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ABSTRACT

This article describes a novel approach for enhancing the three-dimensional (3D) point cloud reconstruction for
light field microscopy (LFM) using U-net architecture-based fully convolutional neural network (CNN). Since
the directional view of the LFM is limited, noise and artifacts make it difficult to reconstruct the exact shape of
3D point clouds. The existing methods suffer from these problems due to the self-occlusion of the model. This
manuscript proposes a deep fusion learning (DL) method that combines a 3D CNN with a U-Net-based model as
a feature extractor. The sub-aperture images obtained from the light field microscopy are aligned to form a light
field data cube for preprocessing. A multi-stream 3D CNNs and U-net architecture are applied to obtain the depth
feature from the directional sub-aperture LF data cube. For the enhancement of the depth map, dual iteration-based
weighted median filtering (WMF) is used to reduce surface noise and enhance the accuracy of the reconstruction.
Generating a 3D point cloud involves combining two key elements: the enhanced depth map and the central view
of the light field image. The proposed method is validated using synthesized Heidelberg Collaboratory for Image
Processing (HCI) and real-world LFM datasets. The results are compared with different state-of-the-art methods.
The structural similarity index (SSIM) gain for boxes, cotton, pillow, and pens are 0.9760, 0.9806, 0.9940, and
0.9907, respectively. Moreover, the discrete entropy (DE) value for LFM depth maps exhibited better performance
than other existing methods.
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1 Introduction

LFM is an advanced three-dimensional imaging technique that generates a 3D image by com-
bining 2D images from multiple angles. Levoy et al. [1] applied integral imaging to microscopy for
the first time. The LFM system can record light field (LF) information, including parallax and depth
dimensions [2–4]. A microlens array is a key component of an LFM system. The microlens array
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(MLA) is positioned before the image sensor, capturing a different sample perspective from each
lens [3]. Fig. 1 shows the elemental image array (EIA) captured by MLA as a series of sub-images
arranged in a grid structure. The LF image can be reconstructed into an orthographic-view image
(OVI) from the EIA for 3D reconstruction using the pixel mapping method [5]. The purpose of
light field images is to create a high-quality 3D model of a scene or object using OVIs. The 3D
reconstruction methodology based on the depth map is widely applicable in intelligent detection [6],
pattern recognition [7], industrial measurement [8,9], robot navigation [10], etc., due to the convenient
3D image acquisition. 3D reconstruction from light field images typically involves several stages,
including data acquisition, calibration, disparity estimation, and surface reconstruction. A specialized
camera captures a microscopic scene’s light field image during the data acquisition stage. Calibration
is then performed to align the various views captured by the camera and correct for any geometric
distortions [11]. In 3D reconstruction from LF images, disparity estimation is an essential step for
estimating the depth information of each pixel. Conventional microscopy that uses traditional 2D
methods primarily optimizes data that does not detect parallax information [12]. There are many ways
to address this issue, for instance, confocal [13], stereoscopic [14], and integral imaging holographic
microscopy [15]. 2D images cannot provide sufficient details about the 3D information of objects or
scenes, so it is challenging to accurately estimate 3D geometry from 2D image data. However, light
field images are an effective way to capture rich 3D information using an MLA. LF cameras capture
information on the light intensity, color, and direction that can be exploited to project a 3D point
cloud [16,17]. Thus, using light field data allows the reconstruction of 3D point clouds.

Figure 1: A light field microscopic image with a noise effect

However, it is challenging to reconstruct the complete 3D model of the hidden part from the
2D image. The conventional methods often have difficulty resolving occlusions, which occur when
some parts of the scene are obscured and cannot be accurately reconstructed. A reconstructed point
cloud can be affected by noise in the input data, leading to errors. Furthermore, some parts of the
LF images have low texture and reflective surface information, which can reduce the visual appeal
of the reconstructed model. This can make it challenging to accurately align the different views and
reconstruct the 3D geometry as shown in Fig. 1. Regarding the solution to such 3D reconstruction
problems, DL networks can use many data-driven methods to solve 3D reconstruction problems,
especially depth map-based point cloud representation. Therefore, LF imaging systems are used in
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many computer vision studies since only a small amount of post-processing can provide 3D depth and
shape information.

The research presents several critical innovations in the field of 3D reconstruction, including
developing a technique for obtaining a 3D point cloud derived from an LF image captured by an
LFM camera. Overall, it is a unique method for improving the accuracy of depth maps using a fully
convolutional neural network, effectively eliminating noise. In addition, a conversion process that
transforms enhanced depth maps into 3D point clouds contributes highly valuable to remote sensing
research.

2 Background of LFM and Related Work

2.1 Light Field Microscopy

A conventional optical microscope captures all rays by a single camera sensor from a specific point
of view on the sample without directional information. However, when an MLA is inserted into the
image plane of an LFM system, it captures a wide range of disparities. Primarily, the LFM system
includes a conventional microscope, an MLA, and an image sensor plane. Fig. 2 depicts a schematic
diagram of a comprehensive LFM system.

Figure 2: A graphical representation of the LFM system and image-capturing mechanism that utilizes
microlens arrays positioned in front of the camera sensor to capture EIA

A light beam is reflected through the objective and tube lenses from a specimen in the intermediate
image plane. From this plane, EIA is constructed in front of the camera lens (CL). Geometric analysis
is required to calculate the disparity between two elemental images (EI) using parallax information
that varies slightly between the images. The OVI is computed using EIA from disparity data. Based on
Eq. (1), the point (x, y, z) of an object is mapped to the EIA plane by the CL and the elemental lens
(EL).

XEI(i,j) = fMLAfC(i × ϕ − x) − fCi × ϕ(z − fMLA)

(g − fMLA)(z − fMLA)

YEI(i,j) = fMLAfC(j × ϕ − y) − fCj × ϕ(z − fMLA)

(g − fMLA)(z − fMLA)

(1)

Here, fC, and fMLA are the focal length of the camera lens, and the microlens array, respectively.
In this case, ϕ is the length of EL. The focal lengths for an objective and tube lens are fOL and fTL,
respectively. A distance of g separates the camera lens from the MLA. i and j indicate the positions of



2924 CSSE, 2023, vol.47, no.3

the lenses. Eq. (2) determines the disparity between the EL and CL.

�XI = fMLAfCϕ(i2 − i1)

(g − fMLA)(z − fMLA)

�YI = fMLAfCϕ(j2 − j1)

(g − fMLA)(z − fMLA)

(2)

2.2 Related Work

The point cloud stores the geometry of any 3D shape of any object, which is essential to 3D data
structures. There are several methods for obtaining a 3D point cloud. Currently, the 3D reconstruction
algorithm is divided into voxel [18,19], grid [20], and point cloud-based [21–23] approaches. There
are some limitations to the first two methods. For example, opacity and blurring of 3D geometric
calculations affect voxel expression. Grid-based reconstruction leads to uneven curve connections,
incorrect reconstruction of shapes, and sparse reconstruction. In contrast, a point cloud-based 3D
reconstruction is more efficient than the two methods mentioned above. Since point cloud models
have a simple data structure that is easily adaptable to training networks. Therefore, DL-based models
are considered for point cloud 3D models. To solve the above problems, Lin et al. [24] performed 2D
convolution operations to identify the most efficient and optimal network for the 3D reconstruction
of single images. A pseudo-rendered depth image was utilized for 2D projection optimization to learn
dense 3D shapes. In Yang et al. [25] analysis, the point cloud model was observed with the help of
distribution in two stages. The initial stage entails shaping, whereas the subsequent stage pertains
to the distribution of points. PointNet [26] and PointNet++ [27] are designed to learn effective
representations using equivariant set aggregation and pointwise multi-layer perceptions (MLPs).
However, this method does not adequately capture relations between points. PointConv [28] uses a
discrete convolutional-based architecture of deep CNN for addressing irregular and unordered point
clouds. According to this method, convolutional kernels are constructed on regular grids, with weights
related to offsets from the center point. DGCNN [29] designs an EdgeConv capable of extracting
features from local shapes of point clouds while maintaining invariance. Although this method is
efficient regarding synthetic data, it fails to work on real-world objects.

Gao et al. [30] presented for accurately estimating depth in (LF) images by calculating the
slope of EPIs through a directional relationship model and attention mechanism. The proposed
algorithm’s effectiveness is demonstrated through outperforming existing algorithms and its potential
for use in various LF-related applications, including 3D reconstruction, target detection, and tracking.
Luo et al. [31] suggested a CNN model to ascertain the disparity of every pixel, followed by obtaining
a group of EPI patches in an LF. Subpixel displacements and occlusions are the main objectives of this
method. Using a global constraint, the output of CNN is refined after post-processing. Shin et al. [32]
designed a multi-stream neural network that yields epipolar properties from four viewpoints. The
convolutional blocks comprise three blocks, each containing a ‘Conv-ReLU-Conv-BN-ReLU’ layer
for each branch. The subsequent algorithm branch implements eight more blocks of the same unit
layer. Finally, the network ends with a stage encompassing a ‘Conv-ReLU-Conv’ block.

3 Proposed Method for LFM Depth Estimation

The complete procedure comprises three stages: first, image-capturing using the LFM system, as
displayed in Fig. 2; second, depth estimation utilizing a deep learning network, and finally, generation
of a 3D point cloud from a depth map, as depicted in Fig. 3. EIA is created with MLA by providing a
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perspective view image. Since the EIA cannot be applied directly to a DL model, it must be generalized
as a dataset format. An OVI is then constructed based on the information yielded from the EIA,
including data concerning the directional view.

Figure 3: A schematic and workflow diagram of the overall process of 3D reconstruction using a deep
learning method

3.1 Dataset Acquisition

Training the network in the proposed model is done with a representative dataset. A synthesized
LF data frame is employed in the designed network to achieve the desired result. LF images are
significantly larger than traditional stereo images because of their higher angular resolution. The local
disparities were estimated with several conventional methodologies, including horizontal, vertical, and
diagonal viewpoint EPIs.

This experiment enacts images containing four distinct perspectives (horizontal, vertical, and
diagonal) to produce multi-orientation EPIs. A parametric network that can be adjusted according to
spatial dimensions is proposed for EPI cuboids with a measurement of 9 × height (h) × width (w) × 3
as input. It has been converted into a smaller size since EPI is 512 by 512. Data cuboids are used for
training, testing, and validating EPIs to speed up the training process. The height and width of each
cuboid are 32. While crafting the binary dataset, the stride of 13 is used to iterate through the initial
image data. As a result, each scene had a total of 38 × 38 = 1444 EPI cuboids. Each EPI cuboid is
stored as a piece of data in a binary file, as shown in Fig. 4. Then, each scene is trained and tested
using 1444 binary files.

Figure 4: The process of acquiring data for the proposed deep neural network
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3.2 Network Architecture

Fig. 5 illustrates the proposed CNN structure. The network consists of four branches as inputs to
the four branches, horizontal, vertical, and diagonal data cuboids are used. During the preprocessing,
two steps are involved. Initially, zero-mean normalization is applied in each batch to the training
dataset, indicating the differences in EPI lines and making the learning process faster for the network.
3D convolution with four-by-four padding is applied next to preserve the attribute map’s spatial
dimension. Each branch of the network includes four 3D convolution blocks with activation function
ReLU, padding VALID, and stride size 1. The initial two convolution blocks, followed by the third and
the fourth, generate 32, 32, 64, and 128 feature maps, respectively. A squeezing layer is then applied.
Following the concatenation of the four branches, a convolutional neural network is constructed to
become the next layer. After concatenating 3D-CNN, the U-net architecture adds five convolutional
blocks to process the data. The first two blocks of the U-net consist of ‘C-B-C-B-C’ operations. A max-
pooling layer follows each of these two blocks. Provided that early simulation outcomes indicated a
decrease in convergence speed with additional layers, two convolutional (‘C-C’) layers are appended
without activation function in the three subsequent blocks of the U-net. An up-sampling layer follows
each of these blocks. The first and last convolution blocks generate 64 feature maps, 128 feature maps
generated by the second and fourth blocks, and 256 feature maps generated by the third block. A ReLU
activation is performed on each convolutional block in the U-net. The final step is to add five more
2D convolutional layers at the tail end of the architecture, which lead to 32, 32, 16, 8, and 1 feature
maps and a squeezing layer, respectively, with the kernel 3 × 3 and the padding SAME.

Figure 5: An enhanced depth estimation network architecture

The parameters are trained for 1000 epochs with a learning rate of 1 × 10−4, and the learning
decay rate is adjusted by a factor of 0.8 every 50 epochs. Each epoch takes approximately 80–90 s to
complete. The total parameters and average runtime of the proposed model are 3,623,777 and 2.49 s
for the LFM dataset, respectively. After training, the output is processed using a dual iteration-based
weighted median filtering (WMF) method to remove internal noise while preserving pixel information
about the edge of the image. The WMF filter is a median filter, which replaces a pixel’s value with the
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median value of its neighbors. This results in a higher-quality depth estimation image, as shown in
Fig. 6.

Figure 6: The filter (WMF) reduces internal noise

3.3 3D Reconstruction Using Depth Map

The point cloud model is calculated by transforming the depth pixels from the depth image in
the 2D coordinate system to the 3D coordinate system (x, y, z). The model can be constructed by
interpolating a depth map, where the z factor of each point at (u, v) represents the point cloud data.
The 2D color image and the corresponding estimated depth image are stored in a matrix arrangement.
The final point cloud is computed using the following Eq. (3), where (u, v) denotes the depth value at
the row u and column v.

x = (u − cx) × z
fx

,

y = (v − cy) × z
fy

,

z = depth (u, v) ,

(3)

Here, the focal lengths are fx, fy, and the optical centers are cx, cy. Point clouds (Pxyz) can be
described as follows:

Pxyz = Pi(xi, yi, zi) (4)

where x, y, and z are the 3D coordinates, and i is the number of points.

3.4 Loss Function

Ground truth values are extremely accurate for performance evaluation and disparity measure-
ment in 4D light-field HCI benchmarks [33]. Mean absolute error is a robust loss function not affected
by outliers, making it suitable for tasks involving potentially extreme prediction errors. The mean
absolute error (MAE) [34] loss function is a commonly used regression loss function that measures
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the average absolute difference between the predicted values (p̂i) and the ground truth value (gi). It is
defined as follows:

LossMAE = 1
N

N∑

i=1

|p̂i − gi| (5)

Here, N is the number of errors, and i is the number of examinations.

4 Experiment and Discussion

The following section provides an overview of the datasets used for training and evaluation. The
evaluation matrix was then described in detail. The results are presented in both quantitative and
qualitative formats. Finally, the results are compared with state-of-the-art techniques.

4.1 Evaluation Metric

There are different methods available to assess the quality of a generated image by comparing it
to the original image.

4.1.1 Discrete Entropy

Discrete entropy (DE) [35] measures the uncertainty or randomness in a discrete random variable.
The randomness of the variable quantifies the amount of information generated by a random variable.
Therefore, better performance is represented by a higher score. A DE index is used as the quantitative
measure of the contrast improvement, which is calculated as follows:

DE = −
n∑

i=1

p (xi) × log2 p (xi) (6)

Here, the number of grayscales is identified by i, while the probability of each grayscale is
represented by p(xi).

4.1.2 Structural Similarity Index

The SSIM [36] is a method for measuring the structural similarity of two images. It is based on
the mean, standard deviation, and cross-covariance of the two images, and it is robust to changes in
lighting and contrast, making it a good measure of perceived image quality.

SSIM (x, y) = (2 ∗ μx ∗ μy + C1) ∗ (2 ∗ σxy + C2)

(μx2 + μy2 + C1) ∗ (σx2 + σy2 + C2)
(7)

where x and y are the two images being compared, μx and μy are the means of the two images, σx2

and σy2 are the variances of the two images, σxy is the covariance of the two images, C1 and C2 are
constants used to avoid instability.

4.1.3 Point Density

In a 3D reconstruction, point density [37] refers to the number of 3D points per unit area or
volume. The measurement is commonly expressed as points per unit volume (cubic unit). Points are
more evenly distributed when the point density is lower.

Point density =

n∑
i

Pi

Vt

(8)



CSSE, 2023, vol.47, no.3 2929

In this case, Pi refers to the total number of points on the object’s surface, while Vt refers to the
total volume of the region.

4.2 Datasets

Comparative evaluations of methods to estimate disparity for light field images are often con-
ducted using the HCI benchmark [33]. Since no datasets exist for the LFM system, the proposed
network was trained on the HCI dataset comprising 24 scenes. The training set consisted of 15 scenes,
with four scenes used for validation and the remaining scenes reserved for testing. Blender is used to
render the benchmark LF images. There are a variety of materials, lighting conditions, and delicate
structures with complex occlusions in the scenes included in this dataset. Images are of resolution
512 × 512, with nine sub-aperture views in each direction. All scenes contain 8 bits of light field
data, camera parameters, and depth information. This benchmark is specifically designed to address
challenges that present difficulties in 3D models, such as depth estimation, occlusions of boundaries,
geometry structures, lack of smooth surfaces, background noise, and low-texture images.

A depth evaluation-based 3D reconstruction model is proposed utilizing the LFM data. The LFM
scene contains 53 by 53 directional-view images, with each view composed of 75 by 75 pixels. A region
of interest (ROI) is taken for each OVI, and 9 × 9 angular images are used to calculate the depth field
of each OVI. The generation of test data involves taking nine images at intervals of three images in
each direction, as shown in Fig. 7.

Figure 7: Generating test data from LF the microscopic specimen

4.3 Implementation Details

This study uses an optical system with infinity correction (Olympus SZX7 microscope, Olympus
Corporation, Tokyo, Japan) with a 1× magnification. It employs an array of 100 × 100 MLA with a
diameter of 2.4 mm and a focal length of 125 μm for LFM. An image is captured with a Sony α6000
camera with a sensor resolution of 6000 × 4000 pixels. LFM data can be captured at 4028 × 4028 pixels.
The optical setup is shown in Fig. 8.

The proposed model is being trained on a Windows 10 Pro 64-bit machine equipped with an Intel
Core i7-9800X 3.80 GHz processor, 128 GB of memory, and an NVIDIA GeForce RTX 2080 Ti GPU.
During the training and testing of this network, Python is used with the TensorFlow library. As shown
in Fig. 9, the training loss and validation graphs are plotted. The proposed model is being tested using
different size real-world LFM images.
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Figure 8: An optical system for capturing light field microscopic images

Figure 9: Training and validation loss of the proposed training model

4.4 Results Analysis

Different types of synthetic and real objects were used in this experiment. Using the HCI dataset,
disparity maps are estimated for synthetic data experiments. SSIM and mean squared errors (MSE)
values are used as a way of evaluating our method. An evaluation of SSIM values was performed



CSSE, 2023, vol.47, no.3 2931

compared with five state-of-the-art methods. In these cases, our method is compared with OACC-Net
[38], LLF-Net [39], MA-Net [40], LFatt-Net [41], and EPI-Net [32]. The quantitative evaluation results
are shown in Table 1. This table shows that our approach has an average result of approximately 2%,
4%, and 5% better than OACC-Net, MA-Net, and LFatt-Net, respectively. However, it is noteworthy
that it is around 42% better than EPI-Net and LLF-Net, indicating a significant improvement. As test
images, boxes, cotton, pillows, and pens images data are considered. A visual comparison between the
five methods and the proposed methods is shown in Fig. 10.

Table 1: A quantitative comparison of computed and ground truth data in the SSIM∗ index

Serial LF image OACC-Net [38] LLF-Net [39] MANET [40] LFatt-Net [41] EPI-Net [32] Proposed
method

1 Boxes 0.9272 0.1739 0.8813 0.8953 0.5691 0.9760
2 Cotton 0.9778 0.3018 0.9561 0.9453 0.5593 0.9806
3 Pillows 0.9911 0.4317 0.9712 0.9679 0.6295 0.9944
4 Pens 0.9695 0.4047 0.9792 0.9303 0.4316 0.9907
5 Average 0.9664 0.3287 0.9469 0.9347 0.5474 0.9854

Note: ∗Higher score represents better performance.

Figure 10: Visual results for LF depth images of four objects with ground truth disparity. (1st column)
RGB images and (2nd column) ground truth (GT) disparity. (3rd column) OACC-Net results. (4th
column) LLF-Net results. (5th column) MA-Net results. (6th column) LFatt-Net results. (7th column)
EPI-Net results. (8th column) Proposed method results. (9th column) Proposed method results of the
3D point cloud

Table 2 presents the MSE values for depth images of the HCI data. For the Boxes, Cotton, Pillows,
and Pens, the MSE values of depth map images by the proposed method are 6.46, 2.11, 15.21, and
21.91, respectively.
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Table 2: A quantitative evaluation of computed and ground truth data in the MSE∗ index

Serial LF image OACC-Net [38] LLF-Net [39] MANET [40] LFatt-Net [41] EPI-Net [32] Proposed
method

1 Boxes 213.65 12201.76 178.42 257.19 2538.65 6.46
2 Cotton 11.29 9257.37 136.59 121.94 1729.50 2.11
3 Pillows 92.70 3401.33 15.45 285.08 5748.09 15.21
4 Pens 76.91 10717.02 151.34 231.98 5732.67 21.91
5 Average 98.64 8894.37 120.45 224.05 3937.23 11.42

Note: ∗Lower score represents better performance.

We compare our LF depth estimation results with five existing algorithms for evaluation. In these
cases, OACC-Net, LLF-Net, MA-Net, LFatt-Net, and EPI-Net methods are assessed with a DE test.
Fig. 11 (1st column) illustrates the specimens. The DE index is used for enhanced depth quality since
real objects do not have ground truth values. Compared to existing methods, the DE formula showed
better contrast in the depth map. The DE values for the (a) integrated circuit (IC)-1, (b) IC-2, (c) Chip
[42], and (d) Micro Gear [43], are 8.38, 8.11, 8.84, and 8.19, respectively. In this case, the entropy values
of (4.99, 1.38, 6.23, and 4.84) are for the OACC-Net, (3.86, 3.36, 2.65, and 7.64) for the LLF-Net, (3.86,
4.95, 4.27, and 7.97) for the MA-Net, (6.68, 6.68, 6.83, and 6.43) for the LFatt-Net, and (7.07, 6.94,
7.19, and 7.12) for EPI-Net method, respectively as shown in Fig. 12. Compared to existing methods,
the proposed model-driven depth map calculation method produces a 3D representation that is clearer
and more accurate.

The reconstructed 3D point cloud models are depicted in Fig. 13, based on the predicted
depth map and point cloud interpolation. Table 3 presents the point cloud density values for 3D
reconstructed images. For the IC-1, IC-2, Chip, and Micro Gear, the point cloud density values of
reconstructed 3D images by the proposed method are 0.0066, 0.0005, 0.0002, and 0.0021, respectively.
The results demonstrate the accuracy of the suggested technique in replicating the depth images. As a
result, the proposed U-Net-based CNN outperformed previous deep-learning methods for the LFM
system.

The proposed application of the DL technique for enhancing the reconstruction of 3D point
clouds in LFM is promising. However, it has certain limitations. The proposed approach depends
on high-quality directional data. Despite this model showing excellent performance, its trainable
parameters are high, which makes training the network more challenging. Additionally, when con-
verting the EIA to OVI, the size of directional images reduces. Furthermore, the proposed method’s
computational cost and number of training parameters are high, particularly when handling large
datasets.
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Figure 11: Visual results for the central view of four LFM depth images, from top to bottom:
(a) integrated circuit (IC)-1 (1 mm), (b) IC-2 (2 mm), (c) chip (5 mm), and (d) micro gear (3 mm)

Figure 12: Quantitative comparison of LFM depth map computation using discrete entropy index
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Figure 13: Proposed three-dimensional depth map and reconstructed point cloud 3D images

Table 3: Comparison of computed 3D data using point cloud density index∗

Serial LFM image OACC-Net [38] LLF-Net [39] MA-Net [40] LFatt-Net [41] EPI-Net [32] Proposed
method

(a) IC-1 0.5278 0.0112 0.7600 0.0098 0.0086 0.0066
(b) IC-2 19.0000 0.0501 0.0365 0.0014 0.0018 0.0005
(c) Chip 0.16960 0.1803 0.7600 0.0066 0.0008 0.0002
(d) Micro gear 1.9000 0.0076 0.0192 0.0251 0.0175 0.0021

Note: ∗Lower score represents better performance.

5 Conclusion

The paper introduces a new approach for 3D point cloud reconstruction using LFM image data
that leverages the DL technique. The proposed method employs a fully convolutional neural network
to extract and utilize geometry structure and edge information from the LFM images. A 3D point
cloud reconstruction method based on DL can overcome the limitations of traditional methods, such
as low resolution, noise sensitivity, and occlusions. The data for this method is collected using a camera
sensor and a lens array in combination with a 2D optical microscope and then processed to generate an
OVI using a pixel mapping algorithm. The directional LF image is collected from the ROI to overcome
the inconsistency of brightness. The proposed network extracts the depth map using the collected LFM
data and U-Net-based CNN. After that, the proposed method uses a dual iteration-based weighted
median filtering approach for depth map enhancement. Finally, a 3D reconstructed point cloud is
generated by interpolating a depth map. This technique performs better than existing algorithms.
Furthermore, the article compares the effectiveness of the proposed algorithm with well-established
DL algorithms for evaluation purposes. Despite this, further research is required to address issues such
as insufficient annotated training and test dataset. Our future work in this area will focus on developing
robust methods for solving existing drawbacks and datasets using deep-learning techniques.
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