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ABSTRACT

Traffic monitoring through remote sensing images (RSI) is considered an important research area in Intelligent
Transportation Systems (ITSs). Vehicle counting systems must be simple enough to be implemented in real-
time. With the fast expansion of road traffic, real-time vehicle counting becomes essential in constructing ITS.
Compared with conventional technologies, the remote sensing-related technique for vehicle counting exhibits
greater significance and considerable advantages in its flexibility, low cost, and high efficiency. But several
techniques need help in balancing complexity and accuracy technique. Therefore, this article presents a deep
learning-based vehicle detection and counting system for ITS (DLVDCS-ITS) in remote sensing images. The
presented DLVDCS-ITS technique intends to detect vehicles, count vehicles, and classify them into different classes.
At the initial level, the DLVDCS-ITS method applies an improved RefineDet method for vehicle detection. Next,
the Gaussian Mixture Model (GMM) is employed for the vehicle counting process. Finally, sooty tern optimization
(STO) with a deep convolutional autoencoder (DCAE) model is used for vehicle classification. A brief experimental
analysis was made to demonstrate the enhanced performance of the DLVDCS-ITS technique. The comparative
analysis displays the DLVDCS-ITS method’s supremacy over the current state-of-the-art approaches.
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1 Introduction

Recently, real-time traffic monitoring has gained widespread interest with intelligent transporta-
tion systems (ITS) advancement. To constitute a reliable and robust ITS, vehicle counting and
detection were considered to be the most imperative parts of analyzing and collecting large-mode
traffic data [1]. Specifically, it serves a significant role in several real-world circumstances, like resolving
traffic congestion issues and enhancing traffic safety. There were several remote sensing (RS) platforms
available, which include terrestrial platforms (i.e., terrestrial laser scanning, farming robots, stationary
photography, mobile mapping data), airplanes, satellites, and drones that can be leveraged for gaining
data in various environmental monitoring researchers [2]. Among them, satellite remote sensing (RS)
technology is scaled up to support worldwide environmental monitoring regularly. To support these
efforts, several satellites specialized in collecting Earth observation data were launched recently [3].
Most support open access to the dataset for further stimulating the advancement of RS tools related
to data from such missions. Such satellite missions commonly obtain optical images (in the normal
channels of blue, red, and green). However, a key feature was multispectral images collected by
instruments, including bands tuned, enhancing performance compared to optical sensors in numerous
atmospheres and ecology sensing applications [4].

The study of intellectual earth observation to analyze and understand such aerial and satellite
images has received widespread attention [5–8]. The main goal of the object counting task was to
predict the object count of some class in a specified image, which serves a vital role in video and
image analysis for the applications like urban planning, crowd behavior analysis, traffic monitoring,
public security, and so on [6]. It is important to count vehicles in the traffic, which is expected to
alleviate traffic congestion and raise traffic light efficiency. Online vehicle count through movements
of interest (MOI) was to identify the total number of vehicles that are respective to MOI in an online
paradigm [9–11]. Yet, precise vehicle counting becomes a challenge at crowded intersections because
of the problems like the occlusions among poor weather conditions and particular vehicles. Also, the
arrival period when vehicles move out of the region of interest (ROI) is computed [12].

The advancement of deep learning (DL) and object counting attained great performance in natural
images, and some works have enforced object counting in RS images [13]. But because of the gap
between natural and RS images, there will be great space for enhancement in RS object counting. The
prevailing object counting technique is of two types: regression-based and detection-based. Detection-
based techniques gain the number of objects by counting the identified bounding boxes. Counting
vehicles related to traffic videos displays great benefits when a comparison is made to conventional
vehicle-counting technology [10]. The video-related technique depends upon complicated image-
processing methods over software. A traffic surveillance camera will be more convenient to install
and maintain and cost less than conventional detectors [14,15]. More significantly, the information
gained with traffic videos was viewed in real-time and more flexibly and efficiently.

This article presents a deep learning-based vehicle detection and counting system for ITS
(DLVDCS-ITS) in remote sensing images. The presented DLVDCS-ITS technique intends to detect
vehicles, count vehicles, and classify them into different classes. At the initial stage, the DLVDCS-ITS
technique applies an improved RefineDet method for vehicle detection. Next, the Gaussian Mixture
Model (GMM) is employed for the vehicle counting process. Finally, sooty tern optimization (STO)
with a deep convolutional autoencoder (DCAE) model is used for vehicle classification. A brief
experimental analysis is made to show the enhanced performance of the DLVDCS-ITS approach.
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2 Related Works

Guo et al. [16] presented a density map-based vehicle counting methodology for remote sensing
image (RSI) with constrained resolution. The density map-oriented model regards vehicle counting
tasks as approximating the density of vehicle targets to the pixel value. The author proposes an
enhanced convolutional neural network (CNN)-based system, named Congested Scene Recognition
Network Minus (CSRNet—), which produces density maps of vehicles from input RSI. Yin et al. [17]
developed a novel methodology for counting vehicles in a human-like manner. The study comprises
two major contributions. Initially, the author proposes an effective light weighted vehicle count
technique. The approach count is based on vehicle identity comparison to neglect duplicate examples.
Integrated with spatiotemporal data between frames, it can improve accuracy and accelerate the speed
of counting. Next, the author reinforces the model’s performance by presenting an enhanced loss
function based on Siamese neural network.

Zhao et al. [18] introduced vehicle counting through intra-resolution time continuity and cross-
resolution spatial consistency constraints. First, a segmentation map is attained using semantic
segmentation with previous data. The vehicle coverage rate regarding located parking lot was estimated
and later transformed into vehicle region. Lastly, the relationships between the vehicles and the
area can be determined using regression. Reference [19] proposed a vehicle counting framework
for eliminating the problem of redundant vehicle data count while a vehicle has performed in
consecutive frames of drone video. This study presents a comparison of concatenated 3 feature
vectors for recognizing similar vehicles in the aerial video. Azimi et al. [20] developed joint vehicle
segmentation and counting methodology relevant to the atrous convolutional layer. This technique
employs a multi-task loss function for instantaneously reducing vehicle counting errors and pixel-
wise segmentation. Furthermore, the rectangular shape of vehicle segmentation is refined through
morphological operation.

Zheng et al. [21] developed a packaged solution that integrates a novel target tracking and
moving vehicle counting methodology and an enhanced long short term memory (LSTM) network
for forecasting traffic flow with meteorological. Especially, the MultiNetV3 framework and dynamic
convolution network (DCN) V2 convolution kernel were utilized for replacing the You only look
once (YOLO)v4 convolution kernel and backbone networks for realizing multiple target counting
and tracking correspondingly. Consequently, integrated with temporal features of past traffic flow,
the study presents weather condition in LSTM and realize short-term prediction of traffic flow at
road junction levels. Asha et al. [22] developed a video-related vehicle counting methodology in a
highway traffic video captured through a handheld camera. The video processing can be accomplished
in three stages: counting, object detection using YOLO (You Only Look Once) and tracking with a
correlation filter. YOLO achieved outstanding results in the object detection area, and the correlation
filter accomplished competitive speed and great accuracy in tracking. Therefore, the author builds
multiple object tracking with correlation filters through the bounding box produced using the YOLO
architecture.

3 The Proposed Model

In this article, a new DLVDCS-ITS algorithm was devised for vehicle detection and counting
system using remote sensing images. The presented DLVDCS-ITS technique intends to detect vehicles,
count vehicles, and classify them into different classes. At the initial level, the DLVDCS-ITS approach
applies an improved RefineDet method for vehicle detection. Next, GMM is employed for the vehicle
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counting process. At last, the STO algorithm with the DCAE model is used for vehicle classification.
Fig. 1 defines the workflow of the DLVDCS-ITS mechanism.

Figure 1: Workflow of DLVDCS-ITS system

3.1 Vehicle Detection Module

Firstly, the vehicles are detected by the use of an improved RefineDet model. In the first phase,
this improved RefineDet framework is employed for the vehicle detection present. The presented
method makes use of VGG16 architecture as a backbone network, creates the sequence of anchors
having distinct feature ratios and different scales from all feature-mapped cells by employing anchor-
generated procedure of region proposal network [23], and accomplishes a predetermined quantity
of vehicle bounding boxes following by 2 regression and classification, along with the probability
of the incidence of different classes under this bounding box. Finally, the outcomes of regression
and classification are accomplished with non-maximum suppression (NMS). The presented model
was divided into a transfer connection block (TCB), anchor refinement module (ARM), and vehicle
detection module (ODM). Fig. 2 demonstrates the structure of the RefineDet system.

3.1.1 ARM Module

The ARM has been mainly gathered from a more convolutional layer and core network. The
ARM mainly performs negative anchor (NA) filtering, refinement, generation, and feature extraction
[24]. The anchor refinement is to change the size and place of anchor boxes, and the NA filter indicates
the ARM when the confidence of the negative instance is higher than 0.99; this approach eliminates
it and does not exploit it to final recognition from ODM. The NA filter filtered NA boxes with well-
classification, further mitigating imbalance instances. In the feature extraction, 2 convolution layers,
for example, ConVo6_1 and ConVo6_2, were further at the last of the VGG16 network. Then, add 4
new convolution layers, ConVo8_2, ConVo7_1, ConVo7_2, and ConVo8_1, for capturing higher-level
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(HL) semantic information from these techniques. Later, the combined features are transferred to the
lower-level (LL) feature via TCB; however, the LL feature maps are employed for detecting that has
maximal semantic information and improve the recognition performance of floating vehicles.

Figure 2: Architecture of RefineDet

3.1.2 TCB Module

The TCB is commonly employed for linking ODM and ARM and transmitting the feature dataset
of ARM to ODM. In addition, based on the FPN infrastructure, adjacent TCB is interconnected
to realize the feature fusion of LL and HL characteristics and improve semantic information of LL
features.

3.1.3 ODM Module

The ODM is the output set of TCB and prediction layer (regression and classification layers, viz.,
Conv. layers with the size of the kernel 3 × 3). Also, the resulting prediction layer was a specific kind
of refined anchor and coordinate offset relative to refined anchor boxes. The refined anchor has been
employed as input to further regression and classification, and final bounding boxes have been selected
according to non-maximal suppression (NMS).

3.2 Vehicle Counting Module

At this stage, the detected vehicles are counted by the GMM model. For vehicle counting, a
GMM can be utilized for background deduction in a complicated atmosphere for recognizing the
areas of moving objects [25]. The GMM was dependable in foreground segmentation and background
extraction procedure. Thus the features of moving items in video surveillance will be easy to identify. It
was a density model comprising Gaussian function elements. This technique is leveraged for executing
the background extraction procedure because it is very reliable towards repetitive object detection
scenarios and light variances.
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The Gaussian mixture model for computing the variance and mean is expressed as:

P (xi) =
∑K
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wi,t × 1
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where, μ(i,t) = mean value of Gaussian distribution at time t,

φ(i,t) = covariance matrix,

K = number of distributions.

3.3 Vehicle Classification Module

At the final stage, the STO algorithm with the DCAE model is used for vehicle classification.
Autoencoder (AE) is a standard deep neural network (DNN) infrastructure which generates utilization
of their input as a label. Afterwards, the network tries to recreate its input in the learning process [26]; in
this regard, it creates and automatically removes the representation features from the appropriate time
iterations. This type of network was generated by stacking deep layers from AE methods containing 2
important parts of decoding and encoding. DCAE was a type of AE executed convolutional layer
for determining the inner data of images. During the DCAE, infrastructure weighted has shared
betwixt all the locations in each feature map, decreasing parameter redundancy and maintaining
spatial locality. To extract the deep features, assume that H, D, and W denote the corresponding height,
depth, and width of datasets, and n indicates the pixel counts. To all the members of the X set, image
patches with 7 × 7 × D size are extracted, whereas χj stands for central pixels. Therefore, the X set was
considered an image patch; all the patches, x∗

i , are provided as encoded blocks. To input x∗
i , a hidden

layer map of the kth feature map can be demonstrated under the:

hk = σ
(
x∗

i ∗ W k + bk
)

(2)

In Eq. (2), b denotes the bias; σ refers to the activation function, and the symbol ∗ equals the 2-D
convolutional layer, and it can be obtained by subsequent demonstrated as:

y = σ

(∑
k∈H

hk ∗ W̃ k + b̃k

)
(3)

In Eq. (3), bias b occurs to all the input channels, and h represents a group of latent feature
maps. The W̃ equivalent to the flip function over both dimensional weights W. y stands for predictive
value. For determining the parameter vector representing the whole DCAE infrastructure, one could
minimalize the succeeding cost function represented as:

E (θ) = 1
n

∑n

i=1
‖x∗

i − yi‖2
2 (4)

To minimize this function, it can be required for evaluating the gradient of cost functions regarding
the convolution kernel (W , W̃) and bias (b, b̃) parameter:
∂E(θ)

∂W k
= x∗ ∗ δhk + hk ∗ δy (5)

∂E(θ)

∂bk
= δhk + δy (6)

At this point, δh and δy correspond for deltas of the hidden layer and reconstruction. Afterwards,
the weight was upgraded by the optimized technique. Finally, the DCAE parameter has been estimated



CSSE, 2024, vol.48, no.1 121

if loss function convergence has been executed. The resultant feature mapping of the encoded block
was assumed as a deep feature. During this case, batch normalization (BN) has been utilized to tackle
the internal covariant shift phenomenon and improve the performance of networks using normalized
input layers with re-scaling and re-centring. The BN supports increasing accuracy and more to learn.

The STO algorithm adjusts the DCAE parameters. The STO technique was desired over other
optimized techniques because of the following details: The STO technique was able for local optima
avoidance, exploration, and exploitation [27,28]. It can resolve difficult, constrained issues and is
highly competitive and related to other optimized approaches. The STO approach has been simulated
by the attack efficiency of the sooty tern (ST) bird. Generally, the STs live in groups. It employs its
intelligence to place and attacks the targets. The most prominent features of STs were assault and
migration performances. The succeeding offered insights as to ST birds:

• The ST was simulated in the group from migration. To avoid a collision, the initial locations of
STs are dissimilar.

• In the groups, the ST with the least fitness level yet travelled the same distance that the fittest
betwixt them could.

• Based on the fittest STs, the lowest fitness STs were upgraded in primary locations.

The ST is essential for meeting 3 necessities in the migration: SA has been employed to calculate
a novel searching agent position to ignore collisions with neighbourhood searching agents (i.e., STs).
�Cst = sA · �P(z) (7)

where �Cst represents the location of STs that could not collide with other terns, �Pst defines the present
location of STs. z implies the present iteration, and sA represents the migration of STs in the solution
spaces. Afterwards, the collision evasion search agent converged in the path of the finest neighbor.
−→
Mst = CB · �Pst (z)

(�Pbst (z) − �Pst (z)
)

(8)

−→
MSt denotes the particular location of search agents (i.e., ST). �Pbst(z) defines the optimal location

to search agents, and CB implies the arbitrary variable and is computed as:

CB = 0.5Rand (9)

Whereas Rand refers to any arbitrary number between 0 and 1. Upgrade equal to optimal searching
agents: At last, the STs have reviewed its location regarding the optimal search agents.
−→
D st = �Cst + −→

Mst (10)

whereas
−→
D st refers to variance betwixt the search agents and optimal fittest search agents. The ST

has been changing its attack and speed angles in migration. It attained altitude by flapping its wing.
It can create spherical acts in the air and then attack prey, as explained below:

x′ = Radius sin (i) (11)

y′ = Radius cos (i) (12)

z′ = Radiusi (13)

r = uekv (14)

whereas Radius implies the spiral radius, i lies in [0 ≤ k ≤ 2τ c], and u and v determine the constant value.
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4 Performance Evaluation

This section examines the vehicle detection, counting, and classification outcomes of the
DLVDCS-ITS model on a dataset including 3000 images. The dataset holds 1000 images under three
class labels: car, bus, and truck, as represented in Table 1.

Table 1: Data used

Class No. of instances

Car 1000
Bus 1000
Truck 1000

Total number of instances 3000

The confusion matrices generated during the vehicle classification process are shown in Fig. 3.
The figures indicated that the DLVDCS-ITS model has correctly recognized all the car, bus, and truck
images proficiently.

Figure 3: (Continued)
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Figure 3: Confusion matrices of DLVDCS-ITS system (a–b) TR and TS dataset of 80:20 and (c–d) TR
and TS dataset of 70:30

Table 2 reports the entire vehicle classifier output of the DLVDCS-ITS technique on 80:20 of the
training (TR)/testing (TS) dataset. Fig. 4 displays the vehicle classifier outcomes of the DLVDCS-ITS
method on 80% of the TR dataset. The experimental values indicated that the DLVDCS-ITS model
has proficiently identified all the vehicles on 80% of the TR dataset. It is noted that the DLVDCS-ITS
model has attained an average accuy of 99.36%, precn of 99.05%, recal of 99.04%, Fscore of 99.05%, and
Gmean of 99.28%.

Table 2: Vehicle classification outcome of DLVDCS-ITS system under 80:20 of TR/TS dataset with
various classes

Class Accuy Precn Recal Fscore Gmean

Training phase (80%)
Car 99.25 98.64 99.13 98.89 99.22
Bus 99.25 98.89 98.89 98.89 99.16
Truck 99.58 99.61 99.11 99.36 99.46
Average 99.36 99.05 99.04 99.05 99.28

Testing phase (20%)
Car 99.33 98.46 99.48 98.97 99.37
Bus 99.17 98.94 98.42 98.68 98.97
Truck 99.83 100.00 99.54 99.77 99.77
Average 99.44 99.13 99.15 99.14 99.37
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Figure 4: Vehicle classification outcome of DLVDCS-ITS system in 80% of the TR dataset

Fig. 5 exhibits the vehicle classifier outcomes of the DLVDCS-ITS methodology on 20% of the
TS dataset. The simulation values exhibited that the DLVDCS-ITS approach proficiently recognized
all the vehicles on 20% of the TS dataset. It is noticed that the DLVDCS-ITS method has achieved an
average accuy of 99.44%, precn of 99.13%, recal of 99.15%, Fscore of 99.14%, and Gmean of 99.37%.

Figure 5: Vehicle classification outcome of DLVDCS-ITS system in 20% of the TS dataset

Table 3 reports the entire vehicle classifier outcomes of the DLVDCS-ITS methodology on 70:30
of the TR/TS dataset. Fig. 6 exemplifies the vehicle classifier result of the DLVDCS-ITS method
on 70% of the TR dataset. The outcome denoted by the DLVDCS-ITS algorithm has proficiently
identified all the vehicles on 70% of the TR dataset. It is pointed out that the DLVDCS-ITS approach
has reached an average accuy of 99.24%, precn of 98.86%, recal of 98.86%, Fscore of 98.86%, and Gmean of
99.14%.
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Table 3: Vehicle classification outcome of DLVDCS-ITS system under 70:30 of TR/TS dataset with
various classes

Class Accuy Precn Recal FScore GMean

Training phase (70%)

Car 99.29 99.13 98.70 98.91 99.13
Bus 99.33 98.72 99.28 99.00 99.32
Truck 99.10 98.74 98.60 98.67 98.97

Average 99.24 98.86 98.86 98.86 99.14

Testing phase (30%)

Car 98.33 99.00 96.13 97.55 97.80
Bus 98.67 96.78 99.34 98.05 98.83
Truck 98.56 97.57 97.91 97.74 98.38

Average 98.52 97.79 97.79 97.78 98.34

Figure 6: Vehicle classification outcome of DLVDCS-ITS system in 70% of the TR dataset

Fig. 7 portrays the vehicle classifier outcomes of the DLVDCS-ITS algorithm on 30% of the TS
dataset. The simulation values show the DLVDCS-ITS methodology has proficiently detected all the
vehicles on 30% of the TS dataset. It is highlighted that the DLVDCS-ITS methodology has achieved
an average accuy of 98.52%, precn of 97.79%, recal of 97.79%, Fscore of 97.78%, and Gmean of 98.34%.

The TR accuracy (TRA) and validation accuracy (VLA) gained by the DLVDCS-ITS method
under the test dataset is exhibited in Fig. 8. The outcome exhibited by the DLVDCS-ITS approach
has attained supreme TRA and VLA values. Predominantly the VLA is bigger than TRA.
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Figure 7: Vehicle classifier outcome of DLVDCS-ITS system in 30% of the TS dataset

Figure 8: TRA and VLA analysis of DLVDCS-ITS system

The TR loss (TRL) and validation loss (VLL) of the DLVDCS-ITS algorithm on the TS dataset
are shown in Fig. 9. The result exhibited the DLVDCS-ITS technique has recognized the least TRL
as well as VLL.

A clear precn − recal investigation of the DLVDCS-ITS approach on the TS data is shown in
Fig. 10. The results designated the DLVDCS-ITS algorithm have improved the precn − recal outcomes
under all classes.
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Figure 9: TRL and VLL analysis of DLVDCS-ITS system

Figure 10: Precision-recall analysis of the DLVDCS-ITS system

Table 4 portrays a brief accuy examination of the DLVDCS-ITS model with other existing methods
[29,30]. The results inferred that the speeded up robust features (SURF) model reached the least accuy

of 45.82%, whereas the scale-invariant feature transform (SIFT) and histogram of gradients (HOG)
models have reached closer accuy of 62.78% and 69.46%, respectively. Although the AlexNet, VGGNet,
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and ResNet models have resulted in reasonable accuy of 89.37%, 94.35%, and 96.04%, the DLVDCS-
ITS model outperforms the other ones with higher accuy of 99.44%.

Table 4: Accuracy analysis of DLVDCS-ITS system with existing algorithms

Features Accuracy (%)

DLVDCS-ITS 99.44
AlexNet 89.37
VGGNet 94.35
ResNet 96.04
SIFT 62.78
SURF 45.82
HOG 69.46

Finally, detailed results of the DLVDCS-ITS model and existing methods are given in Table 5. The
results implied the Faster region based convolutional neural network (RCNN) method had shown poor
performance. At the same time, the YOLO, single shot detector (SSD), and enhanced-SSD models have
obtained closer vehicle counting performance.

Table 5: Result analysis of DLVDCS-ITS system with current methods

Methods Correctness Completeness Quality

DLVDCS-ITS 99.15 92.37 91.68
Faster-RCNN 76.12 57.34 48.67
YOLO 98.99 47.66 47.45
SSD 97.36 86.41 84.44
Enhanced-SSD 97.75 88.39 86.48

But the DLVDCS-ITS model has shown better performance with full correctness of 99.15%,
completeness of 92.37%, and quality of 91.68%. Therefore, the DLVDCS-ITS model can be employed
for accurate vehicle detection and counting.

5 Conclusion

This article formulated a new DLVDCS-ITS algorithm for vehicle detection and counting system
using remote sensing images. The presented DLVDCS-ITS technique intends to detect vehicles, count
vehicles, and classify them into different classes. At the initial level, the DLVDCS-ITS method applies
an improved RefineDet algorithm for vehicle detection. Next, GMM is employed for the vehicle
counting process. At last, the STO algorithm with the DCAE model is used for vehicle classification.
A brief simulation analysis was done to demonstrate the enhanced performance of the DLVDCS-
ITS technique. The comparison study demonstrates the supremacy of the presented DLVDCS-ITS
technique over the recent state-of-the-art approaches. Thus, the presented DLVDCS-ITS approach
can be exploited for real-time traffic monitoring. In future, we will extend to generate density maps of
the vehicles and license plate number recognition.
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