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ABSTRACT

Attribute reduction, also known as feature selection, for decision information systems is one of the most pivotal
issues in machine learning and data mining. Approaches based on the rough set theory and some extensions were
proved to be efficient for dealing with the problem of attribute reduction. Unfortunately, the intuitionistic fuzzy sets
based methods have not received much interest, while these methods are well-known as a very powerful approach
to noisy decision tables, i.e., data tables with the low initial classification accuracy. Therefore, this paper provides a
novel incremental attribute reduction method to deal more effectively with noisy decision tables, especially for high-
dimensional ones. In particular, we define a new reduct and then design an original attribute reduction method
based on the distance measure between two intuitionistic fuzzy partitions. It should be noted that the intuitionistic
fuzzy partition distance is well-known as an effective measure to determine important attributes. More interestingly,
an incremental formula is also developed to quickly compute the intuitionistic fuzzy partition distance in case when
the decision table increases in the number of objects. This formula is then applied to construct an incremental
attribute reduction algorithm for handling such dynamic tables. Besides, some experiments are conducted on real
datasets to show that our method is far superior to the fuzzy rough set based methods in terms of the size of reduct
and the classification accuracy.
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1 Introduction

Attribute reduction has long been known as one of the pivotal problems in data preprocessing. The
purpose of attribute reduction is to select important attributes and remove redundant or unnecessary
ones from decision tables to enhance the efficiency of the classification models, especially for high
dimension data. Dubois and Prade applied the fuzzy rough set (FRS) theory to the problem of attribute
reduction for addressing directly with the original decision tables consisting of a numerical domain,
instead of discretized data. According to this approach, some researches have been published based
on fuzzy approximate space. Some typical methods comprise fuzzy membership function [1], fuzzy
positive region [2–4], fuzzy information entropy [5–8] and fuzzy distance [9].

In big data trend, the decision tables have often the high dimension and may be updated
regularly. The process of adding and removing objects is usually taking place. This problem has
brought many difficulties to the traditional attribute reduction approaches. Firstly, the algorithms
can meet an obstacle of processing speed and storage space on the high-dimensional decision tables.
Secondly, for updated decision tables, the algorithms must also compute the reduct on the entire
decision table again which makes to increase the computational time. To deal more effectively with
these issues, many researchers proposed some incremental computational techniques for finding the
reduct on the dynamic decision table. The incremental methods only update the subset of selected
attributes on the altered part of data without re-computing it on the whole decision table. Hence,
the processing time can be reduced significantly. Furthermore, with the high-dimensional decision
table, it is possible to split data into many parts and apply incremental attribute reduction algorithms.
Based on the FRS approach, the incremental algorithms are proposed for solving cases, including
addition and removal of the object set [10–14] or the attribute set [15]. Additionally, some researchers
extended the incremental algorithms to address incomplete dynamic decision tables. In particular,
Giang et al. constructed the tolerance rough set to design hybrid incremental algorithms when
supplementing and removing object sets [16]. Afterwards, Thang et al. also developed some formulas
for their incremental algorithms for two cases of adding and removing attribute sets [17]. However,
Hung et al. showed that the FRS based attribute reduction approach is less efficient in noisy data sets
with the low classification accuracy [18].

Recently, some researchers proposed new models using intuitionistic fuzzy sets (IFSs) to solve the
attribute selection problem. These models were designed to minimize the noisy information on the
decision tables by using a further non-membership function which can adjust noisy objects to give a
suitable classification [19]. For such noisy data sets, the IFS based attribute reduction algorithms have
often the better processing ability than algorithms using other approaches, such as rough sets or fuzzy
rough sets. From the IFSs approach, Tan et al. [20] constructed intuitionistic fuzzy conditional entropy
measures and proposed a heuristic algorithm for finding a relative reduct. Then, Thang et al. [21]
built a distance measure based on the IFS model. By using the constructed distance measure, they
proposed the IFDBAR algorithm in the filter approach to select a subset of important attributes.
The experimental results showed that IFDBAR achieved the superior classification ability to the FRS
approach on the noisy data sets, especially in case of the low initial classification accuracy.

It can be said that the intuitionistic fuzzy set is a very efficient approach for attribute reduction on
the noisy data sets. The subset of features selected from the IFS based algorithms can significantly
improve the classification performance of the machine learning models. As mentioned, however,
the IFS approach also exists a serious limitation that is the high computational time. Therefore,
the attribute reduction algorithms using this approach are often ineffective in dealing with high-
dimensional and large datasets. This motivated us to develop a novel incremental method for finding
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reducts more quickly and efficiently. Specifically, we present an original method to attribute reduction
based on intuitionistic fuzzy partition distance. Then we propose an incremental algorithm to extract
important attributes from the decision tables in case of the increase of the object number. In our
method, an incremental formula is given to fast calculate the intuitionistic fuzzy partition distance
on the decision tables when adding an object set. By theoretical and experimental results, we will
demonstrate that the proposed method can enhance the performance of the attribute reduction process
in comparing with some other state-of-the-art methods in terms of the computational time and
classification accuracy.

The paper is organized as follows. The next section will recall several basic concepts of intuition-
istic fuzzy sets and related properties. In Section 3, this paper shall define a new reduct based on the
intuitionistic fuzzy partition distance and then propose an effective attribute reduction method. This
paper will also provide an incremental algorithm for finding reducts on the dynamic decision tables.
Section 4 will present experimental results as well as some related analyses. In the last section of this
paper, we will draw several conclusions with future works.

2 Preliminary

This section will summarize some basic concepts of intuitionistic fuzzy sets which are an important
foundation for proposing an attribute reduction algorithm in the third part of the paper. These basic
concepts can be found in [21–23].

First, a decision table is a pair of DT = (U , C ∪ D), where U is a finite nonempty set of objects,
also known as the universe, C and D are finite nonempty sets of attributes such that each a ∈ C ∪ D
determines a map a : U → Va, where Va is the value set of a. Then, for u ∈ U and a ∈ C ∪ D, the value
of a for u is written as a(u). Here, we shall call C as condition attributes and D as decision attributes.

Without losing the comprehensive characteristics, hypothesis D only has one decision attribute
d (if D has many attributes, a transformation that can be reduced to an attribute). Accordingly, a
decision table can be written as DT = (U , C ∪ {d}).

Given a decision table DT = (U , C ∪ {d}), an intuitionistic fuzzy set (IFS) P on U has the form
P = {〈u, μP(u), ϑP(u)〉 |u ∈ U }, in which μP(u) : U → [0, 1] and ϑP(u) : U → [0, 1] are respectively the
membership and non-membership degrees of u in P such that 0 ≤ μP(u) + ϑP(u) ≤ 1, ∀u ∈ U [22].

The hesitant degree of u in P is determined by πP(u) = 1−μP(u)−ϑP(u). When πP(u) = 0 ∀u ∈ U ,
IFS becomes a traditional FS. The cardinality of P is denoted as |P| determined by the formula [23]:

|P| =
∑
u∈U

1 + μP(u) − ϑP(u)

2
(1)

Consider two IFSs P and Q on U , we will define several set operations to compare them as
follows:

1. P ⊆ Q iff μP(u) ≤ μP(u) and ϑP(u) ≥ ϑQ(u) for any u ∈ U .
2. P = Q iff P ⊆ Q and Q ⊆ P.
3. P ∩ Q = {(

u, min(μP(u), μQ(u)), max
(
ϑP(u), ϑQ(u)

))}
4. P ∪ Q = {(

u, max(μP(u), μQ(u)), min
(
ϑP(u), ϑQ(u)

))}
.

To facilitate the deployment of definitions and calculation formulas later, an IFS P will sometimes
be briefly represented by two components, membership and non-membership. Specifically, P =
{μP(u), ϑP(u)|u ∈ U}.
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Let U be the non-empty finite set of objects. An intuitionistic fuzzy binary relation R on U × U
is defined as follows:

R = {(u, v) , μR (u, v) , ϑR (u, v) | (u, v) ∈ U × U} (2)

where μR (u, v) ∈ [0, 1] and ϑR (u, v) ∈ [0, 1] are the similarity and diversity functions, respectively. The
pair (μR (u, v) , ϑR (u, v)) is called an intuitionistic fuzzy number between two objects u and v, which
satisfies 0 ≤ μR (u, v) + ϑR (u, v) ≤ 1.

Then, R is called an intuitionistic fuzzy equivalence relation (IFER) if R satisfies:

1) Reflexive: iff μR (u, u) = 1 and ϑR (u, u) = 0 hold for each u ∈ U .
2) Symmetric: iff μR (u, v) = μR (v, u) and ϑR (u, v) = ϑR (v, u) hold for each u, v ∈ U .
3) Transitive: iff μR (u, v) ≥ sup

t∈U

{min (μR (u, t) , μR (t, v))} ; ϑR (u, v) ≤ inf
t∈U

{max (ϑR (u, t) , ϑR (t, v))}
hold for each u, v ∈ U .

Given an IFER R on U , an attribute subset A ⊆ C and an object u ∈ U , the intuitionistic fuzzy
equivalence class (IFEC) of u according to R on A is denoted RA [u], as follows:

RA [u] = {(
v, μRA [u] (v) , ϑRA [u] (v)

) |v ∈ U
}

(3)

Consider DT = (U , C ∪ {d}), each A ⊆ C determines an IFER RA on U . The IFER RA

generates an intuitionistic fuzzy partition (IFP) on U , denoted as ψA, ψA = {RA [u] | u ∈ U} in
which RA [u] = {(

v, μRA [u] (v) , ϑRA [u] (v)
) |v ∈ U

}
is an IFEC of u according to RA. We can see that

each IFEC RA [u] is also an IFS on U . To simplify the denotation, for each object v, we denote
RA [u] (v) = (μA [u] (v) , ϑA [u] (v)).

For A, B ⊆ C, we have RA [u] = ∩a∈AR{a} [u] and RA∪B [u] = RA [u] ∩ RB [u]. This means that
RA∪B [u] (v) = (min {μA [u] (v) , μB [u] (v)} , max {ϑA [u] (v) , ϑB [u] (v)}) and ψA∪B = ψA ∩ ψB.

With A ⊆ C, there are two special cases:

- If RA [u] (v) = (0, 1) , u �= v and RA [u] (v) = (1, 0) where v ∈ U then |RA [u]| = 1, the IFP ψA is
assumed as the smoothest case and it is denoted by ψω.

- If RA [u] (v) = (1, 0) where v ∈ U then |RA [u]| = m, the IFP ψA is assumed as the most unsmooth
case and it is denoted by ψδ.

Suppose we are given two IFPs ψA and ψB. We say that ψA is finer than ψB, denoted ψA 
 ψB, if
for all u ∈ U , RA [u] ⊆ RB [u].

3 Attribute Reduction Methods

3.1 Attribute Reduction Based on IFPD

This paper will present in this section a new method for finding a reduct set based on the IFP
distance. The cardinal steps of the algorithm are structured as follows. Firstly, we introduce the
distance between two IFPs. Then, we define the reduct and the significance of the attribute. Finally,
we construct a heuristic algorithm based on the IFP measure.
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Given DT = (U , C ∪ {d}) with U = {u1, u2, . . . , um} and the intuitionistic fuzzy partitions ψA, ψB

generated by the intuitionistic fuzzy equivalence classes RA [ui], RB [ui], for all ui ∈ U and A, B ⊆
C, then

D (ψA, ψB) =
m∑

i=1

(|RA [ui] ∪ RB [ui]| − |RA [ui] ∩ RB [ui]|)
m2

(4)

is an intuitionistic fuzzy partition distance (IFPD) between ψA and ψB [21].

It is easy to see that the minimum value ofD (ψA, ψB) is equal to 0 when ψA = ψB and the maximum

value of D (ψA, ψB) reaches as
m − 1

m
if and only if ψA = ψδ and ψB = ψω (or ψA = ψω and ψB = ψδ).

Thus, we have 0 ≤ D (ψA, ψB) ≤ m − 1
m

.

Based on D (ψA, ψB), IFPD created by C and C ∪ {d} on U is computed by:

D
(
ψC, ψC∪{d}

) =
m∑

i=1

(|RC [ui]| − ∣∣RC [ui] ∩ R{d} [ui]
∣∣)

m2
(5)

Clearly, if B ⊆ C, then D
(
ψB, ψB∪{d}

) ≥ D
(
ψC, ψC∪{d}

)
. Hence, the intuitionistic fuzzy partition

distance satisfies the non-monotonous property with respect to the set of condition attributes. It
implies that the size of B is the inverse of the value of D

(
ψB, ψB∪{d}

)
. Then, the greater the value of

D
(
ψB, ψB∪{d}

)
is, the smaller the size of B is. We can use the intuitionistic fuzzy partition distance as a

criterion for choosing attributes in the process of attribute reduction.

Definition 1. Let DT = (U , C ∪ {d}). A subset M ⊆ C is called a reduct of C if

1. D
(
ψM , ψM∪{d}

) = D
(
ψC, ψC∪{d}

)
,

2. ∀M ′ ⊂ M,D
(
ψM′ , ψM′∪{d}

)
> D

(
ψM , ψM∪{d}

)
.

This definition implies that for any b ∈ M, if D
(
ψM\{b}, ψM\{b}∪{d}

) �= D
(
PC,PC∪{d}

)
, then b is

indispensable in M. In contrast, b will be called a redundant attribute in M.

Definition 2. Let DT = (U , C ∪ {d}), M ⊆ C and b ∈ C/M. Then the significance measure of b
with respect to M, denoted SIGM (b), is determined by the formula:

SIGM (b) = D
(
ψM , ψM∪{d}

) − D
(
ψM∪{b}, ψM∪{b}∪{d}

)
(6)

It can be easily seen that SIGM (b) ≥ 0. Consider any attribute b ∈ C, its significance for an
attribute subset characterizes the classification quality of b. We can see the alteration of the certainty
degree. If the value of SIGM (b) is higher, then the attribute b will be more essential. This measure
can be considered as a criterion for selecting the necessary attributes. Based on this definition, we
design an effective algorithm to extract an optimal attribute subset from a given decision table. The
algorithm begins with an empty set and supplements one attribute with the highest significance into the
selected feature subset at each iteration until the condition stops happening. In particular, our attribute
reduction method, denoted as Algorithm 1, is designed as illustrated below, and its flowchart can be
found in Fig. 1.
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Algorithm 1: Attribute reduction based on the IFPD (ARIFPD)
Input: Decision Table DT = (U , C ∪ {d})
Output: Approximation reduct M
1. M : = ∅,D

(
ψM , ψM∪{d}

) = 1
2. Calculate D

(
ψC, ψC∪{d}

)
using (5)

3. While D
(
ψM , ψM∪{d}

)
> D

(
ψC, ψC∪{d}

)
do:

4. For each b ∈ C\M do:
5. Compute D

(
ψM∪{b}, ψM∪{b}∪{d}

)
6. End
7. Select b0 which satisfies SIGM (b0) = max

b∈C\M
{SIGM (b)}

8. M : = M ∪ {b0}
9. End
10. Return M

Figure 1: Flowchart of Algorithm 1

We now examine the computational complexity of ARIFPD. Suppose that |C| , |U| are the number
of condition attributes and instances on the decision table, respectively. It is clear that IFP ψC can be
determined inO

(|C| ∗ |U|2
)

time. Hence, the computational complexity of calculatingD
(
ψC, ψC∪{d}

)
in

line 2 is O
(|C| ∗ |U|2

)
. Besides, it can be easily seen that the computational cost of D

(
ψM∪{b}, ψM∪{b}∪{d}

)
is O

(|U|2
)
, and SIGM (b) in line 7 is calculated in O

(|U|2
)

time. Thus, the computational time of the
For loop from line 4 to line 6 is O

(|C| ∗ |U|2
)

and the computational time of the loop While from line
3 to line 9 is O

(|C|2 ∗ |U|2
)
. Summary, ARIFPD has the time complexity to be O

(|C|2 ∗ |U|2
)
.

3.2 Incremental Attribute Reduction Algorithm

We will propose this section an incremental algorithm using IFPD when supplementing a new
object set into a given decision table. We now begin with providing a formula to quickly calculate
IFPD after supplementing an object set which is extended in [21].
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Proposition 1. Given DT = (U , C ∪ {d}) with U = {u1, u2, . . . , um}, intuitionistic fuzzy equivalence
relations RC, R{d} and a new object set ΔU = {um+1, um+2, . . . , um+s}, s ≥ 1, the IFPD between ψC and
ψC∪{d} on U ∪ ΔU is determined by:

DU∪ΔU

(
ψC, ψC∪{d}

) = m2 ∗ DU

(
ψC, ψC∪{d}

)
(m + s)2 + 2 ∗

s∑
i=1

(|RC [um+i]| − ∣∣RC [um+i] ∩ R{d} [um+i]
∣∣ − ζi

)
(m + s)2 (7)

where ζ1 = 0 and for i ≥ 2, ζi = 1
2

s−1∑
j=i

(
μC [um+i]

(
um+j+1

)−min
{
μC [um+i]

(
um+j+1

)
, μ{d} [um+i]

(
um+j+1

)}
−ϑC [um+i]

(
um+j+1

)+max
{
ϑC [um+i]

(
um+j+1

)
, ϑ{d}

[
um+j

] (
um+j+1

)})
Proof:

It is easy to see that if s = 1, we have:

DU∪ΔU

(
ψC, ψC∪{d}

) = m2 ∗ DU

(
ψC, ψC∪{d}

)
(m + s)2 + 2 ∗

s∑
i=1

(|RC [um+i]| − ∣∣RC [um+i] ∩ R{d} [um+i]
∣∣)

(m + s)2

To simplify for the proof of this proposition, we will set:

ζij = 1
2

(
μC [ui]

(
uj

) − min
{
μC [ui]

(
uj

)
, μ{d} [ui]

(
uj

)} − ϑC [ui]
(
uj

) + max
{
ϑC [ui]

(
uj

)
, ϑ{d} [ui]

(
uj

)})
Since U is added s objects, the formula in (5) becomes:

DU∪ΔU

(
ψC, ψC∪{d}

) =

m+s∑
i=1

(|RC [ui]| − ∣∣RC [ui] ∩ R{d} [ui]
∣∣)

(m + s)2

= 1

(m + s)2

(
m+s∑
i=1

(ζ1i) + . . . +
m+s∑
i=1

(ζmi) +
s∑

i=1

(|RC [um+i]| − ∣∣RC [um+i] ∩ R{d} [um+i]
∣∣))

= 1

(m + s)2

⎛
⎜⎜⎜⎜⎝

m∑
i=1

(ζ1i) + . . . +
m∑

i=1

(ζm i) +
s∑

i=1

(ζ1m+i) + . . . +
s∑

i=1

(ζm m+i) +
s∑

i=1

(ζm+1m+i) + . . .

+
s∑

i=1

(ζm+s m+i) −
(

s∑
i=1

(ζm+1m+i) + . . . +
s∑

i=1

(ζm+s m+i)

)
+

s∑
i=1

(|RC [um+i]|
− ∣∣RC [um+i] ∩ R{d} [um+i]

∣∣)

⎞
⎟⎟⎟⎟⎠

We have
s∑

i=1

(ζ1m+i)+. . .+
s∑

i=1

(ζm m+i)+
s∑

i=1

(ζm+1m+i)+. . .+
s∑

i=1

(ζm+s m+i)=
s∑

i=1

(|RC [um+i]|−
∣∣RC [um+i] ∩ R{d} [um+i]

∣∣),

m∑
i=1

(ζ1i)+. . .+
m∑

i=1

(ζmi)=m2 ∗ DU

(
ψC, ψC∪{d}

)
,
(

s∑
i=1

(ζm+1m+i) + . . . +
s∑

i=1

(ζm+s m+i)

)
=

s∑
i=1

s∑
j=1

(
ζm+i m+j

)
,

thus DU∪ΔU

(
ψC, ψC∪{d}

)= 1

(m + s)2

⎛
⎜⎜⎝

m2 ∗ DU

(
ψC, ψC∪{d}

)+2 ∗
s∑

i=1

(|RC [um+i]|−
∣∣RC [um+i] ∩ R{d} [um+i]

∣∣)
−

s∑
i=1

s∑
j=1

(
ζm+i m+j

)
⎞
⎟⎟⎠

Furthermore, ζii = 0 and ζij = ζji, we get
s∑

i=1

s∑
j=1

(
ζm+i m+j

) = 2
s∑

i=1

s−1∑
j=i

(
ζm+i m+j+1

) = 2
s∑

i=1

ζi.

Hence, DU∪ΔU

(
ψC, ψC∪{d}

) = m2 ∗ DU

(
ψC, ψC∪{d}

)
(m + s)2 + 2 ∗

s∑
i=1

(|RC [um+i]| − ∣∣RC [um+i] ∩ R{d} [um+i]
∣∣ − ζi

)
(m + s)2 .
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The formula (6) consists of two main components. The first component computes the distance of
two intuitionistic fuzzy partitions without adding the set of new objects. This component is already
determined from the previous stages. Therefore, the incremental formula provided in Proposition 1
allows us to only executes on the second component consisting of the intuitionistic fuzzy equivalence
classes generated by the additions of the new object set. From this formula, we will replace the
formula (5) to conduct on the decision table when supplementing new objects. Accordingly, the
algorithm will reduce the computational complexity and obtain a proximate reduct set.

Proposition 2. Let DT = (U , C ∪ {d}) with U = {u1, u2, . . . , um}. Suppose that M ⊆ C is a reduct
based on IFPD on U and ΔU = {um+1, um+2, . . . , um+s}, s ≥ 1, is an incremental object set. Then

1. If all objects in ΔU have the same value of decision attribute then

DU∪ΔU

(
ψC, ψC∪{d}

) = m2 ∗ DU

(
ψC, ψC∪{d}

)
(m + s)2 + 2 ∗

s∑
i=1

(|RC [um+i]| − ∣∣RC [um+i] ∩ R{d} [um+i]
∣∣)

(m + s)2

2. If RM [um+i] ⊆ R{d} [um+i] for i = 1, 2, . . . , s then DU∪ΔU

(
ψM , ψM∪{d}

) = DU∪ΔU

(
ψC, ψC∪{d}

)
Proof:

For any i = 1, 2, . . . , s and j = 1, 2, . . . , (s − 1), we consider:

1. If all objects in ΔU have the same value of decision attribute, then we have μ{d} [um+i]
(
um+j+1

) = 1
and ϑ{d}

[
um+j

] (
um+j+1

) = 0. Thus, min
{
μC [um+i]

(
um+j+1

)
, μ{d} [um+i]

(
um+j+1

)} = μC [um+i]
(
um+j+1

)
and max

{
ϑC [um+i]

(
um+j+1

)
, ϑ{d}

[
um+j

] (
um+j+1

)} = ϑC [um+i]
(
um+j+1

)
, from Proposition 1, the

formula in the first case is obtained.
2. If RM [um+i] ⊆ R{d} [um+i] then RC [um+i] ⊆ RM [um+i] ⊆ R{d} [um+i].

Hence
∣∣RM [um+i] ∩ R{d} [um+i]

∣∣ = |RM [um+i]| and
∣∣RC [um+i] ∩ R{d} [um+i]

∣∣ = |RC [um+i]|. Thus, we get
these equations |RM [um+i]| − ∣∣RM [um+i] ∩ R{d} [um+i]

∣∣ = 0 and |RC [um+i]| − ∣∣RC [um+i] ∩ R{d} [um+i]
∣∣ = 0.

More importantly,

min
{
μM [um+i]

(
um+j+1

)
, μ{d} [um+i]

(
um+j+1

)}=μM [um+i]
(
um+j+1

)
,

max
{
ϑM [um+i]

(
um+j+1

)
, ϑ{d}

[
um+j

] (
um+j+1

)} = ϑM [um+i]
(
um+j+1

)
,

min
{
μC [um+i]

(
um+j+1

)
, μ{d} [um+i]

(
um+j+1

)} = μC [um+i]
(
um+j+1

)
,

max
{
ϑC [um+i]

(
um+j+1

)
, ϑ{d}

[
um+j

] (
um+j+1

)} = ϑC [um+i]
(
um+j+1

)
.

Based on Proposition 1, we get:

DU∪ΔU

(
ψC, ψC∪{d}

) =
(

m
m + s

)2

DU

(
ψC, ψC∪{d}

)
and DU∪ΔU

(
ψM , ψM∪{d}

) =
(

m
m + s

)2

DU

(
ψM , ψM∪{d}

)
.

Because M is a reduct of C, from the definition 1, we obtain DU

(
ψM , ψM∪{d}

) = DU

(
ψC, ψC∪{d}

)
.

Thus DU∪ΔU

(
ψM , ψM∪{d}

) = DU∪ΔU

(
ψC, ψC∪{d}

)
. The proof is complete.

The result of Proposition 2 shown that the incremental algorithm for IFPD based Attribute
Reduction when Adding Objects (ARIFPD_AO) comprises four main steps as in Algorithm 2 and
its corresponding flowchart is visually represented in Fig. 2.
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Algorithm 2: Algorithm (ARIFPD_AO)
Input:
1. Decision Table DT = (U , C ∪ {d}) with U = {u1, u2, . . . , um}, an IFER R, the reduct M ⊆ C.
2. Intuitionistic fuzzy partitions ψM and ψC

3. Added set of objects ΔU = {um+1, um+2, . . . , um+s}
Output: The approximation reduct MU∪ΔU of DT ′ = (U ∪ ΔU , C ∪ {d})
// Initialization
1. MU∪ΔU := M
2. Compute intuitionistic fuzzy partitions on U ∪ ΔU : ψM , ψ{d}
// Check the added set of objects
3. Set S : = ΔU
4. For i = 1 to s do:
5. If RM [um+i] ⊆ R{d} [um+i] then S := S\ {um+i}
6. If S = ∅ then return MU∪ΔU // Approximation reduct does not change
7. Set ΔU : = S, s : = |ΔU| //Update the incremental object set.
// Finding the reduct
8. Compute original IFPDs: D

(
ψMU∪�U

, ψMU∪�U ∪{d}
)
, D

(
ψC, ψC∪{d}

)
9. Compute IFPDs using the incremental formula: DU∪ΔU

(
ψMU∪�U

, ψMU∪�U ∪{d}
)
, DU∪ΔU

(
ψC, ψC∪{d}

)
10. While DU∪ΔU

(
ψMU∪�U

, ψMU∪�U ∪{d}
)

> DU∪ΔU

(
ψC, ψC∪{d}

)
do:

11. For each b ∈ C\MU∪ΔU do:
12. Compute DU∪ΔU

(
ψMU∪�U ∪{b}, ψMU∪�U ∪{b}∪{d}

)
by using the incremental Formula (7)

13. Compute SIGMU∪�U (b) = DU∪ΔU

(
ψMU∪�U

, ψMU∪�U ∪{d}
) − DU∪ΔU

(
ψMU∪�U ∪{b}, ψMU∪�U ∪{b}∪{d}

)
14. End
15. Select b0which satisfies: SIGMU∪�U (b0) = Max

b∈C\MU∪�U

{
SIGMU∪�U (b)

}
16. MU∪�U := MU∪�U ∪ {b0}
// Remove redundant attributes
17. For each b ∈ MU∪ΔU do:
18. Compute DU∪ΔU

(
ψB\{b}, ψMU∪�U \{b}∪{d}

)
by using the incremental Formula (7)

19. If DU∪ΔU

(
ψMU∪�U \{b}, ψMU∪�U \{b}∪{d}

) = DU∪ΔU

(
ψMU∪�U

, ψMU∪�U ∪{d}
)

then MU∪ΔU := MU∪ΔU\ {b}
20. End
21. Return MU∪ΔU

We continue to evaluate the computational complexity of the algorithm ARIFPD_AO. We
use 3 symbols |C| , |U| and |ΔU| to denote the number of condition attributes, original instances,
and instances supplemented to the original set, respectively. The computational complexity of
ARIFPD_AO is calculated by the pseudocode above. The computational complexity of computing
IFP in line 2 is O (|MU∪ΔU | ∗ |ΔU| ∗ (|U| + |ΔU|)). In the simplest case, the algorithm stops in line
6. Then, the computational time of ARIFPD_AO is O (|MU∪ΔU | ∗ |ΔU| ∗ (|U| + |ΔU|)). For the
remaining case the computational time IFPDs in line 9 isO (|C| ∗ |ΔU| ∗ (|U| + |ΔU|)), and the incre-
mental calculation DU∪ΔU

(
ψMU∪ΔU ∪{b}, ψMU∪ΔU ∪{b}∪{d}

)
has a time complexity of O (|ΔU| ∗ (|U| + |ΔU|)).

Similar to the computational complexity of ARIFPD, the complexity of the loop While in algorithm
ARIFPD_AO isO

(
(|C| − |MU∪ΔU |)2 ∗ |ΔU| ∗ (|U| + |ΔU|)). From lines 17 to 20, the time complexity

of the loop For is O
(|C|2 ∗ |ΔU| ∗ (|U| + |ΔU|)). Therefore, the complexity of the algorithm in

the worst case is O
(|C|2 ∗ |ΔU| ∗ (|U| + |ΔU|)). The computational complexity of the algorithm
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is max
{
O (|MU∪ΔU | ∗ |ΔU| ∗ (|U| + |ΔU|)) ,O

(|C|2 ∗ |ΔU| ∗ (|U| + |ΔU|))}. Thus, the incremental
algorithm ARIFPD_AO has the ability to reduce the time complexity.

Figure 2: Flowchart of Algorithm 2

4 Experiments

In the previous sections, this paper presented an incremental approach based on IFPD to process
the dynamic decision table. The paper will demonstrate this part with some experiments to prove the
efficiency of our method (ARIFPD_AO). The paper compares the efficiency of the ARIFPD_AO,
IFSA in [24] and FDAR_AO in [10] through three criteria: Classification accuracy performance based
on classifier KNN (k =10) with tenfold cross-validation, size of reduct and computation time.

4.1 Experiments Setup

Experimental data: To prove the efficiency of the proposed method, we conduct experiments on
some benchmark datasets from the UCI Machine learning repository [25]. The experimental data
focuses mainly on sets with low initial classification accuracy and with a large number of instances.
Data set is split up two subsets with the same number of objects. The first subset is denoted by Uori

(Column 5 in Table 1) is used in the algorithm ARIFPD to find the reduct and Uinc (Column 6 in
Table 1) is used in the incremental algorithm ARIFPD_AO. Next, the incremental set Uinc is separated
into six equal parts U 1, U 2, U 3, U 4, U 5, U 6 respectively.

In Table 1, columns |U|, |Uori|, |Uinc|, |C|, |d| are used to denote for the number of objects in each
data set, objects in Uori, objects in Uinc, conditional attributes, decision classes, respectively.
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Table 1: The description of data sets used in experiments

ID Data sets Description |U| |Uori| |Uinc| |C| |d|
(1) (2) (3) (4) (5) (6) (7) (8)

1 Robot-failures Robot Execution Failures 164 82 82 90 5
2 Madelon Madelon datasets 780 390 390 500 2
3 Ionosphere Ionosphere dataset 351 175 176 34 2
4 Pc4 Data from flight software 1458 729 729 37 2
5 Spectf SPECTF heart data 349 174 175 44 2
6 Movement-libras LIBRAS movement 360 180 180 90 15
7 Ozone Ozone level detection 2534 1267 1267 72 2
8 ORL Database of face 400 200 200 1024 40
9 Mfeat Mfeat fourier 2000 1000 1000 76 10
10 Wall-robot Wall robot navigation 5456 2728 2728 24 4
11 Hill-valley Hill valley dataset 1212 606 606 100 2

Experimental scenario:

First, we use algorithms ARIFPD, GFS [25] and FDAR [10] to find the reduct on Uori. Next,
based on the reducts obtained from the three algorithms, we evaluate the incremental algorithms
ARIFPD_AO, IFSA and FDAR_AO from U 1 to U 6 of Uinc.

Now, we construct IFERs including the IF similarity degree and IF diversity degree between two
objects u and v with respect to the attribute a.

• If the value domain of a is a continuous value type, then:

μ{a} [u] (v) = 1 − a(u) − a (v)
max (a) − min (a)

(8)

The above formula determines the intuitionistic fuzzy similarity degree of the object u with the
object v, in which min(a) and max(a) are minimal and maximal values corresponding to a. In essence,
the denominator component of the formula above is the process of min-max data normalizing to
ensure that the values in the decision table are in the range [0,1]. Finally, we compute the intuitionistic
fuzzy diversity degree based on the below formula.

ϑ{a} [u] (v) = 1 − μ{a} [u] (v)
1 + λa ∗ μ{a} [u] (v)

with λa > 0 (9)

Clearly, if λa = 0 then υ{a} [u] (v) = 1 − μ{a} [u] (v) and the pairs υ{a} [u] (v) and υ{a} [u] (v) will only
present the characteristics of FRS. With λa > 0, we can see that the intuitionistic fuzzy similarity and
diversity degrees are inversely proportional to each other and satisfy 0 ≤ μ [u] (v) + υ [u] (v) ≤ 1. We
recommend the value λa of the attribute a according to the following formula:

λa =
⎧⎨
⎩

1 if σa = 0
βa

σa

if σa > 0
(10)
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in which σa =
√

1
|U| − 1

∑
u∈U

(a(u) − a)
2 is the standard deviation of the value domain of the attribute

a, βa =
∣∣PF

{a}∪{d}
∣∣∣∣PF

{d}
∣∣ is the consistency of the attribute a in the decision table, PF

{a}∪{d} is the fuzzy partition

of {a} ∪ {d} and PF
{d} is the fuzzy partition of d. Clearly, if μ{a} [u] (v) has a small value, it will lead to a

small consistency of a and ϑ{a} [u] (v) has a big value.

• If the value of a is a categorical value, then:

μA [u] (v) =
{

1, a(u) = a (v)
0, a(u) �= a (v)

(11)

and

ϑA [u] (v) = 1 − μA [u] (v) (12)

4.2 Experimental Results

As mentioned above, the paper first compares the efficiency of the FDAR, GFS and ARIFPD
algorithms. The size and the classification accuracy of reducts are shown in Table 2. Across all
the data sets, it is clear that the reducts obtained from ARIFPD are often the smallest size, while
the reducts obtained by FDAR still have large sizes on some datasets. The paper next compares the
computational time between the three algorithms. The time of the algorithms is calculated after the step
data preprocessing to when the reduct of the algorithms is determined. The results from Table 2 show
shorter times when running the GFS algorithm on whole datasets. The reason for this is because the
algorithms based on FRSs and IFSs must compute relational matrices with many elements. Besides,
the FDAR algorithm only uses the similarity degree to calculate, while the ARIFPD algorithm has
to calculate both the similarity and the diversity degree. Thus, the computational time of ARIFPD
is the most complex. Next, this paper compares three algorithms through the KNN classifier to
evaluate the classification capacity of reducts. Table 2 and Fig. 3 display the comparative results, in
which the raw data column is the classification accuracy when we use the whole attributes of each
data set to appreciate, and columns according to three methods provide the classification accuracies
appreciated through the attribute subset chose by those algorithms. It can be emphasized that our
method determines the important attributes very efficiently for different data sets. More especially, the
comparison with raw data shows that the classification performance of the reduct from the proposed
algorithm is superiority over the raw data in 9 cases. There is only one case where our reducts have
lower classification accuracy than the raw data. In addition, the average classification accuracy of the
method in this study reached 76.9% and the raw data reached 73.1%. Therefore, it indicated that the
classification accuracy of the proposed algorithm is significantly higher than the original data. Even
more intriguingly, ARIFPD’s reducts yield superior classification results compared to FDAR and GFS
across nearly all datasets, despite ARIFPD selecting a smaller number of attributes, as evidenced in
Figs. 3 and 4.

It can be observed more clearly from Table 2 and Fig. 3 that there is one case in the Movement
dataset where our reduct has the lower accuracy. However, the average accuracy of our algorithm is also
higher than the FDAR and GFS algorithms. It showed that the proposed algorithm has the capacity
to select significant attributes for better improvement on the noisy data sets with low classification
accuracy.
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Table 2: The process results of the FDAR, GFS and ARIFPD

ID Data sets RAW FDAR GFS ARIFPD

Acc |B| Acc Time |B| Acc Time |B| Acc Time

1 Robot-failures 0.583 8 0.657 0.365 6 0.669 0.510 2 0.682 0.386
2 Madelon 0.549 41 0.536 63.43 12 0.479 39.15 11 0.615 74.68
3 Ionosphere 0.771 11 0.806 0.582 11 0.789 0.440 7 0.812 0.625
4 Pc4 0.883 7 0.875 9.106 8 0.879 6.112 2 0.889 10.72
5 Spectf 0.766 11 0.787 0.549 5 0.770 0.460 2 0.781 0.540
6 Movement 0.811 28 0.817 1.810 9 0.789 1.885 8 0.794 1.936
7 Ozone 0.909 12 0.910 58.94 6 0.912 20.90 2 0.909 63.42
8 ORL 0.725 142 0.765 62.58 78 0.760 41.50 66 0.805 73.81
9 Mfeat 0.906 45 0.924 53.86 12 0.924 17.43 11 0.937 59.05
10 Wall-robot 0.636 17 0.602 96.43 18 0.610 40.75 4 0.714 109.3
11 Hill-valley 0.510 3 0.502 18.32 12 0.492 11.52 2 0.521 19.88

AVERAGE 0.731 29.5 0.743 33.27 16.1 0.734 16.42 10.6 0.769 37.66

Figure 3: The classification accuracy of the FDAR, GFS and ARIFPD

The performance of the proposed incremental method is appreciated by comparing the
FDAR_AO, IFSA and ARIFPD_AO algorithms. First, it is obvious that the incremental algorithms
have much faster processing time than the FDAR, IFSA and ARIFPD algorithms because the
incremental algorithms compute on the additional parts of the data tables, instead of the whole data
table.
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Figure 4: The size of reduct of the FDAR, GFS and ARIFPD

Table 3 shows that for most datasets, the execution time of FDAR_AO and IFSA is faster when
compared to ARIFPD_AO. It can be also explained similarly with comparing the execution times of
the algorithms FDAR and ARIFPD. Furthermore, the proposed algorithm includes a processing step
to remove redundant attributes. Hence the processing time of our algorithm will be slower. However,
the execution time of ARIFPD_AO is better than FDAR_AO on some data sets, for example Robot-
Failure and Ozone. This is because our obtained reduct is smaller than two remaining algorithms.
Then the number of loops is conducted less. The accuracy and size of reducts extracted by our method
are also investigated in Table 3. For the size of reduct at each incremental phase, ARIFD_AO is much
smaller than FDAR_AO and IFSA, especially for several data sets with a large number of attributes,
such as Robot-Failure, Libras-Movement.

Table 3: The process results of the FDAR_AO, IFSA and ARIFPD_AO

ID Data sets Adding data
sets

RAW FDAR_AO IFSA ARIFPD_AO
Acc |B| Acc Time |B| Acc Time |B| Acc Time

1 Robot-failures |U1| = 95 0.610 12 0.630 0.060 13 0.598 4.671 2 0.703 0.001
|U2| = 108 0.575 13 0.585 0.011 13 0.557 0.005 3 0.631 0.022
|U3| = 121 0.512 18 0.553 0.104 13 0.504 0.006 5 0.611 0.077
|U4| = 134 0.483 33 0.529 0.303 13 0.485 0.210 7 0.552 0.102
|U5| = 147 0.477 33 0.524 0.001 14 0.504 0.008 8 0.608 0.030
|U6 | = 164 0.505 33 0.549 0.001 14 0.529 0.010 8 0.652 0.001

2 Madelon |U1| = 455 0.580 43 0.560 2.629 14 0.519 1.594 11 0.596 0.004
|U2| = 520 0.581 44 0.544 2.045 15 0.523 0.485 11 0.594 0.005
|U3| = 585 0.593 45 0.561 1.894 15 0.511 0.607 14 0.607 28.17
|U4| = 650 0.609 46 0.546 2.322 16 0.518 0.005 14 0.602 0.009
|U5| = 715 0.611 47 0.534 2.855 16 0.508 0.722 14 0.617 0.015
|U6 | = 780 0.603 47 0.544 0.005 16 0.496 0.007 14 0.614 0.012

(Continued)
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Table 3 (continued)

ID Data sets Adding data
sets

RAW FDAR_AO IFSA ARIFPD_AO
Acc |B| Acc Time |B| Acc Time |B| Acc Time

3 Ionosphere |U1| = 204 0.774 11 0.833 0.001 10 0.833 0.498 7 0.833 0.001
|U2| = 233 0.785 14 0.837 0.040 12 0.799 0.399 8 0.876 0.102
|U3| = 262 0.805 14 0.832 0.001 12 0.813 0.125 8 0.863 0.001
|U4| = 291 0.818 14 0.856 0.001 13 0.790 0.242 8 0.866 0.001
|U5| = 320 0.834 14 0.869 0.001 16 0.834 0.364 8 0.875 0.001
|U6 | = 351 0.843 14 0.883 0.001 16 0.832 0.016 8 0.880 0.001

4 Pc4 |U1| = 850 0.884 7 0.864 0.003 10 0.875 2.995 2 0.884 0.010
|U2| = 971 0.882 7 0.868 0.003 10 0.864 0.044 2 0.884 0.019
|U3| = 1092 0.878 7 0.867 0.004 10 0.868 1.086 2 0.881 0.016
|U4| = 1213 0.888 7 0.876 0.006 11 0.879 2.461 2 0.883 0.020
|U5| = 1334 0.883 7 0.869 0.006 11 0.873 0.067 2 0.879 0.025
|U6 | = 1458 0.883 7 0.871 0.009 12 0.880 0.086 2 0.878 0.034

5 Spectf |U1| = 203 0.764 11 0.793 0.034 5 0.763 0.119 2 0.793 0.302
|U2| = 232 0.772 16 0.780 0.002 5 0.780 0.001 2 0.827 0.001
|U3| = 261 0.774 16 0.797 0.002 6 0.793 0.160 3 0.812 0.001
|U4| = 290 0.766 16 0.786 0.064 6 0.779 0.005 3 0.797 0.016
|U5| = 319 0.790 16 0.787 0.004 6 0.771 0.007 3 0.809 0.001
|U6 | = 349 0.742 16 0.742 0.005 6 0.734 0.007 3 0.771 0.001

6 Movement |U1| = 210 0.810 28 0.790 0.001 9 0.795 7.178 8 0.781 0.001
|U2| = 240 0.717 28 0.679 0.001 11 0.708 4.504 8 0.708 0.001
|U3| = 270 0.659 28 0.626 0.001 12 0.652 0.017 8 0.678 0.001
|U4| = 300 0.663 28 0.623 0.001 14 0.637 0.833 8 0.680 0.133
|U5| = 330 0.639 28 0.615 0.001 14 0.615 0.029 9 0.633 0.001
|U6 | = 360 0.644 28 0.608 0.001 14 0.597 0.025 30 0.622 6.637

7 Ozone |U1| = 1478 0.918 12 0.917 0.006 7 0.915 11.72 2 0.917 0.020
|U2| = 1689 0.923 19 0.923 11.97 8 0.922 8.934 2 0.925 0.045
|U3| = 1900 0.927 19 0.928 0.015 8 0.928 20.82 2 0.930 0.044
|U4| = 2111 0.928 72 0.928 76.06 8 0.927 0.239 2 0.929 0.057
|U5| = 2322 0.931 72 0.931 0.019 8 0.932 0.233 2 0.936 0.090
|U6 | = 2534 0.933 72 0.933 0.027 8 0.934 0.283 2 0.936 0.130

8 ORL |U1| = 1478 0.718 158 0.776 13.19 77 0.776 76.31 72 0.764 10.75
|U2| = 1689 0.738 159 0.778 0.694 88 0.789 118.8 73 0.748 2.364
|U3| = 1900 0.766 160 0.769 0.852 93 0.762 44.55 73 0.773 0.001
|U4| = 2111 0.759 163 0.768 4.141 98 0.807 68.08 152 0.807 318.6
|U5| = 2322 0.754 173 0.784 19.65 107 0.778 174.5 152 0.800 0.002
|U6 | = 2534 0.770 185 0.817 27.47 124 0.800 321.5 152 0.822 0.002

9 Mfeat |U1| = 1166 0.901 52 0.913 3.989 18 0.702 14.11 10 0.905 10.58
|U2| = 1332 0.894 53 0.915 0.550 19 0.699 2.313 13 0.921 14.68
|U3| = 1498 0.877 54 0.905 0.639 19 0.692 2.650 14 0.909 4.082
|U4| = 1664 0.880 54 0.904 0.025 18 0.701 3.372 15 0.910 5.255
|U5| = 1830 0.874 54 0.895 0.020 20 0.738 28.84 15 0.897 0.062
|U6 | = 2000 0.809 54 0.820 0.030 21 0.716 0.078 25 0.830 23.98

10 Wall-robot |U1| = 3182 0.676 17 0.654 0.045 20 0.666 9.436 4 0.738 0.139
|U2| = 3636 0.697 18 0.671 1.204 22 0.668 1.574 5 0.723 8.218
|U3| = 4090 0.730 18 0.711 0.074 23 0.721 0.947 5 0.765 0.283
|U4| = 4544 0.753 18 0.732 0.167 23 0.749 1.031 5 0.770 0.439
|U5| = 4998 0.757 18 0.749 0.174 23 0.754 1.147 5 0.796 0.498
|U6 | = 5456 0.759 18 0.758 0.248 23 0.758 1.579 5 0.811 0.608

(Continued)
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Table 3 (continued)

ID Data sets Adding data
sets

RAW FDAR_AO IFSA ARIFPD_AO
Acc |B| Acc Time |B| Acc Time |B| Acc Time

11 Hill-valley |U1| = 707 0.518 4 0.505 0.560 13 0.492 3.157 2 0.513 0.006
|U2| = 808 0.522 4 0.488 0.003 15 0.486 2.627 2 0.505 0.011
|U3| = 909 0.514 4 0.503 0.004 16 0.485 6.192 2 0.514 0.012
|U4| = 1010 0.510 4 0.490 0.008 19 0.472 5.273 2 0.510 0.019
|U5| = 1111 0.499 4 0.463 0.010 20 0.469 0.053 2 0.499 0.033
|U6 | = 1212 0.515 4 0.465 0.013 20 0.488 0.050 2 0.515 0.040

We consider 66 cases when adding the set of objects. There are 7 cases in which our reducts have no
higher classification accuracy than the reducts of FDAR_AO. In the remaining 59 cases, the reducts of
the proposed method show superiority in accuracy compared to FDBAR_AO and IFSA. Clearly, the
proposed incremental method is also very effective on datasets with low initial classification accuracy.
In other words, the attribute reduction methods based on the rough set approach and its extensions
have many difficulties in improving the classification accuracy for the noisy data.

Based on the accuracy of algorithms in Table 3, paired two-tailed t-tests were also conducted with
a confidence level of 0.95 to evaluate the differences between FDAR_AO, IFSA, and ARIFPD_AO.
The corresponding p-values (two-tailed) were found at levels 1.17E-10 and 6.85E-10 for KNN. These
results provide a sound basis to conclude that our algorithm outperforms the compared algorithms
in statistical significance. From the above results, it can be confirmed that the incremental attribute
reduction algorithm using the intuitionistic fuzzy set approach has outstanding advantages compared
to algorithms based on the fuzzy rough set when processing noisy and inconsistent data.

5 Conclusion

With the primary purpose of reducing the number of features and improving the classification
ability, attribute reduction is considered as a critical problem in the data preprocessing step. This
paper recommends a measure for intuitionistic fuzzy partition distance and constructs an incremental
formula to update the intuitionistic fuzzy partition distance when adding an object set. Thereby, this
paper constructs two algorithms based on the intuitionistic fuzzy set approach. The first algorithm
proposed to find the reduct on the decision table when there is no additional set of objects. The
second algorithm is the incremental algorithm to find the approximate reduct when the decision table
is increased in the object set. Compared to methods based on the rough set and fuzzy rough set
approaches, the experimental results have shown that our methods can ameliorate the accuracy of
inconsistent or low initial classification accuracy data sets.

It can be easily seen that the limitation of intuitionistic fuzzy set-based algorithms is the execution
time due to the supplement of the diversity degree in intuitionistic fuzzy equivalence classes. For
future researchers, we focus on developing the incremental formula to reduce the computational time
and guarantee the classification accuracy. In addition, we also design incremental algorithms based
on the intuitionistic fuzzy sets using granular structures. We will continue to study the incremental
methods that find reducts from the decision tables in the case of supplementing and removing the set
of attributes.
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