ t93 ⊕ t177 ⊕ xi

15 : (t1, . . . , t93) ← (b3, t1, . . . , t92)

16 : (t94, . . . , t177) ← (b1, t94, . . . , t176)

17 : (t178, . . . , t288) ← (b2, t178, . . . , t287)

(Continued)



2906 CSSE, 2023, vol.47, no.3

Table 1 (continued)

18 : (c2, c10, c18, c26) ← (c34, c42, c50, c58) ⊕ (t21, t73, t111, t132)

19 : (c34, c42, c50, c58) ← (c2, c10, c18, c26) ⊕ (t163, t181, t207, t235)

20 : end for
Output: Keystream (x1, x2 . . . , xn )

For 288 iterations, the generated keystream bits in the initialization phase are suppressed and are
not accessible as output. This number of iterations is sufficient to change all 288 and 64 state bits in
the Tr and CA blocks, respectively. Furthermore, the generated keystream bit is influenced by all 320
state bits.

The keystream generation process begins on the 289th iteration, immediately following the
initialization phase. The processes of the keystream generation are similar to those of the initialization
phase, except that the feedback line from the keystream to the Tr block is removed, as shown in Fig. 7.
From the beginning of this phase, the output X is considered to be the keystream bits of CeTrivium.
The keystream generation algorithm of CeTrivium is shown in Table 2.

Table 2: The keystream generation algorithm of CeTrivium

Input: CeTrivium inner state (t1, . . . , t288) and (c1, . . . , c64), number of output bits Nb

21 : for i = 1 to Nb do
22 : zi ← c57 ⊕ t282 ⊕ t8c1 ⊕ t59c9 ⊕ t106c17 ⊕ t135c25 ⊕ t167c33 ⊕ t179c41 ⊕ t241c49 ⊕ c21c49 ⊕ t179t241

23 : Set : y1 ← t66 ⊕ t93, y2 ← t162 ⊕ t177, y3 ← t243 ⊕ t288

24 : Yi ← y1 ⊕ y2 ⊕ y3

25 : j ← i mod 64
26 : If j = 0, j = 64
27 : xi ← zi ⊕ Yi ⊕ f

(
cj

)
28 : b1 ← t66 ⊕ t91 ⊕ t92 ⊕ t93 ⊕ t171

29 : b2 ← t162 ⊕ t175 ⊕ t176 ⊕ t177 ⊕ t264

30 : b3 ← t66 ⊕ t91 ⊕ t92 ⊕ t93 ⊕ t177

31 : (t1, . . . , t93) ← (b3, t1, . . . , t92)

32 : (t94, . . . , t177) ← (b1, t94, . . . , t176)

33 : (t178, . . . , t288) ← (b2, t178, . . . , t287)

34 : (c2, c10, c18, c26) ← (c34, c42, c50, c58) ⊕ (t21, t73, t111, t132)

35 : (c34, c42, c50, c58) ← (c2, c10, c18, c26) ⊕ (t163, t181, t207, t235)

36 : end for
Output: Keystream {xi}Nb

i=1

5 Security Analysis

In this section, security analysis for the proposed stream cipher is provided to show how it resists
different cryptanalytic attacks that can be performed against stream ciphers.



CSSE, 2023, vol.47, no.3 2907

5.1 NIST Statistical Test

Statistical testing is a widely employed method to evaluate the output quality of stream ciphers
or random number generators. The NIST test suite [25] is a standard statistical tool utilized for this
purpose, which includes 15 tests designed to assess any behavior that indicates predictability in a
random sequence, as shown in Table 3. This suite is commonly used for evaluating the randomness
quality of pseudorandom numbers with variable lengths generated by stream ciphers or random
number generators.

Table 3: Results of NIST test for CeTrivium

Sl. No. Test name p-value Status

1 Longest run of ones 0.32438 Pass
2 Frequency 0.87823 Pass
3 Cumulative sums 0.91831 Pass
4 Runs 0.71926 Pass
5 Non-overlapping template 0.56575 Pass
6 Block frequency 0.68061 Pass
7 FFT 0.31018 Pass
8 Random excursions 0.79454 Pass
9 Binary matrix rank 0.48355 Pass
10 Overlapping template 0.69689 Pass
11 Random excursions variant 0.85493 Pass
12 Linear complexity 0.87474 Pass
13 Serial 0.54301 Pass
14 Approximate entropy 0.76159 Pass
15 Maurer’s universal 0.86901 Pass

The first four tests, as shown in Table 3, study the frequency of the keystream, while tests 5 and
6 investigate repetitive patterns. Pattern matching characteristics are investigated through tests 7 to
12, while the last three tests evaluate random walk characteristics. For every test, a statistical measure
called the Chi-square is computed, and the resulting value is transformed into a random probability
value known as p-value. This p-value helps in the analysis of the randomness characteristics of the
keystream.

We implemented the CeTrivium cipher using MATLAB and generated different bit streams of
length 108 bits. The test suite was then used to divide the input into 100 keystreams of size 106. Table 3
shows the results of the statistical test performed on the bit stream generated by the CeTrivium cipher
using the following secret key and IV:

K = 0x5C5C50ED00C48388EA9B0FB7C2047AF6B94E

IV = 0xEBA02E379817D636A144

The results for all tests show that the p-value > 0.01, which implies that the keystream bits
generated by CeTrivium passed all tests.



2908 CSSE, 2023, vol.47, no.3

5.2 Correlation Attack

Linear correlations between keystream bits and internal state bits can potentially reveal the cipher
state. The characteristic that signifies a cipher’s ability to resist correlation attacks is called as resiliency.
A function that is balanced and demonstrates immunity to k-th order correlations is commonly
referred to as k-resilient. In [38], the authors investigated a set of bipermutive rules for 5-neighbor
CA in terms of the cryptographic characteristic of resiliency. They computed Walsh transforms of the
rules to select those that are nonlinear and 2-resilient. Based on the results of various statistical tests,
the nonlinear rules (R1, R2, R3, R4) performed better than others [38]. It has been proven that these
rules are bipermutive and 2-resilient. According to Tarannikov’s bound [41], the Boolean function with
five variables that is 2-resilient gives the best possible trade-off between balancedness and correlation
immunity. Therefore, the output of the NCA block is both balanced and 2nd-order correlation immune.

As explained in [9], the Trivium cipher has a correlation coefficient of 10−72. Detecting such a
correlation would require at least 2144 bits of keystream that is not feasible in practice. The nonlinear
mixing block NM is a resilient Boolean function [40] that was designed as a filter between the cipher
state and the generated keystream. By combining the output bits of the NCA, Tr, and NM blocks to
generate the keystream of CeTrivium, it becomes much more difficult to search for linear correlations
between the keystream and cipher state, effectively preventing correlation attacks.

5.3 Algebraic Attack

Algebraic attacks involve identifying a set of equations and then solving them. An algebraic attack
depends on the algebraic degree of an encryption algorithm. Increasing the number of nonlinear
terms in an encryption algorithm makes it more difficult to attack. As proved in [24], the algebraic
degree of the state bits with respect to the previous state bits when the ω-cell 5-neighborhood CA with
any nonlinear rule that runs for λ (λ < ω/2) cycles is 4λ + 1. Therefore, the algebraic degree of the
nonlinear 5-neighborhood rule after 18 (1152/64) cycles is 73. For 64 state bit variables of the NCA

block with degree 18, the number of linear equations is equal to
∑73

j=0

(
64
j

)
. The complexity of solving

these equations is less than 2207. For every iteration, four new variables are generated into the Boolean
function, consequently increasing both the algebraic degree and overall complexity.

Trivium stream ciphers are vulnerable to algebraic attacks because of their simple algebraic struc-
ture. In [42], the authors developed an algebraic attack against Trivium. The attack can compromise
625 rounds by utilizing just 4096 bits of the keystream, with an overall time complexity equivalent to
242.2 Trivium computations. Therefore, to prevent algebraic attacks, the output of the NCA block is
XORed with the outputs of the Tr and NM blocks to generate the keystream. Therefore, CeTrivium
can resist algebraic attacks.

5.4 Fault Attack

A fault attack can be considered an active attack on a cryptosystem [43]. This type of attack
assumes that the attacker has the ability to manipulate the encryption algorithm or the used device,
enabling them to inject and control faults through methods such as laser beams, voltage peaks, or
clock glitches. The cipher behavior can be analyzed by injecting faults into unidentified bit positions
within the cipher state and monitoring the effects of these faults. By comparing the faulty output with
the anticipated output, it is possible to compromise the cipher’s security keys.

Unfortunately, studies introduced in [13,44,45] have illustrated that the Trivium stream cipher is
vulnerable to differential fault analysis attacks and fault injection attacks. These attacks are capable



CSSE, 2023, vol.47, no.3 2909

of retrieving the secret information contained in a cryptosystem. Fault attacks depend on using a
reversible algorithm. In the event that attackers possess knowledge of the cipher’s state at any clock
cycle, they can execute the cipher in reverse until it returns back to the initial state, thereby exposing
the secret keys. Stream ciphers implemented using CA are immune to fault attacks due to the rapid
diffusion of state bits by CA. This fast diffusion causes any introduced fault to quickly propagate and
dissipate, making it difficult to track. In CeTrivium, 5-neighborhood CA are used to prevent fault
attacks. As explained above, the algebraic degree of the keystream bits is 73, making fault attacks
infeasible.

5.5 Cube Attack

The cube attack is a form of cryptanalysis attack in which the attacker aims to derive a system of
polynomial equations in relation to the unknown bits of the secret key using the output keystream bits
of the cipher and a set of IVs [46]. The evaluation of factor polynomials, with linear terms known as
superpolys (SP) and factors referred to as cubes, is conducted by treating the cryptosystem as a black
box. The attack is performed in 2 stages: preprocessing and online. In the preprocessing stage, the
attacker uses chosen keys and IVs to obtain the maxterms and their corresponding SP. In the online
stage, SP are evaluated, where the chosen IVs are used to query the black box. This process yields a
set of equations that needs to be analyzed and solved in order to get the secret keys.

The effectiveness of cube attacks is contingent upon the algebraic degree of the keystream. As
explained above, CeTrivium reaches an algebraic degree of at least 73 after 18 cycles. Additionally,
after every cycle, the algebraic degree increases by 4, making it grow rapidly. In addition, the secret key
and initialization vector size of 352 further contributes to the complexity of calculating the maxterms.
Therefore, CeTrivium can resist cube attacks.

5.6 Meier and Staffelbach Attack

In [47], Wolfram introduced a stream cipher based on Rule 30, where Rule 30 was used as a
pseudorandom sequence generator. Meier and Staffelbach subsequently launched an attack on this
cipher [48]. They began by generating a random initial state for all bits on the right half of the cellular
automaton. Then, starting from the initial state, they generated the adjacent sequence of CA using
Rule 30, which is called the temporal sequence. By guessing the initial state for the right half values,
they aimed to determine the correct right-adjacent sequence of the temporal sequence. To check this
result, they moved backward to determine the left half of the initial state because the left side exhibits
a linear relationship with the temporal sequence. Using the computed initial state, the keystream is
generated and compared with the actual keystream. By repeating this process, the attackers can guess
the correct secret keys.

In CeTrivium, there is feedback from the Tr block to the NCA block that is used to update 8 bits
in it. Therefore, moving backward from the right-adjacent sequence to determine the left-hand side of
the temporal sequence is not possible. Additionally, because a nonlinear mixing function is used with
the NCA block to produce keystream bits, the attacker cannot find a relation between the initial state
and the keystream. Hence, CeTrivium is resistant to the Meier-Staffelbach attack.

5.7 Side Channel Attack

In Side-Channel Attacks (SCAs), attackers attempt to extract information from devices executing
cipher algorithms, such as power consumption and emissions of electromagnetic radiation. In [49],
the authors comprehensively evaluated eSTREAM ciphers and demonstrated their vulnerability to



2910 CSSE, 2023, vol.47, no.3

SCA. To prevent SCA, certain cryptographic properties are recommended in [50], including algebraic
degree, resiliency, and nonlinearity, which prevent information leakage. These properties affect the
randomness of the keystream, which has a significant impact on preventing SCA. CeTrivium uses a
nonlinear CA block and a nonlinear mixing function that satisfy these cryptographic properties, as
explained above. Therefore, CeTrivium is robust against SCA.

5.8 Period

As explained in [9], for any key/IV pair, if the AND gates are removed from the Trivium cipher, the
cipher becomes a linear scheme, and the period of the generated stream is at least 293 − 1. In addition,
once a significant number of iterations have been performed, Trivium exhibits the characteristics of
a random permutation, with a maximum cycle length equal to 2288. The NCA block does not have
a maximum length period. The equidistant bits in the NCA block are nonlinearly mixed using the
NM block with selected taps from the Tr block. Then, the results are XORed with the output of the
Tr and NCA blocks. Therefore, the actual period of the cipher is greater than that of Trivium and is
contingent upon the Key/IV combination employed.

5.9 Memory/Time/Data Tradeoff Attack

The memory/time/data tradeoff attacks on stream ciphers have a complexity of O (2β /2), where β

represents the number the cipher’s internal states [51]. For CeTrivium, with a total of 352 bits defining
its internal state, conducting a memory/time/data tradeoff attack becomes challenging.

The authors in [52] developed a tradeoff attack for stream ciphers that have low sampling
resistance. They developed different sampling techniques to reduce complexity and make this attack
applicable. They showed that the tradeoff attack can be performed on stream ciphers whose states
undergo a restricted number of simple operations prior to generating their subsequent output bit.
The authors showed that this attack can be performed on Grain-128. CeTrivium was designed using
5-neighborhood nonlinear CA, the Trivium cipher, and the nonlinear mixing function, which makes
transformation of its state complex and prevents the tradeoff attack from being performed with a
complexity less than that of a brute-force attack.

6 Simulation Results

In this section, the quality of the CeTrivium stream cipher for encrypting audio signals is
demonstrated. MATLAB 2022a was used to implement CeTrivium on a personal computer that has
an Intel Core i5-10210U CPU running at @ 2.1 GHz, 8 GB of random access memory (RAM) and a
64-bit Windows 11 Professional operating system. The proposed scheme was applied to a variety of
uncompressed (.wav) audio files with different sizes and characteristics (speeches, music, songs, etc.). In
order to assess the security of CeTrivium, common measurements were adopted, including histogram,
spectrogram, correlation coefficient, Signal-to-Noise Ratio (SNR), Number of Samples Change Rate
(NSCR), Peak Signal-to-Noise Ratio (PSNR), entropy, and throughput. In all experiments, the secret
key and initial vector described in Section 5.1 are utilized.

6.1 Histogram and Spectrogram Analysis

Histogram analysis is employed to calculate the distribution of values and to assess the quality
of encrypted audio signals. An encryption scheme that can resist statistical attacks encrypts the audio
signal into random noise-like signals with equally probable sample values. Histograms of the plain
audio files and the corresponding encrypted audio files are shown in Fig. 8 [b1 to b6] and Fig. 8 [(e1



CSSE, 2023, vol.47, no.3 2911

to e6)], respectively. As shown in Fig. 8, the histograms of the encrypted audio files are relatively flat,
indicating that the proposed scheme can resist statistical attacks, such as frequency attacks.

(a1) Audio-1 (b1) Histogram of Audio-1 (c1) Spectrogram of Audio-1

(d1) Encrypted Audio-1
(e1) Histogram of encrypted 

Audio-1
(f1) Spectrogram of encrypted 

Audio-1

(a2) Audio-2 (b2) Histogram of Audio-2 (c2) Spectrogram of Audio-2

(d2) Encrypted Audio-2
(e2) Histogram of encrypted 

Audio-2
(f2) Spectrogram of encrypted 

Audio-2

(a3) Audio-3 (b3) Histogram of Audio-3 (c3) Spectrogram of Audio-3

Figure 8: (Continued)



2912 CSSE, 2023, vol.47, no.3

(d3) Encrypted Audio-3
(e3) Histogram of encrypted 

Audio-3
(f3) Spectrogram of encrypted 

Audio-3

(a4) Audio-4 (b4) Histogram of Audio-4 (c4) Spectrogram of Audio-4

(d4) Encrypted Audio-4
(e4) Histogram of encrypted 

Audio-4
(f4) Spectrogram of encrypted 

Audio-4

(a5) Audio-5 (b5) Histogram of Audio-5 (c5) Spectrogram of Audio-5

(d5) Encrypted Audio-5
(e5) Histogram of encrypted 

Audio-5
(f5) Spectrogram of encrypted 

Audio-5

Figure 8: (Continued)



CSSE, 2023, vol.47, no.3 2913

(a6) Audio-6 (b5) Histogram of Audio-6 (c6) Spectrogram of Audio-6

(d6) Encrypted Audio-6
(e6) Histogram of encrypted 

Audio-6
(f6) Spectrogram of encrypted 

Audio-6

Figure 8: Simulation results: Plain audio files (a1 to a6), histogram of plain audio files (b1 to b6),
spectrogram of plain audio files (c1 to c6), encrypted audio files (d1 to d6), histogram of encrypted
audio files (e1 to e6), spectrogram of encrypted audio files (f1 to f6)

A spectrogram is a graphical depiction that displays the frequency spectrum of an audio file over
time. It can be useful for identifying patterns or features in the signal. It is created by breaking the
audio samples into smaller segments and then using the Fourier transform to calculate the magnitude
of the frequency spectrum for each segment. Spectrogram analysis is an essential tool for evaluating the
quality of the encryption scheme. An encryption scheme of high quality would produce an encrypted
signal that appears to be random noise when viewed as a spectrogram.

In Fig. 8, the spectrograms of the tested audio files are presented in subfigures c1 to c6. The
spectrograms of the corresponding encrypted audio files can be found in subfigures f1 to f6. As shown
in Fig. 8, the encryption scheme scrambled the original frequency content of the signal, making it
difficult for an attacker to identify any patterns or features. In addition, the encrypted audio versions
are dissimilar to the original audio files.

6.2 Correlation Analysis

Correlation analysis is a statistical method used to assess the robustness of an encryption scheme
against various types of statistical attacks. It typically examines the correlation between corresponding
segments of the original and encrypted audio files, using the correlation coefficient as the metric. A
secure encryption algorithm should convert the original data into a signal that resembles random noise
with low correlation. A small correlation coefficient signifies that there is little or no similarity between
the original and encrypted audio files. The correlation coefficient Corr (λ, μ) between plain audio λ

and encrypted audio μ can be computed as follows:

Corr (λ, μ) =
1

Ns

∑Ns
i=1 (λi − E (λ)) (μi − E (μ))√

1
Ns

∑Ns
i=1 (λi − E (λ))

2
√

1
Ns

∑Ns
i=1 (μi − E (μ))

2
(10)



2914 CSSE, 2023, vol.47, no.3

where cov (λ, μ) is the covariance between λ and μ, λi and μi are the sample values of the plain and
encrypted audio files, E (λ) and E (μ) are mean values of samples λi and μi.

Table 4 shows the size and duration of plain audio files and the correlation coefficient between
the plain audio and the corresponding encrypted audio files. Additionally, a scatter plot diagram
comparing samples in plain and encrypted audio files (Audio-1) can be found in Fig. 9. The results
demonstrate that the correlation coefficient values are very low, indicating a lack of similarity between
plain and encrypted audio files, thus reflecting the randomness of the encrypted audio file. This result
shows the superior quality of CeTrivium and demonstrates its effectiveness.

Table 4: Size (KB) and duration (Sec.) of plain audio files, correlation coefficient, SNR (dB) and PSNR
(dB) of encrypted audio files

Audio file Size Duration Corr. Coeff. SNR PSNR

Audio-1 62.5 2.6 0.0021 −18.2903 −96.7764
Audio-2 413.3 9.6 −0.0035 −23.0901 −86.0367
Audio-3 129.1 3.0 −0.0027 −19.0861 −86.0266
Audio-4 200.4 4.1 0.0047 −16.6352 −98.5542
Audio-5 338.9 13.9 0.0045 −18.2351 −99.3138
Audio-6 525.3 33.6 −0.0012 −18.8313 −86.2838

Figure 9: Correlation between samples in (a) plain audio and (b) encrypted audio

6.3 SNR and PSNR Analysis

SNR is a measure of signal quality and is commonly employed to evaluate the quality of cipher
schemes. It determines the level of noise in the encrypted audio signal relative to the original signal.
Cryptanalysts often try to add more noise to the encrypted signal to make it harder to extract useful
information from it. The signal-to-noise ratio for the plain and encrypted audio signals is computed



CSSE, 2023, vol.47, no.3 2915

as follows:

SNR = 10 · log10

∑Ns
i=1 λ2

i∑Ns
i=1 (λi − μi)

2
(11)

A higher negative SNR value indicates a stronger encryption scheme. The results of the SNR test
for CeTrivium are shown in Table 4. The proposed scheme consistently demonstrates a high negative
SNR, indicating that it is robust against attacks.

PSNR can be used to evaluate the effectiveness of encryption schemes. It measures the strength
of the original, unencrypted signal compared to the strength of the encrypted signal. The calculation
of PSNR is performed as follows:

PSNR = 10 · log10

(
Peak2

1
Ns

∑Ns
i=1 (λi − μi)

2

)
(12)

where Peak is the maximum possible value of the audio signal. A higher PSNR value indicates that
the integrity of the original signal has not been greatly affected by the encryption, while a lower PSNR
value indicates that a significant amount of noise has been introduced into the signal, making it harder
to recover the original signal. Therefore, when evaluating encryption schemes using PSNR, a lower
value is generally considered more secure, as it indicates a higher level of encryption. Table 4 presents
the PSNR values for the encrypted audio files. These values are low, indicating a significant amount
of noise in the encrypted audio files, which results in strong resistance to attacks.

6.4 NSCR, Entropy, and Computational Time Analysis

Information entropy analysis is used to determine the level of uncertainty or randomness in a
signal. It is used for evaluating encryption algorithms, where a higher entropy value of the encrypted
signal indicates greater unpredictability and makes it more difficult to break the encryption using
statistical attacks. The entropy of a signal can be calculated as follows:

entropy =
∑Ns

i=1
p (si) · log2 (p (si)) (13)

where p (si) represents the probability that a sample value si will occur in the signal. Table 5 shows the
entropy values of both encrypted and plain audio files. The encrypted files clearly have higher entropy
values, indicating the resilience of CeTrivium against statistical attacks.

Table 5: NCSR, entropy, and encryption/decryption throughput (Kb/s) of audio files

Audio file Entropy NCSR (%) Throughput

Plain Encrypted

Audio-1 5.1355 6.6057 100 675.6
Audio-2 3.8802 6.5531 100 888.7
Audio-3 4.8868 6.6102 100 662.4
Audio-4 4.3005 6.6060 100 648.0
Audio-5 4.8414 6.6326 100 746.9
Audio-6 4.5561 6.6136 99.99 905.3



2916 CSSE, 2023, vol.47, no.3

NSCR is a testing method used to evaluate the robustness of ciphering schemes. It measures
the percentage of sample values that have changed between the encrypted and original signals. The
NSCR test determines how effectively an encryption algorithm has protected the original audio data
by comparing the original and encrypted samples.

The ideal NSCR value is 100%, indicating that all sample values have changed during the
encryption process. A high NSCR value indicates that the encryption algorithm can efficiently protect
the plain audio and is considered highly secure. Conversely, a low NSCR value suggests that the
encryption algorithm has not adequately protected the original audio data and is considered less
secure. NSCR can be computed as follows:

NSCR = 1
Ns

∑Ns

i=1
Di Di =

{
1 λi �= μi

0 λi = μi
(14)

The NSCR test results for various audio files are shown in Table 5. The table illustrates that the
NSCR values are close to the ideal, indicating that the proposed encryption scheme has a high level of
security. In addition, Table 5 lists the encryption/decryption throughput of CeTrivium for the tested
audio files, which ranges from 648 to 905.3 Kb/s with an average of 754.4 Kb/s.

6.5 Performance Comparison

Table 6 compares the performance of CeTrivium to other state-of-the-art schemes in terms of
key space, correlation coefficient, SNR, PSNR, entropy, NSCR, and encryption rate. The comparison
includes a standard scheme (AES with a 256-bit key size) adopted by SRTP, two stream cipher schemes
based on CA (CARPeter and Pentavium), and seven other encryption schemes that use various
concepts, such as DNA coding, chaotic maps, and shift registers.

Table 6: Comparison with other schemes in terms of key space, correlation coefficient, SNR (dB),
PSNR (dB), entropy, NSCR (%), and encryption/decryption throughput (Kb/s)

Method Key space Corr. SNR PSNR Entropy NSCR Throughput

Proposed 2352 0.0036 −19.1 5.3 6.6 100 754.4
CARPenter 2256 0.0013 −17.3 5.4 6.5 100 27.8
Pentavium 2288 0.0038 −14.4 6.2 6.3 100 79.3
AES 2256 0.0097 −1.44 8.8 6.4 99.60 9.6
[30] 2744 0.0233 −34.7 62.3 – 99.99 –
[31] 2512 0.0034 −11.6 48.5 5.4 99.99 521.3
[23] 2477 0.0029 −23.8 – – – –
[5] 2249 0.0174 –29.9 4.2 4.9 99.99 –
[4] 2928 0.0005 −38.0 4.2 6.5 100 32.9
[26] 2149 0.0038 −16.0 4.3 6.1 99.98 213.2
[27] 21488 0.0094 −12.4 97.9 6.6 100 16.3

The size of the key space in an encryption scheme might be sufficiently large to resist brute-force
attacks. A key space smaller than 2128 is not considered sufficiently secure [53]. As demonstrated in
Table 6, similar to other related schemes, the proposed scheme can withstand brute-force attacks since
the key space is larger than 2128.



CSSE, 2023, vol.47, no.3 2917

As shown in Table 5, all cipher schemes have very low correlation coefficients, indicating that
the plain audio and encrypted signals are uncorrelated, making it difficult for attackers to gain
valuable information through statistical attacks. In addition, the proposed scheme has a low SNR
and PSNR, indicating that it adds a significant amount of noise to the original signal, making it
robust against various differential attacks. Moreover, the proposed scheme has the highest entropy
and NSCR compared to other schemes, which indicates that it is more resistant to attacks. In addition,
the encryption throughput of the proposed stream cipher is much higher than that of other schemes,
making it more suitable for real-time multimedia transmission. In summary, the proposed stream
cipher scheme achieved competitive results compared to the state-of-the-art schemes.

7 Conclusion and Future Directions

This work introduces a new stream cipher called CeTrivium, which is based on a hybrid nonlinear
CA. CeTrivium is composed of three building blocks: the Tr block, which is structured similarly to the
Trivium cipher; the NCA block, which is a nonlinear hybrid 5-neighborhood CA; and the NM block,
which is a nonlinear, balanced, and reversible function that combines the outputs of the Tr and NCA
blocks to generate the keystream. The NIST statistical test suite was used to evaluate the quality of
keystreams. The p-value for all tests was greater than 0.01, indicating that the keystream generated by
CeTrivium passed all tests. Additionally, an analysis of CeTrivium’s security properties revealed that
it can resist a variety of attacks. CeTrivium has a correlation coefficient less than 10−72, which requires
at least 2144 bits of keystream to detect correlation, which is not feasible. After 18 cycles, the algebraic
degree of CeTrivium is 73, which indicates resistance to the algebraic attack and makes performing
a fault attack infeasible. The algebraic degree of the keystreams increases by 4 every cycle, making it
grow rapidly. This increase in complexity makes it difficult to compute the maxterms and thus helps
prevent cube attacks. Because the total number of bits that define the internal state of CeTrivium is
352, it is difficult to perform a data/memory/time/tradeoff attack. Due to using the nonlinear blocks
and the nonlinear mixing function, the CeTrivium cipher is robust against side-channel attacks. The
scheme is evaluated using histogram and spectrogram analysis, which demonstrates the alterations
in encrypted signals compared to orignal signals. In addition, the results for different measurements,
such as the correlation coefficient, NSCR, and entropy, confirm the high quality of encryption. The
measured SNR and PSNR values show high levels of noise in the encrypted files, which implies
resistance to attacks. CeTrivium was compared to other state-of-the-art schemes. We found that it
has a higher entropy and NSCR, which indicates that it is more resistant to attacks. Moreover, the
encryption throughput of the proposed stream cipher is much higher. We can conclude that CeTrivium
has the necessary cryptographic security properties and performance to make it suitable for real-time
multimedia transmission. In future work, CeTrivium will be implemented in hardware, and different
mixing functions will be adopted to enhance its security performance.

Acknowledgement: The authors are grateful for the reviewer’s valuable comments that improved the
manuscript.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Osama Younes, Umar Albalawi; data collection: Abdulmohsen Alharbi, Ali Yasseen,
Faisal Alshareef, Faisal Albalawi; carrying out coding and experiments: Osama Younes, Abdulmohsen
Alharbi, Ali Yasseen, Faisal Alshareef, Faisal Albalawi; analysis and interpretation of results: Osama
Younes, Umar Albalawi, Abdulmohsen Alharbi, Ali Yasseen, Faisal Alshareef, Faisal Albalawi; draft



2918 CSSE, 2023, vol.47, no.3

manuscript preparation: Osama Younes, Umar Albalawi, Abdulmohsen Alharbi, Ali Yasseen, Faisal
Alshareef, Faisal Albalawi; All authors reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: Data available on request from the authors.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RFC3550: RTP: A transport protocol for real-

time applications,” RFC, 2003. [Online]. Available: https://dl.acm.org/doi/abs/10.17487/rfc3550
[2] M. Baugher, D. McGrew, M. Naslund, E. Carrara and K. Norrman, “RFC3711: The secure real-time

transport protocol (SRTP),” RFC, 2004. [Online]. Available: https://dl.acm.org/doi/abs/10.17487/RFC3711
[3] K. P. Man, K. W. Wong and K. F. Man, “Security enhancement on VoIP using chaotic cryptography,” in

Proc. of Annual Conf. on IEEE Industrial Electronics, Paris, France, pp. 3703–3708, 2006.
[4] R. I. Abdelfatah, “Audio encryption scheme ssing self-adaptive bit scrambling and two multi chaotic-based

dynamic DNA computations,” IEEE Access, vol. 8, no. 1, pp. 69894–69907, 2020.
[5] S. Adhikari and S. Karforma, “A novel audio encryption method using Henon–Tent chaotic pseudo

random number sequence,” International Journal of Information Technology, vol. 13, no. 4, pp. 1463–1471,
2021.

[6] H. Manifavas, G. Hatzivasilis, K. Fysarakis and I. Papaefstathiou, “A survey of lightweight stream ciphers
for embedded systems,” Security and Communication Networks, vol. 9, no. 10, pp. 1226–1246, 2015.

[7] The eSTREAM Project, 2022. [Online]. Available: http://www.ecrypt.eu.org/stream/project.html
[8] European network of excellence for cryptography, 2022. [Online]. Available: http://www.ecrypt.eu.org/
[9] C. de Cannière and B. Preneel, “Trivium,” New Stream Cipher Designs (The eSTREAM Finalists), Lecture

Notes in Computer Science, vol. 4986, pp. 244–266, 2008.
[10] M. Hell, T. Johansson, A. Maximov and W. Meier, “A stream cipher proposal: Grain-128,” in Proc. of

IEEE Int. Symp. on Information Theory, Seattle, WA, USA, pp. 1614–1618, 2006.
[11] M. Boesgaard, M. Vesterager and E. Zenner, “The rabbit stream cipher,” Lecture Notes in Computer

Science, vol. 4986, pp. 69–83, 2008.
[12] D. J. Bernstein, “The salsa20 family of stream ciphers,” New Stream Cipher Designs, pp. 84–97, 2008.
[13] F. E. Potestad-Ordóñez, E. Tena-Sánchez, J. M. Mora-Gutiérrez, M. Valencia-Barrero and C. J. Jiménez-

Fernández, “Trivium stream cipher countermeasures against fault injection attacks and DFA,” IEEE
Access, vol. 9, no. 1, pp. 168444–168454, 2021.

[14] C. D. Ye, T. Tian and F. Y. Zeng, “The MILP-aided conditional differential attack and its application to
Trivium,” Designs, Codes and Cryptography, vol. 89, no. 2, pp. 317–339, 2021.

[15] M. Tomassini and M. Perrenoud, “Cryptography with cellular automata,” Applied Soft Computing, vol. 1,
no. 2, pp. 151–160, 2001.

[16] A. John, B. C. Nandu, A. Ajesh and J. Jose, “PENTAVIUM: Potent Trivium-like stream cipher using
higher radii cellular automata,” in Proc. of Int. Conf. on Cellular Automata for Research and Industry, Lodz,
Poland, pp. 90–100, 2020.

[17] J. Jose and D. R. Chowdhury, “Investigating four neighbourhood cellular automata as better cryptographic
primitives,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 20, no. 8, pp. 1675–1695,
2017.

[18] S. Das and D. Roy Chowdhury, “CAR30: A new scalable stream cipher with rule 30,” Cryptography and
Communications, vol. 5, no. 2, pp. 137–162, 2013.

[19] J. Jose, S. Das and D. Roy Chowdhury, “Prevention of fault attacks in cellular automata based stream
ciphers,” Journal of Cellular Automata, vol. 12, no. 1/2, pp. 141–157, 2016.

https://dl.acm.org/doi/abs/10.17487/rfc3550
https://dl.acm.org/doi/abs/10.17487/RFC3711
http://www.ecrypt.eu.org/stream/project.html
http://www.ecrypt.eu.org/


CSSE, 2023, vol.47, no.3 2919

[20] S. Karmakar and D. R. Chowdhury, “NOCAS: A nonlinear cellular automata based stream cipher,” in
Proc. of 17th Int. Workshop on Cellular Automata and Discrete Complex Systems, Stockholm, Sweden,
pp. 135–146, 2011.

[21] S. Karmakar, D. Mukhopadhyay and D. Roy Chowdhury, “CAvium - Strengthening Trivium stream cipher
using cellular automata,” Journal of Cellular Automata, vol. 7, no. 2, pp. 179–197, 2012.

[22] S. Das and D. Roy Chowdhury, “CASTREAM: A new stream cipher suitable for both hardware and
software,” in Proc. of Int. Conf. on Cellular Automata, Santorini, Greece, pp. 601–610, 2012.

[23] J. Jose and D. Roy Chowdhury, “FResCA: A fault-resistant cellular automata based stream cipher,” in
Proc. of Int. Conf. on Cellular Automata, Fez, Morocco, pp. 24–33, 2016.

[24] A. John, R. Lakra and J. Jose, “On the design of stream ciphers with cellular automata having radius = 2,”
Cryptology ePrint Archive, vol. 327, no. 1, pp. 327–352, 2020.

[25] NIST Statistical Test Suite, 2022. [Online]. Available: https://csrc.nist.gov/projects/random-bit-generation/
documentation-and-software

[26] R. B. Naik and U. Singh, “A review on applications of chaotic maps in pseudo-random number generators
and encryption,” Annals of Data Science, vol. 9, no. 1, pp. 1–26, 2022.

[27] S. A. Qassir, M. T. Gaata and A. T. Sadiq, “Modern and lightweight component-based symmetric cipher
algorithms: A review,” ARO-The Scientific Journal of Koya University, vol. 10, no. 2, pp. 152–168, 2022.

[28] L. Jiao, Y. Hao and D. Feng, “Stream cipher designs: A review,”Science China Information Sciences, vol. 63,
no. 3, pp. 131101, 2020.

[29] F. J. Farsana and K. Gopakumar, “A novel approach for speech encryption: Zaslavsky map as pseudo
random number generator,” Procedia Computer Science, vol. 93, no. 1, pp. 816–823, 2016.

[30] P. Sathiyamurthi and S. Ramakrishnan, “Speech encryption using chaotic shift keying for secured speech
communication,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 2017, no. 1, pp. 20, 2017.

[31] A. Belmeguenai, Z. Ahmida, S. Ouchtati and R. Djemii, “A novel approach based on stream cipher for
selective speech encryption,” International Journal of Speech Technology, vol. 20, no. 3, pp. 685–698, 2017.

[32] K. Kordov, “A novel audio encryption algorithm with permutation-substitution architecture,” Electronics,
vol. 8, no. 5, pp. 1–15, 2019.

[33] Nasreen and P. Muthukumar, “Secure audio signal encryption based on triple compound-combination
synchronization of fractional-order dynamical systems,” International Journal of Dynamics and Control,
vol. 10, no. 6, pp. 2053–2071, 2022.

[34] A. Leporati and L. Mariot, “1-resiliency of bipermutive cellular automata rules,” Cellular Automata and
Discrete Complex Systems, vol. 8155, no. 1, pp. 110–123, 2013.

[35] K. Cattell and J. C. Muzio, “Synthesis of one-dimensional linear hybrid cellular automata,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 3, pp. 325–335,
1996.

[36] S. Maiti and D. Roy Chowdhury, “Study of five-neighborhood linear hybrid cellular automata and their
synthesis,” in Proc. of Int. Conf. on Mathematics and Computing, Singapore, pp. 68–83, 2017.

[37] S. Nandi and P. P. Chaudhuri, “Analysis of periodic and iIntermediate boundary 90/150 cellular automata,”
IEEE Transactions on Computers, vol. 45, no. 1, pp. 1–12, 1996.

[38] A. Leporati and L. Mariot, “Cryptographic properties of bipermutive cellular automata rules,” Journal of
Cellular Automata, vol. 9, no. 1, pp. 437–475, 2014.

[39] ENT-a pseudorandom number sequence test program, 2022. [Online]. Available: http://www.fourmilab.ch/
random/

[40] J. Bhaumik and D. R. Chowdhury, “Nmix: An ideal candidate for key mixing,” in Proc. of Int. Conf. on
Security and Cryptography, University of Milan, Italy, 2009.

[41] Y. V. Tarannikov, “On resilient Boolean functions with maximal possible nonlinearity,” in Proc. of Int.
Conf. on Cryptology in India, Calcutta, India, pp. 19–30, 2000.

[42] F. M. Quedenfeld and C. Wolf, “Advanced algebraic attack on Trivium,”Mathematical Aspects of Computer
and Information Sciences, vol. 9582, no. 1, pp. 268–282, 2016.

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/


2920 CSSE, 2023, vol.47, no.3

[43] S. Banik, S. Maitra and S. Sarkar, “A differential fault attack on the grain family of stream ciphers,” in
Proc. of Int. Workshop on Cryptographic Hardware and Embedded Systems, Leuven, Belgium, pp. 122–139,
2012.

[44] P. Dey and A. Adhikari, “Improved multi-bit differential fault analysis of Trivium,” in Proc. of Int. Conf.
on Cryptology in India, New Delhi, India, pp. 37–52, 2014.

[45] F. E. Potestad-Ordóñez, M. Valencia-Barrero, C. Baena-Oliva, P. Parra-Fernández and C. J. Jiménez-
Fernández, “Breaking Trivium stream cipher implemented in ASIC using experimental attacks and DFA,”
Sensors, vol. 20, no. 23, pp. 6909, 2020.

[46] I. Dinur and A. Shamir, “Cube attacks on tweakable black box polynomials,” in Proc. of Annual Int. Conf.
on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, pp. 278–299, 2009.

[47] S. Wolfram, “Random sequence generation by cellular automata,” Advances in Applied Mathematics, vol. 7,
no. 2, pp. 123–169, 1986.

[48] W. Meier and O. Staffelbach, “Analysis of pseudo random sequences generated by cellular automata,”
Advances in Cryptology—EUROCRYPT ’91, vol. 547, no. 1, pp. 186–199, 1991.

[49] B. Gierlichs, L. Batina, C. Clavier, T. Eisenbarth, A. Gouget et al., “Susceptibility of eSTREAM candidates
towards side channel analysis,” in Proc. of the State of the Art of Stream Ciphers Special Workshop, ECRYPT
Network of Excellence, Lausanne, Switzerland, 2008.

[50] S. Karmakar and D. Roy Chowdhury, “Leakage squeezing using cellular automata,” in Proc. of Int.
Workshop on Cellular Automata and Discrete Complex Systems, Gießen, Germany, pp. 98–109, 2013.

[51] A. Biryukov and A. Shamir, “Cryptanalytic time/memory/data tradeoffs for stream ciphers,” in Proc. of
Int. Conf. on the Theory and Application of Cryptology and Information Security, Kyoto, Japan, pp. 1–13,
2000.

[52] T. E. Bjørstad. “Cryptanalysis of grain using time/memory/data tradeoffs,” ECRYPT Stream Cipher
Project Report, 2008/012, 2022. [Online]. Available: http://www.ecrypt.eu.org/stream

[53] E. Albahrani and T. Alshekly, “A text encryption algorithm based on self-synchronizing stream cipher and
chaotic maps,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 3,
no. 5, pp. 579–585, 2019.

http://www.ecrypt.eu.org/stream

	CeTrivium: A Stream Cipher Based on Cellular Automata for Securing Real-Time Multimedia Transmission
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Stream Cipher
	5 Security Analysis
	6 Simulation Results
	7 Conclusion and Future Directions
	References


