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ABSTRACT

Object Detection is the task of localization and classification of objects in a video or image. In recent times,
because of its widespread applications, it has obtained more importance. In the modern world, waste pollution
is one significant environmental problem. The prominence of recycling is known very well for both ecological and
economic reasons, and the industry needs higher efficiency. Waste object detection utilizing deep learning (DL)
involves training a machine-learning method to classify and detect various types of waste in videos or images.
This technology is utilized for several purposes recycling and sorting waste, enhancing waste management and
reducing environmental pollution. Recent studies of automatic waste detection are difficult to compare because of
the need for benchmarks and broadly accepted standards concerning the employed data and metrics. Therefore, this
study designs an Entropy-based Feature Fusion using Deep Learning for Waste Object Detection and Classification
(EFFDL-WODC) algorithm. The presented EFFDL-WODC system inherits the concepts of feature fusion and
DL techniques for the effectual recognition and classification of various kinds of waste objects. In the presented
EFFDL-WODC system, two major procedures can be contained, such as waste object detection and waste object
classification. For object detection, the EFFDL-WODC technique uses a YOLOV7 object detector with a fusion-
based backbone network. In addition, entropy feature fusion-based models such as VGG-16, SqueezeNet, and
NASNet models are used. Finally, the EFFDL-WODC technique uses a graph convolutional network (GCN) model
performed for the classification of detected waste objects. The performance validation of the EFFDL-WODC
approach was validated on the benchmark database. The comprehensive comparative results demonstrated the
improved performance of the EFFDL-WODC technique over recent approaches.
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1 Introduction

Object detection is an easy task for humans. Children can start identifying typical objects, but
teaching them to use the computer has been a challenging task for the past few years [1]. It identifies
and localizes each instance of an object (like street signs, cars, persons, etc.,) within the field of view.
Object detection aims at identifying the object in the images [2]. Object detection intends to identify
each sample of the predefined classes and deliver its coarse localization in images by axis-aligned
boxes [3]. It is seen as a supervised learning issue. Modern object detection methods have access to
large labelled images for training and were assessed on different canonical benchmarks. Likewise,
other tasks like motion prediction, classification, scene understanding, segmentation, etc. [4]. Were the
basic issues in computer vision. Initial object detection techniques were constructed as an ensemble
of handcrafted feature extractors like Histogram of Oriented Gradients (HOG), Viola-Jones detector,
etc. Such techniques are inaccurate, slow, and poorly performed on unknown datasets [5].

Conversely, pollution relevant to solid waste mismanagement becomes a global concern [6]. In
the past, the enormous production of disposable goods has led to a significant rise in waste; the
European household waste report stated that 5.2 tonnes of waste are produced per inhabitant [7].
Also, by the year 2050, the World Bank predicts that it may exceed 3 billion tons per annum. These
principles detail that various kinds of litter were dispersed freely in environments. Plastic waste is a
main concern since it presents long-term environmental harm [8]. To prevent environmental pollution
and, consequently, protect wild organisms and human life, immediate measures are necessary to enable
wise segregation and collection of garbage. Machine learning (ML) is one way to support waste sorting
[9]. Recently ML-related systems that can support sorting processes have been applied, hastening this
procedure a result. After the success of implementing deep convolutional neural networks (DCNN) for
image classification, object detection reached significant progress depending on deep learning (DL)
methods [10]. The new DL-based techniques outperformed the conventional detection techniques by
huge margins. Deep CNN is a biologically inspired structure for calculating hierarchical features.

This study designs an Entropy-based Feature Fusion using Deep Learning for Waste Object
Detection and Classification (EFFDL-WODC) model. In the presented EFFDL-WODC system, two
major procedures can be involved, such as waste object detection and waste object classification. For
object detection, the EFFDL-WODC technique uses a YOLOV7 object detector with a fusion-based
backbone network. In addition, entropy feature fusion-based models such as VGG-16, SqueezeNet,
and NASNet models are used. Finally, the EFFDL-WODC technique uses a graph convolutional
network (GCN) model executed for the classification of detected waste objects. The performance
validation of the EFFDL-WODC algorithm was validated on the benchmark dataset.

2 Literature Review

Majchrowska et al. [11] introduced an innovative benchmark dataset to classify waste and detect
waste were merged collections from the aforementioned open-source dataset with unified annotations
that cover almost every waste category: non-recyclable, bio, plastic and metal, other, glass, paper, and
unknown. Eventually, presented a 2-stage detector for classification and litter localization. To catego-
rize the detected waste into 7 categories, EfficientDet-D2 was utilized for localizing EfficientNet-B2
and litter. In [12], a smart waste management system was developed using TensorFlow and LoRa
communication protocol-related DL method. This object detection technique was trained with waste
images to make frozen inference graphs utilized for detecting an object that is done using cameras.
Rahman et al. [13] introduced a method that presents an astute way to sort indigestible and digestible
waste utilizing a CNN, a common DL paradigm.
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In [14], devised ABRM-MGWODL approach targets to efficiently categorize and identify the
waste materials to allow effective biomass recycling. The projected system follows 2 major procedures
it can be waste object classification and waste object detection. The YOLOv4 approach was utilized
in this study for the waste object detection and recognition procedure. Then, to classify recognized
waste materials, the GCN approach was utilized. Lastly, with the modified grey wolf optimization
approach, hyperparameter tuning of the GCN method was executed effectually, thereby enhancing
the method’s classifier outcome. Melinte et al. [15] presented a study to enrich the performance of
CNN object detectors used to identify municipal wastes. To gain a precise and fast CNN structure,
many kinds of Regional Proposal Networks (RPN) and Single Shot Detectors (SSD) were fine-tuned
on the TrashNet database.

Niu et al. [16] modelled an innovative DL technique for solid waste mapping in higher resolution
images. By incorporating a Swin-Transformer and a multi-scale dilated CNN, both global and local
features have been aggregated. Reference [17] introduced a custom-built test rig to simulate real waste-
gathered trucks that might be utilized to build the datasets and test different sensors. For the classifier
task, CNNs were trained to 100% achieve accuracy.

3 The Proposed Model

In this article, we have presented a novel EFFDL-WODC technique for accurate and automated
detection and classification of waste objects. The projected EFFDL-WODC technique inherits the
concepts of feature fusion and DL approaches for the effectual recognition and classification of
various kinds of waste objects. In the projected EFFDL-WODC system, two major procedures can be
contained, such as YOLOv7-based waste object detection and GCN-based waste object classification.
Fig. 1 illustrates the workflow of the EFFDL-WODC system.

3.1 Object Detector: YOLO-v7 Model

In the presented EFFDL-WODC technique, the YOLO-v7 object detector is used in this study.
YOLOvV7 recommends a re-parameterized convolution that contained concatenation or residual
connections [18]; its RepConv could not take the same connection. RepConvN, which does not
have any identity connections, serves as a proper replacement for it under this condition. Within
the single convolution layer, RepConv exploits a fusion of identity connections, 3 x 3, and 1 x 1
convolutions. To design the structure of re-parameterized convolutional, the author applied RepConv
without identity connections (RepConvN) after carrying out the study on the fusion of RepConv with
several structures and the resultant efficiency of individual combinations. Based on the outcomes of
the research work, it must not be some identity connection if the convolution layer, which comprises
residual or concatenation, can be exchanged by re-parameterized convolutional. According to the
structural diagram, the YOLOV7 network can be broken down into 3 various elements such as input,
backbone, and head networks. The length and width of the mapping feature can be continually cut
in half by Conv, BatchNorm and a SiLU (CBS) composite element, the efficient layer aggregation
network (ELAN), and MP elements. Simultaneously, the count of output channels can be increased,
equivalent to twice the count of input channels. The CBS combined element applied the convolutional
+ BN + activation function on the input mapping feature. It is proposed that utilize the ELAN
element. At last, the output in the ELAN element takes twice as several channels as input. Afterwards,
in the 1st convolutional, the breadth and length of the mapping feature can be cut in half by the lower
branch, but the kernel size and stride can be improved by 1 and 2, correspondingly. The 2 levels of
trees can be combined as one.
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Figure 1: Workflow of EFFDL-WODC approach

Most explanation programs’ output it is determining in the YOLO design that generates a single
text document with annotation for every image. All the text files have annotations containing a
bounding box called “BBox” for every graphical element which are demonstrated in the image. The
scale of annotations is changed to it can be proportional to images, and its values differ from 0 in
every system up to 1. Eqgs. (1)—(6) is assisted as the basis for the adjustment method utilized in the
computation utilizing the YOLO format.
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h= @, —y) xdh (6)

H signifies the height of images, dh denotes the absolute height of images, ¥ implies the width of
images, and dw stands for the absolute width of pictures.

Algorithm 1: Pseudocode of YOLO
model = YOLOV7() // Initialize the YOLOV7 model
model.load_weights(“YOLOv7.weights”) // Load the pre-trained weights
image = load_image(“test.jpg”)
detections = model.detect(image)
for detection in detections:

class_label = detection.class_label

confidence = detection.confidence

Xxmin, ymin, xmax, ymax = detection.bbox

draw_bbox(image, xmin, ymin, xmax, ymax, class_label, confidence)
display_image(image)

3.2 Backbone Network: Feature Fusion-Based DL Model

In the backbone network of the YOLO-v7 model, the entropy-based feature fusion process
is employed. Entropy-based feature fusion is a method used in ML to fuse features from various
sources or models. The objective of feature fusion is to greater the robustness and accuracy of the
method through additional data from various sources. In the entropy-based feature fusion method,
the extracted feature from the models is estimated based on their entropy, a measure of the sum
of randomness or uncertainty in the feature set. The feature with the lowest entropy contains
more predictable and structured information, whereas the feature with high entropy contains more
unpredictable or random data. The entropy of all the feature sets is evaluated, and the value is
normalized to guarantee that they are on a similar scale. Then, the normalized entropy value is
weighted dependent on the importance and summed to construct the weighted entropy value. The
feature set with the lower weighted entropy value is selected as the combined feature set and utilized
as input to the last model for the classification model. The sum of weights is equal to 1, (i.e., weightl
+ weight2 + weight3 = 1).

3.2.1 VGG-16 Model

VGG16 network is the first model applied for extracting feature sequences from the image. The
structure of the convolution layer is similar to the VGG16 model [19], but a further block with 2
convolution and max pooling layers is used for downsampling the height of feature maps to 1 and
extracting additional abstract features. To downsample the feature map, all the convolutional layers are
followed by the Maxpooling layer. The typical VGG16 model exploits 2 x 2 max pooling through the
entire network and 3 x 3 kernels in the convolution layer. VGG16 is a successive feature extraction that
exploits a stack of max pooling and convolution layers for extracting the feature from the topmost layer
to the bottommost layer. As mentioned before, the maximum depth of the VGG16 model degrades
the network performance while it is training and causes the problem of disappearing gradients. This
is because carrying out repetitive multiplication on the gradient makes their values very smaller while
back propagated to the initial layer. To overcome these problems, a novel VGG16 model is developed,
which integrates shortcut connections. The difference between the structure of convolution layers of
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the VGG16 and the new VGG16 model with shortcut connection. The output feature vector of typical
VGG16 architecture was determined as follows:

o=f(x, W) (7

From the expression, W indicates the weight parameter of the learned feature, and x denotes the
input vector of the earlier layer. /" refers to the mapping function that learns the better value of W
and maps x into o. Furthermore, x is added afterwards to the f function. Therefore, in the presented
VGG16 model, the output feature vector o can be formulated as follows:

o=Fx,{Wi})+x 3)

In the above equation, x; indicates the resultant feature vector of the initial convolution layer at
[-th blocks, and W, denotes the weight parameter of i-t4 convolutional layers.

3.2.2 SqueezeNet Model

The SqueezeNet model function as a feature extracted and allows the input image to progress
forward; it still attains a layer which is previously set (extraction feature layer) [20]. The procedure ends
now, with the final layer output applied as a feature. The SqueezeNet of pretrained CNN-DL can be
utilized. The SqueezeNet aims to construct a small NN with any parameters that are appropriate to
computer memory and is very simply transferred through a computer network. The key component of
SqueezeNet is named the fire module. A fire module includes the convolutional layer with “squeeze”
and “expand” layers. Firstly, the input images are passed through an individual convolution layer
termed “convl”. A squeeze convolution layer has a single filter and is provided as an expanded layer
that contains a fusion of 1 x 1 and 3 x 3 convolutions that capture spatial data (feature extraction)
at different scales. This layer and eight “fire modules” are totalled “fire2” via “fire9”. Afterwards, in
layers fire4, convl, conv10, and fire§, max-pooling is implemented with the stride of 2. A dropout
layer is added later in the Fire9 model to decrease over-fitting.

Algorithm 2: Pseudocode of entropy-based feature fusion process
Input: Initialization of DL

modell = VGG-16()

model2 = SqueezeNet()

model3 = NASNet()

input_data = load_data(“input_data.csv”)

featuresl = VGG-16.extract_features(input_data)

features2 = SqueezeNet.extract_features(input_data)

features3 = NASNet.extract_features(input_data)

compute entropyl = calculate_entropy(featuresl)

compute entropy2 = calculate_entropy(features2)

compute entropy3 = calculate_entropy(features3)

# Normalize the entropy values

entropyl_norm = normalize(entropyl)

entropy2_norm = normalize(entropy?2)

entropy3_norm = normalize(entropy3)

weighted_sum = (entropyl_norm x weightl) + (entropy2_norm % weight2) + (entropy3_norm
weight3)

if weighted_sum == min(weighted_sum):

(Continued)
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Algorithm 2 (Continued)

fused_features = featuresl + features2 + features3
else

fused_features = featuresl — features2 — features3
output_data = process_data(fused_features)
Output: Fused features

3.2.3 NASNet Model

NASNet (Neural Architecture Search Network) is a family of DNNs that was proposed by a
reinforcement learning method to find an optimum NN structure [21]. The objective of NASNet
is to automatically design NN architecture that performs better than human-designed architecture.
NASNet has two building blocks: a search algorithm and a search space. The search space determines
the set of potential NN architecture, and the search algorithm examines this space to search for a
better structure. The search space in NASNet can be determined by the key components, a small NN
module merged to form large architecture. These key components are intended to be both efficient and
flexible, allowing them to be fused in many dissimilar ways to construct a broad range of structures.
The search algorithm in NASNet exploits an RL method, where a NN agent is trained to construct new
architecture and estimate their performance. The agent learns to explore the search space by producing
new architecture that is the same as before. The agent is trained by a reward signal that is based on the
performance of all the architectures.

3.3 Object Classification: GCN Model

For the automated classification of detected objects, the GCN model is exploited in this work. A
typical CNN utilizes convolutional functions on a (multi-dimensional) array(s) containing a spatial
meaning [22]. The CNN can be generally utilized to classifier drives like image recognition, while the
images are realized as matrices from the Euclidean space. CNNs are demonstrated great efficiency in
signal processing and visual analytics because of their innate ability to manage these types of structures,
extracting meaningful features shared with data and utilized in various studies. Fig. 2 represents the
framework of GCN. Afterwards, classification of appropriate functions and/or data transformation.
During this case, the purpose of GCN is to offer a representation of nodes utilizing similar node
features, among them the neighbour’s node features. The outcome of the GCN technique is usually
calculated as:

Y = AXW )

Whereas X denotes the input data (that is, the water demand), the term Y signifies the output, but
W defines the matrix o with model parameters. Additionally, 4 represents the normalization adjacent
matrix that is expressed as:

A= (D"AD™") (10)

With 4 = A + I, and whereas A4 represents the adjacent matrix relying on the graph but the
connects signifies the correlation among the various time series, / denotes the identity matrix, and D
represents the diagonal degree matrix of 4.
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4 Performance Validation

The proposed model is simulated using Python 3.6.5 tool on PC 15-8600k, GeForce 1050Ti 4 GB,
16 GBRAM, 250 GB SSD and 1 TB HDD. The parameter settings are given as follows: learning rate:
0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU.

In this section, the waste object detection and classification performance of the EFFDL-WODC
technique is examined on a database in the Kaggle repository [23], comprising 2467 instances with
6 class labels as represented in Table 1. Fig. 3 represents the sample images. Fig. 4 demonstrates the

sample visualization outcomes.

The confusion matrices of the EFFDL-WODC algorithm are represented in Fig. 5. The outcomes
imply that the EFFDL-WODC technique identifies six types of objects proficiently.

Table 1: Details of the database

Class No. of instances
Cardboard 393

Glass 491

Metal 400

Paper 584

Plastic 472

Trash 127

Total no. of instances 2467
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Figure 3: Sample images (cardboard, glass, metal, paper, plastic, trash)

Figure 4: (Continued)

Irash: 100% Plastic: 100%,
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Metal: 100%

Figure 4: Sample visualization results
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Figure 5: Confusion matrices of EFFDL-WODC system (a) Epoch500, (b) Epoch1000, (¢) Epoch1500,
and (d) Epoch2000
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In Table 2, an overall classifier outcome of the EFFDL-WODC technique with different epochs
is given. The results imply the effectual results of the EFFDL-WODC technique under each epoch.
For instance, with 500 epochs, the EFFDL-WODC technique gains accu, of 98.70%, prec, of 95.94%,
reca; of 94.87%, F,.,. of 95.37%, and AUC,,,,. of 97.03%. Meanwhile, with 1000 epochs, the EFFDL-
WODC system gains accu, of 99.30%, prec, of 97.72%, reca, of 97.08%, F,,,. of 97.39%, and AUC,,,.
of 98.33%. Concurrently, with 1500 epochs, the EFFDL-WODC approach reaches accu, of 99.49%,
prec, of 98.25%, reca, of 97.84%, F,,,. of 98.04%, and AUC,,,. of 98.76%. At last, with 2000 epochs,
the EFFDL-WODC methodology attains accu, of 99.34%, prec, of 97.88%, reca, of 97.05%, F,,,. of
97.44%, and AUC,,,,. of 98.32%.

Table 2: Classification outcome of EFFDL-WODC approach with varying epochs

Class Accu, Prec, Reca, Foone AUCg,.,,.
Epoch—500
Cardboard 98.62 96.38 94.91 95.64 97.12
Glass 98.74 96.00 97.76 96.87 98.37
Metal 98.62 95.07 96.50 95.78 97.77
Paper 98.42 95.95 97.43 96.69 98.08
Plastic 98.74 97.42 95.97 96.69 97.69
Trash 99.07 94.83 86.61 90.53 93.18
Average 98.70 95.94 94.87 95.37 97.03
Epoch—1000
Cardboard 99.23 97.95 97.20 97.57 98.41
Glass 99.43 98.57 98.57 98.57 99.11
Metal 99.31 97.28 98.50 97.89 98.98
Paper 99.03 97.95 97.95 97.95 98.65
Plastic 99.39 97.90 98.94 98.42 99.22
Trash 99.39 96.67 91.34 93.93 95.58
Average 99.30 97.72 97.08 97.39 98.33
Epoch—1500
Cardboard 99.47 98.97 97.71 98.34 98.76
Glass 99.68 99.39 98.98 99.18 99.41
Metal 99.39 97.77 98.50 98.13 99.03
Paper 99.27 98.13 98.80 98.46 99.11
Plastic 99.59 98.53 99.36 98.95 99.51
Trash 99.51 96.75 93.70 95.20 96.76
Average 99.49 98.25 97.84 98.04 98.76
Epoch—2000
Cardboard 99.27 98.70 96.69 97.69 98.23
Glass 99.55 99.38 98.37 98.87 99.11
Metal 99.31 97.28 98.50 97.89 98.98
Paper 99.03 97.14 98.80 97.96 98.95
Plastic 99.51 98.12 99.36 98.74 99.46

(Continued)
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Table 2 (continued)

Class Accu, Prec, Reca, F,.. AUCs,,,.
Trash 99.35 96.64 90.55 93.50 95.19
Average 99.34 97.88 97.05 97.44 98.32

Fig. 6 scrutinizes the accuracy of the EFFDL-WODC approach during the training and validation
process on varying epochs. The figure notifies that the EFFDL-WODC technique gains maximal
accuracy values over enhancing epochs. In addition, the higher validation accuracy over training
accuracy depicts that the EFFDL-WODC system learns efficiently on varying epochs.
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Figure 6: Accuracy curve of EFFDL-WODC approach (a) Epoch500, (b) Epoch1000, (c) Epoch1500,
and (d) Epoch2000
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The loss investigation of the EFFDL-WODC algorithm at the time of training and validation is
exhibited on varying epochs in Fig. 7. The outcomes stated that the EFFDL-WODC algorithm gains
closer values of training and validation loss. It can be inferred that the EFFDL-WODC method learns
efficiently on varying epochs.
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Figure 7: Loss curve of EFFDL-WODC approach (a) Epoch500, (b) Epoch1000, (c) Epoch1500, and
(d) Epoch2000

A brief precision-recall (PR) curve of the EFFDL-WODC system is established on varying epochs
in Fig. 8. The results state that the EFFDL-WODC approach results in maximal values of PR. Also,
the EFFDL-WODC methodology can obtain superior PR values in all classes.
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Figure 8: PR curve of EFFDL-WODC approach (a) Epoch500, (b) Epoch1000, (¢) Epoch1500, and
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A comprehensive comparative analysis of the EFFDL-WODC system with other DL techniques
is given in Table 3 [5]. The results depicted the ineffectual outcomes of the AlexNet model, whereas the
ResNet50 and VGG16 approaches have gained somewhat improvised results. Then, the MLH-CNN,
ARBM-MGWODL, and DLSODC-GWM techniques have portrayed considerable performance.
However, the EFFDL-WODC and technique shows maximum outcomes with accu, of 99.49%, prec,
of 98.25%, reca, of 97.84%, and F,,,,. of 98.04%. These results pointed out the enhanced classification
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Table 3: Comparative outcome of EFFDL-WODC methodology with other DL systems [5,14]

Methods Accu, Prec, Reca, Fopre
EFFDL-WODC 99.49 98.25 97.84 98.04
DLSODC-GWM 98.32 94.67 94.66 94.61
ABRM-MGWODL 99.01 96.85 96.81 96.82
MLH-CNN 92.37 90.81 91.36 90.78
AlexNet 52.59 4191 49.86 43.39
RestNet50 75.12 71.82 71.92 71.155
VGG16 73.13 68.76 68.39 68.06

In Fig. 9, a ROC study of the EFFDL-WODC approach is revealed on the test database. The
outcome stated that the EFFDL-WODC method led to improved ROC values. Besides, it can be clear
that the EFFDL-WODC algorithm can extend improved ROC values on all classes.

ROC-Curve

1.0

0.8

0.4+

True Positive Rate

—— Cardboard
Glass
Metal
Paper

—— Plastic

0.0 - Trash

0.2+

0.0 0.2 0.4 6.6 0.8 1.0

False Positive Rate

Figure 9: ROC curve of the EFFDL-WODC approach

5 Conclusion

In this study, we have presented a novel EFFDL-WODC system for accurate and automated
detection and classification of waste objects. The presented EFFDL-WODC technique inherits the
concepts of feature fusion and DL approaches for the effectual recognition and classification of various
kinds of waste objects. In the projected EFFDL-WODC system, two major procedures are contained,
such as YOLOv7-based waste object detection and GCN-based waste object classification. For
object detection, the EFFDL-WODC technique uses a YOLOV7 object detector with a fusion-based
backbone network. In addition, entropy feature fusion-based models such as VGG-16, SqueezeNet,
and NASNet models are used. Finally, the EFFDL-WODC technique uses a GCN model is carried
out for the classification of detected waste objects. The performance validation of the EFFDL-WODC
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system was validated on the benchmark dataset. The comprehensive comparison outcomes highlighted
the improved performance of the EFFDL-WODC technique over recent approaches.
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