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ABSTRACT

High-resolution range profile (HRRP) automatic recognition has been widely applied to military and civilian
domains. Present HRRP recognition methods have difficulty extracting deep and global information about the
HRRP sequence, which performs poorly in real scenes due to the ambient noise, variant targets, and limited data.
Moreover, most existing methods improve the recognition performance by stacking a large number of modules, but
ignore the lightweight of methods, resulting in over-parameterization and complex computational effort, which
will be challenging to meet the deployment and application on edge devices. To tackle the above problems, this
paper proposes an HRRP sequence recognition method based on a lightweight Transformer named RLAT, which
consists of rotary position encoding, local-aggregated attention unit (LAU), and lightweight feedforward neural
network (LW-FEN). Rotary position encoding is utilized to embed the relative position information for the HRRP
sequence. Local aggregation attention unit can effectively aggregate and extract local features by local group linear
transformation, and then the self-attention mechanism is adopted for perception and enhancement of global
information. Thereby, the enhanced features are extracted by lightweight FEN. In addition, this paper adopts Label
Smoothing regularization to add noise to the sample labels, which can improve the generalization performance of
the method. Finally, the effectiveness of the proposed method in real scenes is verified based on the MSTAR dataset,
a real-world dataset for radar target recognition. Experimental results show that the proposed method achieves
superior recognition performance compared to other remarkable methods and achieves significant generalization
performance and robustness under variant sample and limited sample conditions. RLAT achieved an accuracy of
99.86% on the MSTAR standard dataset and 99.73% on the MSTAR variant dataset. In particular, it achieves an
accuracy of 95.83% with only 274 training samples. Furthermore, the proposed method is more lightweight, with
90.90% reduction in the number of parameters and 96.70% reduction in the computation compared to the Vanilla
Transformer, which facilitates deployment in edge devices.
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1 Introduction

Radar Automatic Target Recognition (RATR) has been widely applied to military and civilian
domains. Currently, radar high-resolution range profiles (HRRP) are commonly used in RATR due
to the advantages of easy acquisition, convenient processing, and small storage space [1]. HRRP is
the vector sum of target echoes along the radar line of sight direction, containing rich information on
target structure characteristics and scattering point distribution, which has significant applications in
the target recognition domain. Therefore, HRRP has been widely used in recognizing aircraft [2,3],
ships [4], ballistic missiles [5,6], and military vehicles [7,8].

When the radar detects a moving target, it will move relative to the target to obtain the echo
information at several azimuth angles, then HRRPs of consecutive azimuth angles constitute the
HRRP sequence [?]. The dynamic temporal features of the target can be extracted effectively with the
correlation in an HRRP sequence being modeled for efficient target recognition. Since the dimension
of the HRRP sequence is large and there is a large number of noisy regions hidden in HRRP,
HRRP sequence recognition is a peculiar class of multivariate time series classification problem.
However, existing methods for the HRRP recognition method have limited perception ability of global
information and weak representation ability of target information [7], which leads to susceptibility to
the noise region and poor recognition performance in real scenes. Therefore, feature enhancement and
feature extraction of global information are pivotal issues to improve the recognition performance of
HRRP sequences further.

Traditional HRRP sequence recognition methods rely on the manual extraction of features with
high discriminability. For example, Timothy et al. [10] proposed a recognition method based on Hidden
Markov Model (HMM), which extracted six power spectrum features from high-resolution (HRR)
radar signal amplitude vs. target distance profiles using HMM. Du et al. [1 1] proposed a recognition
method based on a double-distribution composite statistical model based on the dominant scattering
in the range cell of the scattering center model. The range units are divided into three statistical types
based on the number of dominant scattering points in the scattering center model’s range units. The
echoes of different types of range units are modeled as corresponding distribution forms to accomplish
the recognition task. Molchanov et al. [12] proposed a recognition method based on micro-Doppler
bicoherence features, which extracts the cepstrum coefficients from the micro-Doppler contributions
in radar echoes, then calculates the classification features using bicoherence estimation. However, the
manually extracted features are susceptible to the influence of subjective factors and have limited
recognition performance because of the weak extraction of representative features.

To overcome the limitations of manual feature extraction, machine learning is introduced into
HRRP recognition. Lei et al. [13] proposed a Support Vector Machine (SVM) based recognition
method, which defines different classifier confidence levels based on the distance between classifiers
given by the confusion matrix, and then integrates the support vector machine values and posterior
probabilities into the basic probability assignment to achieve a support vector machine and evi-
dence theory combined with the recognition method. Wang et al. [5] proposed an extreme learning
autoencoder (1D ELM-LRF-AE) network based on one-dimensional local perceptual domains for
meaningful representation learning of HRRP local structures to achieve efficient representation
learning and recognition. The above method overcomes the negative effects of subjective factors of
researchers and achieves more effective automatic feature extraction but ignores the correlation and
temporal information among HRRPs, which causes significant information loss. Besides, the machine
learning method is weak in extracting deep features. Thus, the recognition performance still needs to
be improved.
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Along with the development of deep learning, Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) are massively applied to HRRP recognition. For example,
Xiang et al. [14] proposed a recognition method based on one-dimensional CNN (1D-CNN), which
extracts the effective target structure information in HRRP by 1D-CNN and introduces aggregation-
perception-recalibration for feature enhancement. Though CNN can effectively extract the local
correlation of HRRP sequences, it ignores the temporal information between HRRP sequences. There
are limitations to global feature extraction of long sequences since the size of the convolutional kernel
limits CNN. In particular, the HRRP sequences in real scenes contain much noisy information, and the
local information will harm the generalization of the model due to the influence of noise. Du et al. [15]
proposed a recognition method based on a Region-factorized recurrent attentional network with deep
clustering, which utilizes the time dependence of recurrent neural network (RNN) in HRRP samples.
The clustering mechanism is used to find information regions automatically, weighting the different
recognition contributions of the hidden states at each time step. However, RNNs lose important target
features when extracting long-range information for long sequences due to the memory loss problem.
The essential original information may be lost when the network is stacked deeply. To further enhance
the extraction of global information, Pan et al. [16] proposed a recognition method based on CNN-
Bi-RNN with Attention Mechanism, which uses convolutional neural networks to obtain a richer
embedding representation, and then uses RNN based on Attention Mechanism to extract temporal
information, which can use local and global temporal features more effectively, and still maintain high
recognition performance for limited samples. With the emergence of the Transformer framework, the
long-range information of sequences is modeled by the self-attention mechanism, which adaptively
assigns different weights to sequences by calculating the correlation between sequences, paying more
attention to the important information of the target region and effectively extracting the global
information of sequences. Zhang et al. [17] proposed a recognition method based on a feature-
guided Transformer, which effectively enhances the extraction of global information by adding manual
features in the attention module and guiding the model to focus on range units with more scattered
information, and reduces the dependence on the model on the number of samples. However, the
selection of manual features is influenced by human subjective factors and needs further optimization.
Diao et al. [18] proposed a recognition method based on Position Embedding-Free Transformer for
Radar HRRP Target Recognition, which extracts multiscale information with different weights by
combining multiscale convolution with a self-attention mechanism; thus more information and dis-
tinguishable features are extracted for recognition. The introduction of multiscale convolution before
the self-attention mechanism enables more efficient pre-extraction of multiscale features, but causes
a greater computational effort. Although Transformer can achieve better recognition performance,
the huge number of model parameters and over-dependence on samples limit its application in edge
devices and real scenes.

To achieve a more lightweight and robust recognition method, which facilitates the deployment
of real scenes and edge devices. This paper proposes a lightweight HRRP sequence recognition
method based on RLAT, which consists of rotary position encoding, local-aggregated attention unit
(LAU), and lightweight feedforward neural network (LW-FFN). The method proposed utilizes rotated
position encoding to embed relative position information more efficiently. Then, this paper proposes
a lightweight local-aggregated attention unit (LAU) to perform local feature aggregation and global
perception operations on high-dimensional HRRP sequence data. Feature aggregation can suppress
the adverse effects of noise regions, get richer local feature representation, and reduce the number
of parameters effectively. Thereby, by putting the aggregated low-dimensional features into the self-
attention mechanism, the self-attention mechanism can achieve global information perception and
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enhancement, which extracts the long-range correlations of HRRP sequences in time and space
domains, effectively enhances the extraction ability of important information in the target region and
gets highly distinguishable deep temporal features in HRRP sequences. Besides, the information loss
problem of deep networks is also solved through residual connection. Moreover, feature extraction
is achieved by LW-FFN, which dramatically reduces the number of parameters compared with the
traditional FFN. Finally, Label Smoothing is utilized to introduce label noise to avoid over-reliance
of the model on limited training data and enhance the generalization of the proposed method in real
scenes. Experiments on MSTAR datasets show that the proposed method improves the recognition
performance significantly by effectively reducing the number of parameters and achieves better
robustness in both variant targets and limited training data experiments.

The main contribution of this paper is as follows:

(1) Considering the generalization performance and the lightweight of the method, this paper
proposes a novel method named RLAT. RLAT consists of Rotary position encoding, LAU,
and LW-FFN, which greatly reduces the number of parameters and computational effort
by utilizing lightweight modules. In addition, RLAT can represent the relative position
information more effectively and deepen the model depth dynamically, which can extract more
essential and abstract features.

(2) To alleviate the reliance on training samples and eliminate the undesirable effect of causing
redundant information in HRRP sequences. Label smoothing regularization is adopted to
add label noise, which can enhance the tolerance to training loss and the generalization of
the method.

(3) This paper validates the effectiveness and generalization of the proposed method on real-world
datasets, including for variant targets and limited sample conditions; the results illustrate that
RLAT has remarkable recognition performance and generalization performance for variant
samples and limited samples. Besides, the performance of various position encoding methods
and significant hyperparameters in the HRRP sequence task are also explored.

This paper is organized as follows. Section 2 introduces the overall framework of the proposed
method and describes the critical detail parts of the method. Section 3 first introduces the construc-
tion method of the MSTAR sequence dataset, then verifies the proposed method’s effectiveness in
real scenes, including variant targets, limited data, and the impact of hyperparameter experiments.
Furthermore, comparison experiments verify the proposed method to be more lightweight. Section 4
summarizes the work of this paper and presents the work objectives for the future.

2 Proposed Method

This section presents the overall framework of the proposed method, then introduces and analyzes
the principles and details of the essential modules. The overall structure of RLAT is shown in Fig. 1.

HRRP sequence recognition is a particular class of multivariate time series classification problem
with high dimensionality, redundant noise information, and limited data. Therefore, suppressing the
adverse effects of redundant information in noisy regions and extracting deep valid information and
high separability features are essential to improve the performance of HRRP sequence recognition. In
addition, existing methods for HRRP sequence recognition extract deep abstract features by stacking
a large number of modules, mostly ignoring the problem of lightweight, which is unfavorable for
application to real scenes and deployment to edge devices.
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Figure 1: Illustration of the structure of the proposed RLAT

This paper proposes an HRRP sequence recognition method based on RLAT, which consists
of rotary position encoding, local-aggregated attention unit (LAU), and lightweight feedforward
neural network (LW-FFN). The feature extraction part of RLAT consists of stacked LAT Blocks,
which are different from the Encoders of the traditional Transformer. LAT blocks can dynamically
adjust the model depth using the adaptive model scaling mechanism. Consequently, the model depth
can be dynamically scaled to make the model depth more adaptable to different feature extraction
stages, effectively decreasing the number of parameters. Finally, SoftMax is utilized to calculate the
probability of each target category achieving recognition.

As shown in Fig. I, LAT Block is mainly composed of LAU and LW-FFN, where LAU is
mainly used for feature enhancement, and LW-FFN is used for feature extraction. LAT Block
has significant feature enhancement and feature extraction capabilities and dramatically reduces
the number of parameters and computational effort through lightweight methods. To enhance the
feature representation of HRRP, traditional deep learning methods introduce richer features by
first raising the dimensionality. However, HRRP sequences contain a large amount of redundant
noise, and raising the dimensionality often introduces more redundant features, which not only



222 CSSE, 2024, vol.48, no.1

introduces a massive number of parameters but reduces the recognition ability of the model. The
traditional group linear transformation uses the channel shuffle mechanism to enhance the global
information extraction ability, but this paper discards the channel shuffle mechanism and inputs
the aggregated low-dimensional features into the self-attention mechanism, which can complete the
global information perception and enhancement. However, this paper discards the channel shuftle
mechanism and inputs the aggregated low-dimensional features into the self-attention mechanism,
which can perform global information perception and enhancement to obtain the deep temporal
features with high distinguishability in HRRP sequences.

The training process of RLAT is shown in Algorithm 1.

Algorithm 1: Training process of the RLAT

Input: {(x,,»,) ;V;”{"’, a dataset of HRRP sequence. 6, initial parameters. N, is the number of

training iterations. ¢ is the hyperparameter of Label Smoothing. n € (0, 00).
Output: 0, the trained parameters. The label of the target.

1 for iter =1,2,..., N, do
2 forn=1,2,..., Ny, do
3 q(0) < RLAT(x,.p,10)
K
4 loss () = — >_ p:logg; (@) where p; is the probability of the true value, and ¢; is

i=1
the probability of the predicted value. i is the category label of the target.
(1—¢)-loss(@) i=y

5 Label Smoothing: Loss (0) = ]
¢ - loss(0) i#£y
6 0 <60 —n-Vioss@d)
7 end
8 end
9 return @ = 6, the label of the target

2.1 Rotary Position Encoding

Convolutional neural networks and recurrent neural networks get the position information by
processing the time series continuously. In contrast, Transformer is a network based on the self-
attention mechanism, which is insensitive to position information and needs to add position coding
to provide position information for time series. Currently, the commonly used position encoding
mainly includes absolute position encoding and relative position encoding. Among them, absolute
position encoding is simple to implement, and the number of parameters and computation is smaller.
However, the encoded absolute position information is too simplified, which limits the representation
of position information, resulting in poor performance in the recognition task. Literature [19] showed
that the relevance of sequence data with closer positions is more substantial, thereby adding relative
position information is more beneficial to extract the relevance of sequence information. To promote
the utilization of relative position information between time series, literature [20] introduced relative
position information between sequences in the attention mechanism. Although the performance is
improved, the implementation process is complex, and the number of parameters and computations
is larger. To achieve a more lightweight relative position encoding, this paper adopts rotary position
encoding to add position information to HRRP sequences.
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Assuming that the HRRP sequence is X = [x,x,...,xy], where N denotes the length of
the sequence. The traditional absolute position encoding adds the position information after the
embedding layer, which is calculated as

S(x, i) = W(x;+p), (1)

where 7 is the position of x;, and p, € R? is a trainable d-dimension position vector that depends on x,.
Absolute position encoding adds mutually independent position information to the sequence data at
each position, requiring a large amount of data training to perform better. Since HRRP sequences
are usually non-cooperative target data with limited data, absolute position encoding will not be
appropriate for solving the HRRP sequence recognition problem.

Relative position encoding is to add relative position information to the self-attention mechanism,
which is calculated as

fc‘/(xm) = qum
ﬁ(xna I’l) = Wk (xn +Pf) (2)
ﬁ(xn’ I’l) = Wv(xn +p:)5

where f,(-), f;(-) and f,(-) denote the functions that compute the query, key, and value of the self-
attention mechanism, respectively, which are used to calculate the correlation between series data,
g, k, v represent query, key, and value of the self-attention mechanism, respectively. p*, p’ € R’ are the
relative position vectors, k and v represent key and value of the self-attention mechanism, respectively,
the relative position vectors depend on the relative distance of positions, ¢ = clip(m — n, I, Fmax)
represents the relative distance between the positions m and n, as the distance between the relative
positions increases, the correlation between the data decreases, and the limit range of c¢ is set as
rmax, D€yONd which the correlation is considered consistent. x,,, x, are the HRRPs of position and
n, respectively. W,, W,, W, are the learnable parameter matrixes of the self-attention mechanism,
respectively.

In pursuit of lightweight relative position encoding, relative position encoding is implemented in
the form of absolute position encoding. After adding to the position matrix, the process of the absolute
position matrix in the self-attention mechanism is calculated as

ayk, = x, W W.x,+x, W . Wp,+p.W.Wx,+p W, Wp,, 3)

The core concept of relative position encoding is to replace the absolute position vector p,
embedded in the third and fourth terms with the relative position vector p,, ,, and to replace the third
and fourth terms with two trainable vectors #" and v". Moreover, the parameter matrixes are replaced
by W, and W, respectively to distinguish between content and position. So the method of calculating
weights by the self-attention mechanism in the relative position encoding becomes

q'k,=x" WZ W.x,+ x. W: wp, ., +u W: W.x, +v' WZ wWp, . 4

To fully use the relative position information in the HRRP sequence to extract the deep temporal
information. This paper adopts rotary position encoding to improve the relative position encoding,
which is a multiplicative encoding to achieve the relative position encoding utilizing absolute position
encoding. The position encoding is calculated as

g(x,,m) = R, Wx,, (5)

O,m
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where the rotary matrix is

rcosmO, —sinmb, 0 0 0 0 7
sinmf, cosmo, 0 0 0 0
0 0 cosmb, — sinmb, 0 0
R‘(f) = 0 0 sinmf, cosmob, - 0 0 , (6)
0 0 0 0 .- cosmby, sinmb,,
K 0 0 0 -+~ sinmb,, cosmb,,

1 . . . .
where ©® = {9, = m,z ell,2,...,d /2]}, the calculation process of rotary position encoding
in the self-attention mechanism is
q?;,kn - (RZ)’,” qum)T(Rz)m kan) - xT WqR:.)Ay,,m kan' (7)

The rotary position encoding utilizes a rotary matrix R, ,, to introduce relative position infor-
mation. The rotary position encoding avoids more learnable parameter matrices, which introduces
relative position information in a more lightweight way.

2.2 Local-Aggregated Attention Unit

HRRP sequence is a particular class of multivariate time series containing rich temporal and
structural information, which is widely used in RATR. However, operations such as adding windows
during target detection make redundant information hidden in HRRP, which will adversely impact
feature extraction and confuse effective target features. Augmenting attention to important regions
of HRRP by using the attention mechanism can effectively suppress the undesirable effects of noisy
regions [16] and improve the effectiveness of feature extraction. To enhance the feature enhancement
and extraction of HRRP sequences, the local-aggregated attention unit is proposed. Unlike most
methods that perform high-dimensional mapping of the input information, LAU downscales the input
HRRP sequences, aggregating the features of local information by local group linear transformations.
Then the aggregated low-dimensional features are globally perceived by the self-attention mechanism,
which effectively enhances the global information extraction ability. Since the HRRP sequence
contains a large amount of redundant noisy information, the shallow high-dimensional mapping
will confuse the noisy information and the target information. Instead, this paper adopts multilayer
local group linear transformations to perform local feature aggregation by first ascending and then
descending the local features. Thus, the low-dimensional aggregated features are more easily processed
by the self-attention mechanism, and the local feature aggregation can effectively improve the ability
of the self-attention mechanism to focus on global information.

Asshownin Fig. 2, LAU consists of local group linear transformations, nonlinear activation, layer
normalization, self-attention mechanism, and residual connection. Feature enhancement is effectively
performed by local feature aggregation and global perception. The encoded vector I = g(X) is used
as the input of LAU, which performs local feature aggregation and global feature enhancement, then
outputs the enhanced features F. In the local feature aggregation stage, assuming that there are total
L layers of grouped linear transformations. The first layer is up-dimensioned, and the remaining
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L — [L/2] layers are down-dimensioned. The specific procedure to calculate the number of groups
in each layer is

1 [min(Z”,nmax), 1 <I1<[L/2]
n —=

nt, Otherwise,

®)

where 7' is the number of groups of the linear transformation of the / th layer, and n,,, is the maximum
value of the number of groups of the linear transformation of the group. The upper limit of the group
value is set to avoid the number of groups being too large. The linear transformation of each layer is
calculated as

I [G(l, W.b.g), =1

= 9
GM(LLH™", W' b,g"), Otherwise, ®)

where M (-) denotes the operation, including residual connection, nonlinear activation function GELU,
and layer normalization. Local feature aggregation can obtain deep local features via first up-
dimensioning and then down-dimensioning the local features. Moreover, the residual connection is
used to avoid the loss of original information in each layer of the local group linear transformation
in the model deepening. Since the low-dimensional aggregated features are facilitated to be processed
by the self-attention mechanism, the local feature aggregation can effectively enhance the ability of
the self-attention mechanism to focus on global information. Finally, the low-dimensional aggregated
features are used as the input of the self-attention mechanism for the global perception operation.

Matmul

Self-Attention

L=3 GELU&LN

GELU&LN

Matmul

0 K 4

GELU&LN

Concat

Mixer

Figure 2: Illustration of the structure of LAU
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The self-attention mechanism conducts long-range modeling by calculating correlations between
HRRP data, which enhances target features with high discriminability and suppresses the undesirable
effects of redundant noisy information, thus effectively performing global enhancement of features
after local aggregation. According to the relevant principles of information retrieval, the self-attention
mechanism calculates the correlation of sequence data by query vector and key vector to obtain the
attention matrix and then calculates the globally enhanced features with the value matrix as

KT
A = SA (H") = Attention (Q, K, V) = softmax (Q ) Vv, (10)
Vi,
where Q = YW, is the query vector, K = YW is the key vector, and V' = YW, is the value vector,
W o, W «,W are the learnable parameter matrixes W, respectively.

Finally, to ensure that the dimensionality of the input and output is consistent, the vector needs to
be up-dimensioned first after the self-attention mechanism processing. At the same time, to avoid the
loss of important features due to the excessive depth of the model, the residual connection is finally
added to retain the vital information in the original features, which can be obtained as

F=1+WA, (11)

where W is the parameter matrix for dimensioning the output of the self-attention mechanism.

2.3 Lightweight Feedforward Neural Network

LAU has a deeper network structure and more significant feature enhancement capability than
the traditional multi-head attention mechanism. Therefore, this paper uses a lightweight feedforward
neural network instead of the traditional feedforward neural network for feature extraction. Assuming
that the dimensionality of the input features F is d,, the traditional FFN (as shown in the left
panel of Fig. 3) adopts the way of first up-dimensioning to 4d, and then down-dimensioning to d,,
for feature extraction, which has a large number of parameters. Since LAU has a significant effect
on feature enhancement, this paper adopts lightweight FFN (shown in the right panel of Fig. 3)
for feature extraction, which consists of a fully connected layer, a nonlinear activation function,
and a residual connection, and is mainly used for feature extraction. The lightweight FFN is first

. . d, . . . .
down-dimensioned to R then up-dimensioned to d,. As for lightweight FFN, the total number of
2 2
parameters is — x 2 = —= for both up- and down-dimensional processes, but the traditional FFN first

up-dimensionalizing to 4d,, and then down-dimensionalizing to d,,, the total number of parameters is
4d> x2 = 8d. Therefore, the lightweight FFN reduces the number of parameters by 16 times compared
with the traditional FFN. The computational process of lightweight FFN for feature extraction is

0,, = Feedforward(F) = F + (Relu(FW, + b))W,+ b,), (12)

where W, b, are the parameter matrix and bias vector at dimensionality reduction, respectively, W, b,
are the parameter matrix and bias vector at dimensionality reduction, respectively, and Relu(-) are the
nonlinear activation functions.
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Figure 3: Illustration of the structure of LW-FFN

Following the stacked layer LAT blocks process, finally using SoftMax as the classifier, the
output is

B _exp (o)
Y = SoftMax (0,) = ———, (13)

2o
k=1

where O,, is the output of the LAT block at the M th layer, exp(-) denotes the exponential function,
and K is the total number of categories.

2.4 Label Smoothing Regularization

Against the background of non-cooperative targets, the current HRRP sequence samples are
limited in quantities. Furthermore, the HRRPs in real scenes are in a complex noise environment, and
there are still some differences in HRRPs of the same targets, which strongly leads to the overfitting
problem in HRRP sequence recognition. To solve the overfitting problem, the Label Smoothing
regularization strategy is adopted [21]. Label Smoothing adds label noise to avoid the model over-
reliance on limited training samples and enhances the generalization performance of the proposed
method for application in real scenes.

When coding the labels of the samples, the probability distribution of the traditional one-hot
coding is

1 i=y
pl_[O i#y. (19

To enhance the generalization performance of the model, one-hot coding is modified to soft
one-hot coding to add fuzzy noise to the labels, thus reducing the weight of real sample labels in
the computational loss. Consequently, the model will not be overly dependent on a limited number
of samples, avoiding falling into local optimal solutions, which finally achieves suppression of the
overfitting problem. Once Label Smoothing is added, the probability distribution of soft one-hot
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labels is
(I1—-¢) i=y

pi= £ . (15)
K_1 i #Y,

where K denotes the total number of categories in the task, i denotes the number of categories, and ¢
is the hyperparameter.

When using the cross-entropy loss function to calculate the loss values between the predicted
values and true values, the cross-entropy loss function is calculated as

K
Loss = — pr log g, (16)

i=1
where p; is the probability of the true value, and ¢; is the probability of the predicted value.

The neural network will optimize the model in the direction of low loss value during the training
process. However, over-reliance on the training set data will reduce the generalization performance of
the recognition task of HRRP sequences in real scenes. The Label Smoothing regularization strategy
will avoid overconfidence in the network, slow down the penalty intensity of the loss, and avoid the
model falling into the local optimal solution, and its loss function for each category is calculated as

1—¢)-L | =
Loss; = ( £) - Loss l Y (17)
e - Loss i#y,

where ¢ is the hyperparameter. In the neural network training process, the optimal prediction
probability distribution is obtained when minimizing the cross-entropy loss values of the predicted
and true values, as

(K- —e) . _
Z, = © Et+a =Y (18)
o i #Y,

where K denotes the total number of categories in the task, ¢ is a hyperparameter, and « is a real
number.

As derived from the prediction probability distribution, Label Smoothing regularization can
increase the tolerance to the existence of errors between the true values and predicted values.
Consequently, Label Smoothing can prevent the model from over-relying on the training set samples,
which can prevent the model from falling into local optimal solutions and enhance the generalization
performance of the model.

3 Experiment Results and Analysis
3.1 Datasets

The MSTAR dataset is a standard dataset widely used for SAR target recognition [7,22,23]. Its
data source is a high-resolution clustered synthetic aperture radar, which operates in the X-band with
a resolution of 0.3m x 0.3 m and HH polarization. The MSTAR dataset includes ten categories of
targets, such as T72, BMP2, and BTR70. The data with a pitch angle of 17° in the dataset is used as
the training set, and the data with a pitch angle of 15° are used as the test set. The azimuth angles
of all targets cover 0~360°. Dataset 1 includes the original MSTAR dataset training set of 2747 SAR
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images, and the test set includes 2348 SAR images. To further test the generalization performance of
the model, this paper adds four variant targets of BMP2 (SN-9563), BMP2 (SN-C21), T72 (SN-812),
and T72 (SN-S7) to the test set to make up dataset 2. Dataset 2 includes 2747 SAR images in the
training set of the original MSTAR dataset and 3203 SAR images in the test set. In this paper, SAR
images are converted into HRRP sequences according to the method specified in reference [24], and
the MSTAR sequence dataset 2 is composed as shown in Table 1.

Table 1: MSTAR sequence dataset 2

Category of training set Training set (17°) Category of test set Test set (15°)
2S1 2990 2S1 2740
BMP2 (SN-9566) 1960
BMP2 (SN-9566) 2330 BMP2 (SN-9563) 1950
BMP2 (SN-C21) 1960
BRDM-2 2980 BRDM-2 2740
BTR70 (SN-C71) 2330 BTR70 (SN-C71) 1960
BTR60 2560 BTR60 1950
D7 2990 D7 2740
T62 2990 T62 2730
T72 (SN-132) 1960
T72 (SN-132) 2320 T72 (SN-812) 1950
T72 (SN-S7) 1910
ZIL131 2990 ZIL131 2740
ZSU23/4 2990 ZSU23/4 2740
Total 27470 Total 32030

The conversion steps are as follows: The dataset is first converted into a complex SAR image,
and then an Inverse Fast Fourier Transform (IFFT) is carried out in the orientation dimension of
the complex SAR image, and the data obtained along the distance dimension is the HRRP complex
sequence. Then the HRRP sequence is obtained after modulo the HRRP complex sequence. 100
HRRP samples could be obtained for each complex SAR image, and the average of every 10 HRRPs
can be obtained as 10 average HRRP samples. Consequently, the training set of the original MSTAR
dataset includes 24,270 HRRP samples, and the test set includes 32,030 HRRP samples.

Assuming that the length of the generated HRRP sequence is L(L < 50), the sliding window
algorithm for generating the HRRP sequence is shown in Algorithm 2.

Algorithm 2: HRRP sequence generation algorithm

Step 1: The azimuth blocks are arranged in order, and to obtain the same number of HRRP
sequences, L — 1 previous azimuth blocks are added after the 50th block, so that the sliding
window data contains a total of 50 + L — 1 azimuth blocks;

Step 2: According to the order of azimuth blocks, the first HRRP sequence shall be taken from
the 1st to the L block, so that the HRRP sequence with the length of L could be obtained;

Step 3: Slide the sliding window down and repeat Step 2 until the whole block is taken;

(Continued)
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Algorithm 2 (continued)

Step 4: Return to the 1st HRRP of the azimuth block, and repeat steps 2 and 3 from the 2nd to
the L + 1 azimuth block in the order of azimuth blocks;

Step 5: Repeat step 4 until 50 azimuth blocks are taken, and then obtain the same number of
HRRP sequences as the HRRP data.

Use the sliding window algorithm to process HRRP data according to the steps shown in Fig. 4.

FRAME 1 FRAME 2 FRAMEL .,  FRAMES0 FRAME 1 -
e T R

Figure 4: Schematic diagram of HRRP sequence generation

As can be seen from Fig. 4, the azimuth angle of 360° is divided into 50 azimuth blocks, and each
block contains 7.2°, in which the sampling interval of each SAR image is 1°, and each SAR image can
be processed, and ten average HRRP samples are obtained, so the sampling interval of each average
HRRP sample is 0.1°. In previous research, denoised and enhanced samples are used as input for
the model, which leads to a poor generalization of the model. In this paper, only the HRRP data are
energy normalized. In real scenes, data of individual angles are often missing due to aircraft motion.
Therefore, the dataset did not interpolate the missing data in the MSTAR dataset, which makes the
data more consistent with the real situation.

After processing by the sliding window method, this paper gets 24,270 HRRP sequence samples
in the training set and 23,480 HRRP sequence samples in the test set from dataset 1; get 24,270 HRRP
sequence samples in the training set and 32,030 HRRP sequence samples in the test set from dataset 2.

The HRRP sequence samples of some targets are shown in Figs. 5a—5h are the corresponding
HRRPs, respectively. It can be seen that MSTAR, as a real-world dataset, sample contains a large
amount of noisy redundant information, which causes greater difficulties and challenges for effective
feature extraction during recognition.

3.2 Recognition Performance Comparison Experiments

To verify the recognition performance of the proposed methods, seven frequently used baseline
methods, LSTM [25], GRU [26], ID-CNN [14], TCN [27], gMLP [28], XCM [29], and Transformer
[30], are selected as comparison methods in this paper. Moreover, the model architecture and
parameters for the comparison experiments were designed according to the references to achieve
optimal model performance. The recognition performance of each method is verified in MSTAR
dataset 1, and the recognition results of the comparison experiments on ten categories of targets are
shown in Table 2.
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Figure 5: Part of samples of MSTAR datasets
Table 2: Recognition accuracy of compare experiments on dataset 1 (%)
LSTM  GRU 1D-CNN TCN gMLP XCM Transformer  Proposed
281 89.4 95.26 99.78 98.46 66.06 97.15 98.56 99.74
(=10.32) (—4.48) (+0.04) (—=1.28)  (=33.68) (=2.59) (—1.18)
BMP2 (SN-9566) 99.95 99.80 99.95 100.00 71.94 99.08 98.74 100.00
(=0.05)  (—=0.20) (—0.05) (0.00)  (=28.06) (=0.92) (—1.26)
BRDM-2 94.64 90.29 98.61 99.74 67.99 99.85 99.96 99.82
(=5.18)  (=9.53) (—1.21) (—0.08) (—31.83) (+0.03) (+0.14)
BTR70 (SN-C71) 82.50 93.62 95.97 86.68 81.73 94.80 99.69 100.00
(=17.5)  (—6.38) (—4.03) (-13.32) (—18.27) (=5.20) (—0.31)
BTR60 99.54 100.00 99.74 100.00 91.69 99.69 98.73 100.00
(=0.46)  (0.00)  (—0.26) 0.00)  (=831) (=0.31) (=1.27)
D7 100.00 100.00 100.00 100.00 97.23 100.00 99.96 100.00
(0.00)  (0.00)  (0.00) (0.00)  (=2.77)  (0.00)  (—0.04)
T62 95.02 94.14 99.89 95.75 89.60 98.06 97.85 99.74
(=4.72)  (=5.60) (+0.15) (=3.99) (—10.14) (=1.68) (—1.89)
T72 (SN-132) 100.00 100.00 100.00 100.00 95.51 100.00 100.00 100.00
(0.00)  (0.00)  (0.00) (0.00)  (—4.49) (0.00)  (0.00)
Z1L.131 85.15 91.24 98.39 97.29 71.82 99.78 99.77 99.45
(-14.3)  (=8.21) (—1.06) (=2.16) (—27.63) (+0.33) (+0.32)
ZSU23/4 99.74 99.89 99.82 100.00 96.97 100.00 99.96 100.00
(=0.26) (—0.11) (—0.18) (0.00)  (=3.03) (0.00)  (—0.04)
Average value 94.48 96.17 99.25 97.94 82.77 98.90 99.32 99.86
(=5.38)  (=3.69) (—0.61) (=1.92)  (=17.09) (=0.96) (—0.54)

As shown in Table 2, the average accuracy of the RLAT proposed in this paper is the highest
for ten categories of target recognition, reaching 99.86%, which is 17.09% better than the gMLP,
more than 3.69% better than the commonly used recurrent neural networks LSTM and GRU, 0.61%
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and 1.92% better than the remarkable performance of convolutional neural networks 1D-CNN and
TCN, respectively, 0.96% better than XCM, 0.54% better than Transformer with the same network
structure. Besides, the proposed RLAT achieves optimal recognition performance on six targets, TCN
achieves optimal performance on five targets, and other methods are less than five, reflecting that
the proposed method is more stable than others. The experimental results show that the recognition
performance of the Transformer and this work are higher than other methods, which indicates that the
long-range modeling information using Transformer can mine the long-range temporal information
and represent the features of HRRP sequences more effectively. In addition, RLAT has powerful local
feature extraction and global perception capabilities, which can extract the local and global multi-level
information between sequences more efficiently than the traditional Transformer, thus achieving the
highest recognition performance.

As shown in Fig. 6, the proposed method has a more stable and balanced recognition performance
for ten categories of targets, and all other methods have certain recognition shortcomings. In particular,
the recognition performance of gMLP and LSTM is very volatile, with a fluctuation range of 31.17%
and 17.50%, the fluctuation range of GRU is 9.71%, the fluctuation range of 1D-CNN and TCN is
4.03% and 13.32%, the fluctuation range of XCM is 5.20%, and the fluctuation range of Transformer
is 2.15%, respectively. In comparison, the maximum fluctuation range of the proposed method is less
than 0.55%. The results illustrate the effectiveness of the RLAT, which can suppress the adverse effects
of noisy information and effectively extract highly distinguishable target features.
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Figure 6: Accuracy of 10 targets in MSTAR dataset 1; the numbers on the x-axis represent ten targets
in dataset 1, respectively

3.3 Robustness Comparison Experiments

For real-world application scenes, HRRP data usually come from non-cooperative targets, which
usually contain variant versions, resulting in the shape configurations of the variant targets being
different from those of the original targets. The recognition performance of the variant targets is an
essential factor in measuring the method’s robustness. The robustness of the proposed method on the
variant dataset is verified by setting up comparison experiments on the dataset MSTAR dataset 2.
Dataset 2 is unchanged compared with the training set of Dataset 1, but about 36% of variant samples
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are added in the test set, which is mainly distributed on the BMP2 and T72 targets, constituting an
unbalanced dataset simultaneously. The experimental results are shown in Table 3.

Table 3: Recognition accuracy of compare experiments on dataset 2 (%)
LSTM GRU 1D-CNN TCN gMLP XCM Transformer Proposed

281 84.49 83.36 99.31 97.55 32.66 99.23 89.51 97.96
(—=13.47) (—14.60) (+1.35) (—=0.41)  (—65.30) (+1.27) (-8.45)

BMP2 (SN-9566) 98.14 89.05 96.70 94.57 46.20 94.63 99.58 99.93
(-1.79)  (-10.88) (—3.23) (=5.36)  (=53.73) (-5.30) (—0.35)

BRDM-2 95.51 93.94 99.45 98.80 69.20 98.28 99.41 99.64
(—4.13)  (-5.70)  (-=0.19) (—=0.84)  (—30.44) (-1.36) (—0.23)

BTR70 (SN-C71) 77.24 93.32 94.74 88.42 70.51 97.40 96.94 100.00
(—22.76) (—6.68)  (—5.26) (—11.58) (—29.49) (—2.60) (—3.06)

BTR60 96.46 94.72 98.36 100.00 68.31 100.00 97.59 99.23
(=277  (—4.51)  (—0.87) (+0.77)  (=30.92) (+0.77) (-1.64)

D7 99.85 99.64 100.00 100.00 86.57 100.00 100.00 100.00
(=0.15)  (-0.36)  (0.00) (0.00) (—13.43) (0.00) (0.00)

T62 91.98 95.86 99.19 92.67 54.95 98.35 99.00 99.93
(=795) (—4.07) (-0.74) (—=7.26) (—44.98) (—1.58) (—0.93)

T72 (SN-132) 97.85 99.85 92.51 97.44 79.05 100.00 99.98 100.00
(—2.15)  (=0.15) (=7.49) (=2.56)  (—20.95) (0.00) (—0.02)

ZIL131 86.57 66.31 99.01 98.72 48.72 97.08 99.41 100.00
(—13.43) (-33.69) (-0.99) (—1.28)  (=51.28) (-2.92) (—0.59)

ZSU23/4 100.00 100.00 99.93 100.00 92.85 100.00 98.88 100.00
(0.00) (0.00) (—0.07) (0.00) (=7.15)  (0.00) (—1.12)

Average value 94.11 92.03 97.35 96.78 64.22 98.25 98.31 99.73
(—5.62) (-7.70)  (—2.38) (=2.95) (=35.51) (—148) (142

As shown in Table 3, the recognition accuracy of each method decreases due to the increased
variant samples and the higher generalization performance required for the model. Nevertheless, the
proposed method still achieves the highest average recognition accuracy of 99.73%, which is only 0.13%
lower compared to dataset 1. gMLP decreases by 18.55%, LSTM, and GRU by 0.37% and 4.14%, 1D-
CNN, and TCN by 1.90% and 1.16%, respectively, and Transformer by 1.01%. At the same time,
RLAT is 35.51% better than the gMLP, more than 5.62% better than the commonly used recurrent
neural networks LSTM and GRU, 2.38% and 2.95% better than the remarkable performance of
convolutional neural networks 1D-CNN and TCN, respectively, 1.48% better than XCM, 1.42% better
than Transformer with the same network structure. In addition, the proposed RLAT achieves optimal
recognition performance on eight targets, while all other compared methods are less than 4, which
is even superior to dataset 1. RLAT has long-range modeling capabilities and dynamically deepens
the model depth by LAU, enabling the extraction of more essential and abstract features. Therefore,
RLAT shows more remarkable stability on the variant dataset, which has a stronger generalization
performance than other methods.

As shown in Fig. 7, the recognition performance of RLAT for the variant dataset is more stable
and balanced, with a maximum fluctuation range of only 2.04%. In comparison, the fluctuation
ranges of the comparison methods LSTM and GRU are 22.76% and 16.64%, 1D-CNN and TCN
are 5.37% and 10.49%, Transformer is 7.49%, XCM is 11.58%, and gMLP is 60.19%, respectively. The
results illustrate that the global temporal features extracted by RLAT are more robust, stable, and
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distinguishable, as well as Label Smoothing can avoid over-reliance on training samples and further
improve the generalization performance to variant samples.
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Figure 7: Accuracy of 10 targets in MSTAR dataset 2; the numbers on the x-axis represent 10 targets
in dataset 1, respectively

3.4 Lightweight Comparison Experiments

RLAT achieves remarkable recognition performance in both the MSTAR standard dataset D
1 and the variant dataset D 2. To verify the lightweight of the proposed method, the number of
parameters and the computational effort for comparing the various methods are shown in Table 4.

Table 4: Recognition accuracy of lightweight compare experiments (%)
LSTM GRU 1ID-CNN TCN gMLP XCM Transformer Proposed

Params (M) 0.53 0.40 0.43 0.51 2.55 1.06 4.98 0.43
Macs (M) 17.07 12.80  88.52 25.19  20.51 53.13  77.76 2.56

As shown in Table 4, the proposed RLAT achieves significant lightweight in terms of the
number of parameters and computation, with 90.90% reduction in the number of parameters and
96.70% reduction in the computation compared to the Vanilla Transformer. Since RLAT uses the
LAU module, the number of parameters and computations is significantly reduced while ensuring
recognition performance. Excluding GRU, the number of parameters of RLAT is smaller than other
comparable models, and the computation of the proposed method is smaller than other comparable
models. In particular, the results show that the computation of 1D-CNN and XCM is severely
increased due to the introduction of convolutional neural networks. As shown in Fig. 8§, RLAT
achieves better recognition performance under the premise of a more lightweight network structure,
which illustrates that RLAT is more favorable for edge devices and real-world application deployment.
As shown in Fig. 8, the relationship between accuracy, number of parameters and computation can
be more intuitively obtained. The experimental results show that RLAT achieves better recognition
performance with a smaller number of parameters and computations.
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Figure 8: The result of lightweight comparison experiments

3.5 Limited Sample Comparison Experiments

HRRP sequence recognition under limited samples is one of the significant challenges currently.
Recognition performance for limited samples is verified for the sequence length of HRRP sequences
and the number of training samples. The limited sequence length can improve the real-time perfor-
mance of the recognition, which achieves the target recognition several times earlier according to the
demand. Then, the limited training samples can effectively verify the generalization performance of
the model under the non-cooperative target conditions, which can effectively reduce the training time.
At the same time, limited samples mean less target information, which has higher expectations on the
feature extraction ability of the model. Comparison experiments are set up to verify the recognition
performance of the proposed method under the limited sample condition using limited-length HRRP
sequence samples and limited training samples. HRRP sequence generation algorithm is used for
the generation of datasets, the length of the HRRP sequence is set as {1,2,4, 8,16}, and the rate
of training samples is set as {1%, 2%, 5%, 10%, 50%, 90%}, respectively. The following abbreviates
MSTAR dataset 1 as D 1 and MSTAR dataset 2 as D 2. The severe experimental conditions are set to
verify the recognition performance of the proposed method under the limited sample conditions, and
the experimental results are shown in Tables 5 and 6.

Table 5: Recognition accuracy for limited sequence length (%)

D1 D2

Methods 1 2 4 8 16 1 2 4 8 16

LSTM 5883 7730 86.76  90.63  92.82 5569 7140 8226  88.68  89.74
(—10.38) (—6.98) (=5.61) (—4.44) (=5.60) (=8.71) (=5.75) (—4.29) (=3.30) (—6.16)

GRU 6400 7851 8707 9178 9514  57.59 7297 8390 9131  92.96
(=521)  (=5.77) (=5.30) (=3.29) (=328) (—6.81) (=4.18) (=2.65) (=0.67) (—2.94)

ID-CNN 6552 7726 8644 9265 9651 6139 7175 8081  88.66  93.81
(=3.69) (=7.02) (=5.93) (=242) (=191) (=3.01) (=540) (=574) (=3.32) (=2.09)

TCN 68.30 8254 8885 9247 9519 6237  76.64 8478  90.87  94.23

(-091) (=174 (-3.52) (-2.60) (—3.23) (-2.03) (-0.51) (=1.77) (—1.11) (-1.67)
(Continued)




236 CSSE, 2024, vol.48, no.1

Table 5 (continued)

D1 D2

Methods 1 2 4 8 16 1 2 4 8 16

gMLP 68.71 6671 7286 8500  89.83  63.58 6596  68.87 7601  79.34
(=0.50) (=17.57) (=19.51) (=10.07) (=8.59) (—0.82) (=11.19) (=17.68) (—15.97) (—16.56)

XCM 67.63 8259  88.47  89.14  96.64 6252 7699 8290  88.73  93.51

(—1.58) (—=1.69) (=3.90) (=5.93) (=1.78) (=1.88) (=0.16) (=3.65) (=3.25) (=2.39)

Transformer ~ 69.51  83.06  91.14 9470  97.58 6554 7744  86.02  91.01  95.02
(+0.30)  (—=1.22) (=1.23) (=0.37) (—0.84) (+1.14) (4+0.28) (—0.53) (—0.97) (—0.88)

Proposed 6921 8428 9237 9507 9842 6440  77.15 8655 9198 9590

Table 6: Recognition accuracy for limited training data (%)

D1 D2
Methods 1% 2% 5% 10% 50% 90% 1% 2% 5% 10% 50% 90%
LSTM 56.54  60.00 63.05 91.31 93.87 9425 4596  50.33  57.78  87.12 9320  94.05
(—39.29) (—39.31) (—36.34) (=8.11) (=5.85) (=5.54) (—47.4) (—46.95) (—41.11) (—11.87) (—6.25) (—5.66)
GRU 60.03  61.51 62.18 8277 93,57 94.86 4935 5262 5346  77.53 9032  91.20

(—35.80) (—37.80) (—37.21) (=16.65) (—6.15) (—4.93) (—44.01) (—44.66) (—45.43) (—21.46) (=9.13) (—8.51)
1D-CNN 9341  96.80 9740 9848 9894 9925 9094 9607 9636 96.56 97.14  97.34
(=2.42) (=2.51) (=1.99) (=0.94) (—0.78) (=0.54) (—2.42) (—1.21) (=2.53) (=243) (=2.31) (=2.37)

TCN 87.95 9059 9563 9601 9633 97.50 8623 89.06 9496 9550 9582  96.01
(—7.88) (=8.72) (=3.76) (=3.41) (=3.39) (=2.29) (=7.13) (—8.22) (=3.93) (=3.49) (=3.63) (—3.70)

gMLP 19.65 23.05 3739 5126 7543 7745 17.61 2054 3553 4840 6098  63.06
(—76.18) (—76.26) (—62)  (—48.16) (—24.29) (—22.34) (=75.75) (—76.74) (—63.36) (—50.59) (—38.47) (—36.65)

XCM 88.03 9272 9600 98.89 9878 98.87 87.37 9200 94.67 96.60 97.45  97.64

(—=7.80) (=6.59) (=3.39) (—0.53) (—0.94) (=0.92) (—5.99) (—5.28) (—4.22) (=2.39) (=2.00) (—2.07)
Transformer 8042  92.14 9559 9561 9836 98.65 7521 89.88  93.97 94.08 96.66 97.81

(—15.41) (=7.17) (=3.80) (=3.81) (=1.36) (=1.14) (—18.15) (=7.40) (—4.92) (—4.91) (=2.79) (—1.90)
Proposed 9583 9931 9939 9942 9972 9979 9336 9728 98.89 98.99 9945  99.71

As shown in Table 5 and Fig. 9, the recognition accuracy of HRRP sequences increases with
sequence length. The proposed method performs more remarkably than other comparative experi-
ments on most short sequences. The recognition performance of RLAT outperforms the methods
except for the Transformer in both the standard dataset D 1 and the variant dataset D 2, which
illustrates that the Transformer-based methods utilize the long-range modeling capability to effectively
extract valid target information from short HRRP sequences and reduce the adverse effects of noisy
redundant information. Since Transformer has a more complex model structure than RLAT and
sequences with lengths 1 and 2 contain less information, the recognition performance is slightly higher
for D 1 with sequence length 1 and for D 2 dataset with sequence lengths 1 and 2. As the sequence
length increases, RLAT can perform feature selection more effectively and discard the adverse effects
of redundant information hidden in HRRP sequences, which can achieve more significant recognition
performance than Transformer. To present the results of the comparison experiments more visually,
the comparison experiments with limited sequence length are shown in Fig. 9.
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Figure 9: Recognition accuracy for limited sequence length of different methods

The Transformer relies on a large number of training samples to improve the recognition
performance, which severely constrains the application of the Transformer in the field of HRRP
recognition. In contrast, the feature enhancement and feature extraction capabilities of the RLAT
are more remarkable and can effectively improve the recognition performance for limited training
samples. To verify the recognition performance of the proposed method under the condition of limited
training samples, the sequence length is set as 32, and the number of training samples is kept at
{1%, 2%, 5%, 10%, 50%, 90%}, respectively, where 1% of the original training set contains only 274
training samples, and the recognition performance is shown in Table 6.

As shown in Table 6 and Fig. 10, the recognition accuracy of HRRP sequences increases with the
increase of training samples. RLAT achieves more remarkable recognition performance than other
methods on the standard dataset D 1 and the variant dataset D 2 with limited training samples. In
particular, RLAT achieves 95.83% accuracy on the MSTAR standard dataset D 1 when the training
set is only 1% of the original training set. Compared to Transformer, the accuracy is improved by
15.41%, compared to the gMLP, improved by 76.18%, compared to LSTM and GRU, improved by
more than 35.80%, compared to TCN, 1D-CNN, and XCM, improved by more than 2.42%. RLAT
achieves 93.36% accuracy in variant dataset D 2 when the training set is only 1% of the original training
set. Compared to Transformer, the accuracy is improved by 18.15%, compared to the gMLP, improved
by 75.75%, compared to LSTM and GRU, improved by more than 44.01%, compared to TCN, 1D-
CNN, and XCM, more than improved by 2.42%. RLAT can extract valid information from limited
samples more efficiently, while Transformer exhibits severe sample dependence and performs poorly
in limited sample experiments. In addition, the vulnerability of gMLP in limited sample recognition
tasks is also reflected by its near failure at low sample amounts.

RLAT can achieve remarkable recognition when the training sample is only 274, while other meth-
ods are more dependent on the number of samples and seriously affect the training performance when
the training sample plummets. The results indicate that RLAT has more outstanding generalization
under the limited sample condition and can more effectively recognize HRRP sequences under non-
cooperative targets. Since RLAT utilizes LAU for feature enhancement, which can extract local and
global multi-level features and dynamically adjust the model depth, making feature extraction more
effective. At the same time, Label Smoothing can reduce the dependence of RLAT on training samples
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and enhance the generalization performance, so that RLAT can still efficiently recognize variant
targets under limited sample conditions. To present the results of the comparison experiments more
visually, the comparison experiments with limited training data are shown in Fig. 10.
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Figure 10: Recognition accuracy for limited training data of different methods

3.6 Position Encoding Comparison Experiments

RLAT is a network based on the self-attention mechanism, which is insensitive to the position
information of HRRP sequences. Hence, position encoding is necessary to add position information to
HRRP sequences for more efficient time-series feature extraction. Currently, commonly used position
encoding mainly includes absolute position encoding and relative position encoding. Absolute position
encoding LAPE [31] and relative position encoding T5 [19], XLNET [32] and DEBERTa [20], and
Rotary Position Encoding (RoPE) [33] are selected for comparison experiments to verify the different
validity for HRRP sequence recognition. The experimental results are shown in Table 7.

Table 7: Recognition accuracy of different positional encoding methods (%)

D1 D2
Methods T5  XLNET DEBERTa LAPE RoPE T5  XLNET DEBERTa LAPE RoPE
RLAT  99.64 99.67 99.74 99.39 99.86 98.39 98.05 98.05 98.50  99.73

As shown in Table 7, for standard dataset D 1, RoPE achieves 99.86% recognition accuracy,
which is more than 0.12% better than other relative position encoding methods and 0.45% better than
absolute position coding, and the recognition accuracy of relative position encoding is slightly higher
than that of absolute position encoding. For variant dataset D 2, RoPE achieves 99.73% recognition
accuracy, which is more than 1.34% better than other relative position encoding methods, and 1.23%
better than the absolute position encoding method. However, the recognition accuracy of absolute
position encoding is slightly higher than relative position encoding.

To analyze the recognition performance of various position encoding methods more visually,

Fig. 11 shows the recognition performance of 5 position encoding methods for the standard dataset
DI.
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Figure 11: Confusion matrix for different positional encoding methods on D 1

As shown in Fig. 11, for the MSTAR standard dataset D 1, which contains ten categories of
military targets, RoPE achieves optimal recognition accuracy for eight categories of targets with
a maximum fluctuation in the accuracy of 0.55%, XLNET achieves optimal performance for six
categories of targets with a maximum fluctuation of 2.30%, TS5 achieves optimal performance
for five categories of targets with a maximum fluctuation of 1.33%, DEBERTa achieves optimal
performance for five types of targets with a maximum fluctuation of 1.43%, and LAPE achieves
optimal performance for five types of targets with a maximum fluctuation of 3.58%. The results
show that the recognition performance of RoPE is significantly better than other methods because
RoPE has the advantages of both absolute position encoding and relative position encoding, which is
more conducive to extracting temporal features. Meanwhile, relative position encoding not only has a
higher accuracy than the absolute position encoding method but also has a more balanced recognition
performance. Since relative position encoding can extract the relative information between HRRP
sequences more effectively, it is beneficial to extract the temporal correlation.

As shown in Fig. 12, for the MSTAR variant dataset D 2, variant targets were added to the test
set. RoPE achieved optimal recognition performance for eight categories of targets with a maximum
fluctuation in the accuracy of 2.04%, XLNET achieved optimal performance for three categories of
targets with a maximum fluctuation of 5.73%, TS5 achieved optimal performance for three categories
of targets with a maximum fluctuation of 3.58%, DEBERTa achieved optimal performance for
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three categories of targets with a maximum fluctuation of 6.13%, and LAPE achieves the optimal
performance for three categories of targets with a maximum fluctuation of 6.13%. The results show
that the recognition performance of RoPE is significantly better than other methods. Furthermore,
the average recognition accuracy of absolute position encoding is higher than other relative position
encoding methods. Since the variant dataset has 36% more variant samples, which requires a higher
generalization of the recognition method, relative position encoding introduces more parameters in the
self-attention mechanism, leading to an overfitting problem in the recognition of variant samples. As
ROPE has the advantages of both absolute relative position encoding and relative position encoding,
which is more conducive to the extraction of temporal features and more robust to variant samples.
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Figure 12: Confusion matrix for different positional encoding methods on D 2

3.7 Effect of Significant Hyperparameters

Hyperparameters play a crucial role in deep learning models. For RLAT, the three hyperparam-
eters of LAU mapping dimension E, the number of stacked layers of LAT M, and the maximum
depth of LAU are essential to the model performance, among which the width of a single LAU can
be effectively controlled by E, and the number of stacked layers of LAT and the maximum depth of
LAU can affect the feature extraction ability of the model in terms of model depth. Meanwhile, three
hyperparameters are coupled with each other, so the three hyperparameters are combined to verify
their effects on the model. Set the range of mapping dimension Embedding = {64, 128,256, 512}, the
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range of stacking layers M = {1,2,3,4,5,6,7, 8}, and the L. L AU maximum depth L = {2, 4,6, 8§, 10},
where Figs. 13a—13c show the experimental results in MSTAR standard dataset D 1 and Figs. 13d—13f
show the experimental results in MSTAR variant dataset D 2.
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Figure 13: The influence of essential hyperparameters

For the MSTAR standard dataset D 1, as shown in Fig. 13a, the recognition performance of the
proposed method increases with the increase of and L. Since the width and depth of LAU increase with
the increase of E and L, which can extract richer and more abstract features. As shown in Fig. 13b,
the recognition performance of the proposed method shows an increasing trend with the increase of F
and shows an increasing and then decreases trend with the increase of M, which shows that too heavy
stacking of LATs will harm the recognition performance instead. Too deep models will lead to a sharp
increase in the number of parameters, resulting in a severe overfitting problem of the model. As shown
in Fig. 13c, the recognition performance of the proposed method tends to increase and then decrease
with the increase of M, and shows a slow growth trend with the increase of L. It can be concluded
that and L mainly affects the width and depth of LAUs, so they show a positive correlation. While M
controls the depth of the whole model, it shows a trend of first increasing and then decreasing. When
M = 2, the recognition performance is the best. Since the HRRP sequence contains a large number
of noisy regions, too deep models can lead to increased overfitting problems.
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For the MSTAR variant dataset D 2, the generalization performance of the model is considered to
be more challenging due to the addition of a large number of variant samples. As shown in Fig. 13d,
the recognition performance of the proposed method tends to increase and then decrease with the
increase of E and , because the width of LAU and depth of LAT increase with the increase of £ and
L, which can extract richer and more abstract features. However, the overfitting problem will be more
significant on the variant dataset with increased parameters. As shown in Fig. 13¢, the recognition
performance of the proposed method shows a trend of increasing and then decreasing with the increase
of E and M. The appropriate model width and depth are beneficial to enhance the feature extraction.
However, as the width and depth of the model increase, it will lead to a dramatic increase in the
number of parameters and aggravate the overfitting problem on the variant dataset. As shown in
Fig. 13f, the recognition performance of the proposed method shows a trend of increasing and then
decreasing with the increase of M and L. It can be concluded that, unlike the standard dataset, there
are certain differences between the training set samples and test set samples in the variant dataset,
which are highly susceptible to overfitting problems. Therefore, when the width and depth of the
model increase, it shows a trend of first increasing and then decreasing. The recognition performance
is best when £ = 128, M = 2,L = 6. Models that are too wide and deep will extract a large
amount of redundant noise information, which can lead to the aggravation of overfitting problems.
The research on the variant dataset is the practical demands. Considering the complex real-world
circumstances, researching variant datasets is more relevant and necessary. We will investigate the
influence of different scales of variant datasets in future work.

3.8 The Visualization of Feature Extraction

To verify the effectiveness of the proposed method for feature extraction, the features are
visualized using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which reduces
the features to 2 dimensions. Figs. 14a—14b show the original feature distribution and the feature
distribution extracted by RLAT for dataset D 1, respectively, and Figs. 14c—14d shows the original
feature distribution and the feature distribution extracted by RLAT for dataset D 2, respectively.
Fig. 14a shows the distribution of the original features of the ten categories of targets with a high degree
of sample overlap and poor discrimination. After feature extraction by RLAT, the feature distribution
of Fig. 14b is highly distinguishable, with small intra-class distance and large inter-class distance,
which is significantly distinguishable. The distribution distinguishability of the original features of
Fig. 14c is poorer compared with Fig. 14a because many variant samples are added, leading to more
serious sample confusion and increasing classification difficulty. Fig. 14d has a higher distinction
of feature distribution with a significant improvement compared to Fig. 14c, which can effectively
achieve the recognition task. Both the feature distributions in Figs. 14b and 14d achieve significant
distinguishability compared to the original distribution, illustrating the effectiveness of RLAT feature
extraction. Since LAU can deepen the model depth dynamically, it is conducive to extracting the
essential abstract features of HRRP sequences and can achieve a more effective temporal feature
representation.
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4 Conclusions

This paper explores the application of Transformer in HRRP sequence recognition, and proposes
a lightweight Transformer-based HRRP sequence recognition method called RLAT, which utilizes a
more lightweight rotary position encoding, local-aggregated attention units, lightweight feedforward
neural networks, and Label Smoothing to outperform other baseline methods in real scenes signifi-
cantly. Besides, RLAT effectively reduces the number of parameters and computation of the model,
which helps the application and deployment in edge devices. This paper also explores the recognition
performance of the proposed method under variant targets and limited samples, and verifies that the
generalization performance of the proposed method is significantly better than other methods. Finally,
this paper further investigates the effect of position encoding on recognition performance and the
effect of essential hyperparameters of the proposed method, which shows that RoPE can represent the
relative position information between temporal features more effectively than other position encoding
methods, and the hyperparameters have a significant impact on the recognition performance of RLAT,
especially the number of stacked layers of LAT. Future work will further improve the lightweight level
of the model, improve the recognition performance of the model under limited samples and variant
targets, and extend the proposed method to the research work on open-set recognition of HRRP.
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