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ABSTRACT

Federated learning is a distributed machine learning framework that solves data security and data island problems
faced by artificial intelligence. However, federated learning frameworks are not always secure, and attackers can
attack customer privacy information by analyzing parameters in the training process of federated learning models.
To solve the problems of data security and availability during federated learning training, this paper proposes an
Efficient Differential Privacy Federated Learning Algorithm based on early stopping mechanism (Efficient DP-FL).
This method inherits the advantages of differential privacy and federated learning and improves the performance
of model training while protecting the parameter information uploaded by the client during the training process.
Specifically, in the federated learning framework, this article uses an adaptive DP-FL method for gradient descent
training, which makes the model converge faster than traditional stochastic gradient descent. In addition, due to
model convergence, noise should be reduced accordingly. This paper introduces an early stopping mechanism to
improve data availability. This paper demonstrates the performance improvement of the Efficient DP-FL algorithm
through simulation experiments on real MNIST and Fashion-MNIST datasets. Experimental show that the efficient
DP-FL algorithm is significantly superior to other algorithms.
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1 Introduction

In recent years, with the rapid development of machine learning technology, smart devices have
generated massive amounts of data. Machine learning [1–5] techniques are widely used to process
these data. However, centralized machine learning requires enormous computing power and attracts
centralized attacks. To save computing power and ensure the confidentiality of the client’s local
private data, a feasible solution is to put the client’s locally trained model into the federated learning
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framework for processing. Since federated learning trains data locally and does not upload private
data, the privacy overhead of the client is effectively reduced. Therefore, federated learning is widely
used in the Industrial Internet of Things [6–10], Blockchain [11–15], and Smart Healthcare [16–18].

Although federated learning can effectively prevent the leakage of users’ local private data,
adversaries can still attack the model by analyzing the parameters of the local federated learning model
[19–25]. Therefore, ensuring the privacy and security of users’ local data is a challenge.

To address this issue, DP is widely used for privacy protection in deep learning [26–29]. For
example, Abadi et al. [30] proposed to use DP for deep learning and developed a new differential
privacy stochastic gradient descent (DP-SGD) algorithm. Lee et al. [31] improved upon DP-SGD
and allocate a privacy budget in each training session. Recently, DP has also been used in federated
learning scenarios [32–35]. For example, Wei et al. [32] proposed to use DP for federated learning
and proposed a new framework (NbAFL) based on differential privacy federated learning by adding
Gaussian noise before the parameter aggregation of the client model. Xu et al. [33] proposed an
Adaptive Fast Convergent Learning Algorithm (ADADP) with a provable privacy budget, when the
client participates in model training, the model can show good training performance at a fixed privacy
level. Truex et al. [34] proposed a hybrid approach based on DP and Secure Multi-Party Computation
(SMC) to prevent inference attacks and generate the better models. However, this also consumes more
communication resources. Therefore, it is necessary to design a more efficient differential privacy
federated learning algorithm.

To address these challenges, this article proposes an efficient differential privacy federated learning
method based on an early stopping mechanism. To summarize, our contributions to this paper focus
on three points:

• An Efficient DP-FL algorithm was proposed. Specifically, the algorithm inherits the advantages
of differential privacy and federated learning and protects the actual parameters uploaded by
the client during the training process.

• The Efficient DP-FL algorithm adds an early stopping mechanism to reduces unnecessary noise
and improve the availability of the data.

• The efficiency of the proposed method is shown through theoretical analysis and simulation
experiments.

The rest of this paper is organized as follows. In Section 2, some initial preparations for our
algorithm are provided. Section 3 proposes an efficient differential privacy federated learning scheme
based on an early stopping mechanism, and Section 4 conducts privacy analysis. Experiments is
in Section 5. Section 6 gives the conclusion. The basic concepts and meanings of the symbols are
summarized in Table 1.

Table 1: Summary of main natation

M A randomized algorithm for DP

m,n Adjacent datasets
ε, δ The parameters related to differential privacy
Ui The i-th client
D The dataset held by all the clients
Di The dataset held by the owner Ui

(Continued)
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Table 1 (continued)

M A randomized algorithm for DP

|.| The cardinality of a set
N The number of all clients
H Lot size for local training once
t The subscript of the t-th communication round
T The number of communication rounds is T
Fi (Di, w) The loss function from the i-th local client
w0 Initial model parameters of the global model
wt Local training parameters in t-th communication round
w The vector of model parameters
w∗ The optimal parameters that the local loss function

2 Preliminaries

2.1 Federated Learning

Let us observe the system of FL consisting of N clients and an aggregation server, as shown in
Fig. 1. Di represents the dataset of the local client Ui, i ∈ {1, 2, · · · , N} . The task of the aggregation
server is to train the model from the relevant parameter information of the local clients. The training
of the local client aims to find the optimal vector w of the model to minimize some loss function. In
general form, the weight that the server aggregate receives from N local clients is as follows:

w =
∑N

i=1
piwi (1)

Figure 1: A differential privacy federated learning training model with the hidden adversary

where w is the parameter vector aggregated by the server, wi is the parameter vector trained on the

i-th client, and N is the number of all clients. pi = |Di|
|D| ≥ 0,

∑N

i=1 pi = 1, |D| = ∑N

i=1 |Di| is the total

number of all datasets, Di is the dataset of the i-th local client. Fi(.) is the loss function of the i-th local
client, The optimization task of federated learning can be expressed as:

w∗ = argmin
w

∑N

i=1
piFi (Di, w) (2)
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The steps of each round of the training process of the federated learning general system are as
follows:

• Local training: All local clients use local samples to update the model based on the original
data, and send the locally trained model parameters to the aggregation server.

• Model aggregation: The server aggregates and averages the parameters uploaded by each local
client and updates the global model.

• Parameters broadcasting: The aggregation server broadcasts the updated the current parameters
to each local client.

• Model updating: Each local client updates the local model with the latest parameters received
and tests the performance of the current model.

2.2 Threat Model

In this paper, the server is assumed to be honest but curious. Although the single dataset of the i-th
client is stored locally in FL, the parameter wi needs to be shared with the aggregation server, which
may disclose the client’s private. Therefore, semi-honest models are vulnerable to member inference
attacks and attribute inference attack. Specifically, an adversary can perform attribute inference
attacks by extracting training data during model training or by extracting feature vectors of training
data [36–40]. For example, Salem et al. [41] proposed a hybrid generative model, which assumes that
the adversary has black-box access to the model and has specific samples as prior knowledge, the
adversary can judge whether the training set of the model contains feature samples, and thus initiate
Membership inference attack. Lacharité et al. [42] proposed an approximate attribute inference attack,
which is a method to enable range queries when the model provides little security. To sum up, the
adversary may launch inference attacks based on the parameter information obtained during model
training. Therefore, the threat model presented in this article is reasonable.

2.3 Differential Privacy

In recent years, DP has become a standard concept for federated learning privacy protection and
has been widely used in federated learning data analysis tasks.

Definition 1: (ε, δ)−DP: A randomized algorithmM : χ → Rwith domain χ and rangeR satisfies
(ε, δ) − DP if for any two adjacent datasets m,n ∈ χ and for all measurable sets O ∈ R, it holds that

Pr [M (m) ∈ O] ≤ eεPr [M (n) ∈ O] + δ (3)

A Gaussian mechanism defined in [33] can be used to guarantee (ε, δ) − DP.

3 The Proposed Approach

To reduce privacy costs and improve the model convergence rate, Efficient DP-FL uses an adaptive
learning rate for the gradient descent training model. In addition, Efficient DP-FL adds Gaussian
noise to the gradient, and the gradient performs adaptive noise processing according to the adaptive
learning rate, thereby improving the performance of model training. To further mitigate the impact of
noise on model performance, the algorithm introduces an early stopping mechanism. The following
will introduce the Efficient DP-FL method and give its differential privacy guarantee.
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3.1 Adaptive DP-FL

The gradient descent method is commonly used to train deep learning models. The goal of training
the model is to obtain the smallest loss function value. To minimize the local loss function, usually a
subset of the data is randomly selected and the parameter wt+1 ← wt−α∇wtFi (xi, wt) . The learning rate
determines the step of the gradient descent update. If the learning rate is too large, it will fall into the
dilemma of the local optimal solution. If the learning rate is too small, it will take a long time to obtain
the optimal solution. Therefore, how to set an appropriate learning rate to avoid falling into a local
optimal solution is a challenge we face. Relevant scholars have proposed more advanced optimizers,
such as Adadelta, Adagrad, RMSProp, etc., to solve the above problems, and they update parameters
by adaptively adjusting the learning rate.

Efficient DP-FL uses an approach similar to adaptive gradient descent with the Adam optimizer.
The framework proposed in this paper is not only suitable for other types of gradient descent, but also
for adaptive gradient descent with added noise.

Theorem 1: For any ε ∈ (0, 1), c2 > 2 ln(1.25/δ), the Gaussian Mechanism parameter σ ≥ cΔf /ε

is (ε, δ) − DP.

To ensure that the Gaussian noise distribution ξ ∼ N(0, σ 2) satisfies (ε, δ)−DP, Dwork et al. [43]
choosed the noise range σ ≥ cΔf /ε and the c ≥ √

2 ln(1.25/δ), here N denotes the noise distribution,
ε ∈ (0, 1) denotes the additive noise value of a particular data in the dataset, Δf is the sensitivity,
Δf = maxm,n∈χ ‖f (m) − f (n)‖2, and δ is the probability of breaking the strict differential privacy.
Theorem 1 is proved as follows:

Proof . There is a dataset D and a query function f , and the mechanism will return f (d) + ξ,
where the Gaussian noise is normally distributed. The noise N(0, σ 2) is added. For now, assume f is a
real-valued function, so

Δf = Δ1f = Δ2f (4)

To study the different probability of adjacent dataset D and D′, the probability is obtained by the
noise generation algorithm. The numerator in the ratio above describes the probability of observing
f (d) + x when the dataset is D, and the denominator corresponds to the probability of observing this
same value when the dataset is D′. the privacy loss is:

ln
e(−1/2σ2)x2

e(−1/2σ2)(x+Δf )2
(5)

Furthermore, looking at the absolute value.∣∣∣∣∣ln e(−1/2σ2)x2

e(−1/2σ2)(x+Δf )2

∣∣∣∣∣ =
∣∣∣ln e(−1/2σ2)[x−(x+Δf )2]

∣∣∣ =
∣∣∣∣ 1
2σ 2

(2xΔf + Δf 2)

∣∣∣∣ (6)

whenever x < σ 2ε/Δf −Δf /2, the quantity is bounded by ε To ensure privacy loss bounded by ε , with
a probability of at least 1 − δ, it is required that:

Pr
[|x| ≥ σ 2ε/Δf − Δf /2

]
< δ (7)

assume that ε ≤ 1 ≤ Δf , using the tail bound.

Pr [x > t] ≤ σ√
2π

e(−t2)/2σ2
(8)
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σ√
2π

1
t

e(−t2)x2
< δ/2 (9)

⇐⇒ ln
(

t
σ

)
+ t2

2σ 2
> ln

(
2/

√
2πδ

)
(10)

Taking t = σ 2ε/Δf − Δf /2,we get

ln
((

σ 2ε/Δf − Δf /2
)
/σ

) + (
σ 2ε/Δf − Δf /2

)2
/2σ 2 > ln

(
2/

√
2πδ

)
= ln

(√
2
π

1
δ

)
(11)

Let us write σ = cΔf /ε, then.

1
σ

(
σ 2 ε

Δf
− Δf

2

)
= 1

σ

[
c2

(
(Δf )

2

ε2

)
ε

Δf
− Δf

2

]
= c − ε

2c
(12)

when ε ≤ 1 and c ≥ 1, we can obtain
(

c − ε

2c

)
≥ c − 1

2
. So ln

(
1
σ

(
σ 2

ε

Δf
− Δf

2

))
> 0 provided

c ≥ 3
2

. Therefore focus on the
t2

σ 2
term.(

1
2σ 2

σ 2ε

Δf
− Δf

2

)2

= 1
2σ 2

[
Δf

(
c2

ε
− 1

2

)]2

= 1
2
(c2 − ε + ε2/4c2) (13)

Due to ε ≤ 1, the derivative of (c2 − ε + ε2/4c2) concerning for to c is positive in the scope we are

considering
(

c ≥ 3
2

)
, so

(
c2 − ε + ε2/4c2

) ≥ c2 − 8/9 and it suffices to ensure.

c2 − 8/9 > 2 ln

(√
2
π

1
δ

)
(14)

In order words, it needs that

c2 > 2 ln

(√
2
π

)
+ 2 ln

(
1
δ

)
+ ln

(
e

8
9

)
= ln

(
2
π

)
+ 2 ln

(
1
δ

)
+ ln

(
e

8
9

)
(15)

which, since (2/π)e8/9 < 1.55, is satisfied whenever c2 > 2 ln(1.25/δ).

Let R = R1 ∪ R2, where R1 = {x ∈ R : |x| ≤ cΔf /ε} and R2 = {x ∈ R : |x| > cΔf /ε}. For any
subset S ∈ R, x ∼ N(0, σ 2), and define

S1 = {f (x) + x|x ∈ R1} (16)

S2 = {f (x) + x|x ∈ R2} (17)

Pr [f (x) + x ∈ S] = Pr [f (x) + x ∈ S1] + Pr [f (x) + x ∈ S2] ≤ eε(Pr[f (x) + x ∈ S1]) + δ (18)

yielding (ε, δ) − DP for the Gaussian mechanism in one dimension.

Lemma 1: M(x) � f (x) + N(0,
(√

2Δf σ
)2

, Let ε ∈ (0, 1) be arbitrary. For c2 > ln(1.25/δ), the

Gaussian Mechanism with parameter σ ≥ cΔf /ε is (ε, δ)−DP, where N(0,
(√

2Δf σ
)2

) is a Gaussian

distribution with mean 0 and standard deviation
√

2Δf σ . When δ > 1.25exp(− (σ ε)
2
) and ε < 1, the
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Gaussian mechanism is applied to the real-valued function f with sensitivity Δf satisfies (ε, δ) − DP.
Lemma 1 is proved as follows:

Based on the proof of Theorem 1. we have the Gaussian noise distribution in this paper is subject

to x ∼ N(0,
(√

2Δf σ
)2

), when c2 > 2 ln(1.25/δ), we have

(√
2Δf σ

)2

≥ c2 (Δf )
2

ε2
> 2 ln(1.21/δ)

(Δf )
2

ε2
(19)

Namely,

δ > 1.25e−σ2ε2
(20)

Considering the above differential privacy mechanism, the noise scope affects the privacy cost of
the client and the convergence speed of the federated learning training process. Therefore, choosing
the appropriate noise level remains a significant research problem. In this paper, the distribution of

adding Gaussian noise to the gradient obeys the normal distribution N
(

0,
(√

2Δf σ
)2

)
.

3.2 Early Stopping

The early stopping mechanism its commonly used regularization technique in deep neural
networks, and its performance is usually better than general regularization methods. Its popularity is
mainly due to its effectiveness and simplicity. The model stores and updates the current best parameters
during training. When the error on the validation set does not improve further within a pre-specified
number of iterations, the algorithm terminates and uses the last best parameters. This process is more
formally described in Algorithm 1.

When training large models with sufficient representational power to the point of overfitting, we
often observe that the training error gradually decreases over time but the validation error rises again.
The early stopping mechanism is mainly a trade-off between training time and generalization error.
It reduces communication overhead while obtaining optimal parameters. And because the algorithm
reduces the number of communications, thereby also reducing the noise, the introduction of the early
stopping mechanism improves the utility of the data.

3.3 Efficient DP-FL and Main Results

To protect the safety of parameters during federated learning training, it can be considered to add
Gaussian noise to each sample gradient. However, adding too much Gaussian noise to the parameters
can destroy the performance of the model. Therefore, we need to control the impact of parameter
training on model performance during federated learning training. This approach has been extensively
studied in previous work [30,33,44], and we make some modifications, especially about the privacy
budget. Its training process is shown in Algorithm 2.

Algorithm 1: General early stopping mechanism
Input: n: Indicates the number of steps in the evaluation interval. p: Indicates patience, that is,

it terminates after observing the worse performance of the validation set P times. θ0 is the
initial parameter.

1: θ ← θ0

2: i ←0
(Continued)
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Algorithm 1 (continued)
3: j ← 0
4: v ← ∞
5 θ ∗ ← θ

6: i∗ ← i
7: while j < p do
8: run the training algorithm for n steps and update θ

9: i ← i + n
10: v′ ← ValidationSetError (θ)

11: If v′ < v then
12: j ← 0
13: θ ∗ ← θ

14: i∗ ← i
15: v ← v′

16: else
17: j ← j + 1
18: end if
19: end while
Output: The optimal parameter θ ∗, the optimal number of training steps i∗

4 Privacy Analysis

Many researchers have studied the loss of privacy under specific noise. For example, Beimel et al.
[45] proposed a privacy amplification theorem, where q = L/N is the sampling ratio, where each
step is satisfying (qε, qδ) − DP. Furthermore, Dwork et al. [43] proposed the strong combination
theorem, where each step satisfies (qε

√
Tln (1/δ), Tqδ) − DP in the case of sampling. However, the

strong combination theorem does not take into account the specific noise distribution. Therefore, we
adopt the moment account method of Abadi et al. [30] and show that for a specific range of noise
and threshold values, Algorithm 2 satisfies (qε

√
T, δ) − DP. Compared with the strong combination

theorem, the moment account method of Abadi et al. [30] and show that for a specific range of noise
and threshold values, Algorithm 2 satisfies (qε

√
T, δ) − DP. Compared with the strong combination

theorem, the moment account makes both bounds tighter, reducing the
√

ln (1/δ) and Tq parts of δ in
the privacy budget ε. Therefore, applying the method of moment account leads to tighter bounds and
thus obtains a more accurate estimate of the overall privacy loss.

O denotes the output result and the random variable Q(O,M,m,n) denotes the privacy loss,
defined as:

Definition 2: At s, Q (O,M,m,n) � log
Pr [M (m)]
Pr [M (n)]

The moment mother function of the privacy loss random variable is:

Definition 3: αM(γ ;m,n) � logEO∼M(d)[exp(γ Q(O,M,m,n)].
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Algorithm 2: Efficient DP-FL
Input: Example {x1, . . . , xN}, loss function Fi(xi, wt), learning rate ε = 0.001, noise scale σ , local
clipping threshold C, The number of communication rounds T , α = 0.001, and numerical stability
constant τ = 10−8, the Decay rate for moment estimates ρ1 = 0.9, ρ2 = 0.999, With ρt

1 and ρt
2, we denote

ρ1 and ρ2 to the power t. Θ = 0.001, P indicates patience, P = 7 (The number of times the verification
loss has been worse than the previous round for 7 consecutive rounds), V(wt) is the verification loss
for round t, V(wt+1) is the verification loss for round t + 1.
1: Initialize: w0 randomly, s ← 0, r ← 0, t = 0
2: While did not meet early stopping criteria do
3: While t< T do
4: Take a random sample Ht with sampling probability H/N
5: for i ∈ H do
6: Compute gradient
7: for each i ∈ Ht, gt(xi) ← ∇WtFi(xi, wt)

8 Clip gradient

9: gt(xi) ← gt (xi) / max
(

1,
‖gt(xi)‖ 2

C

)
10: Add Gaussian noise

11: g̃t ← 1
H (igt (xi)) + N(0, σ 2C2)

12: Update the biased first-moment estimate by
13: s ← ρ1s + (1 − ρ1) .g̃t

14: Update the biased second-moment estimate by
15: r ← ρ2r + (1 − ρ2).g̃t � g̃t

16: Compute the bias-corrected first-moment estimate by

17: s̃ ← s
1 − ρt

1

18: Compute the bias-corrected second-moment estimate by

19: r̃ ← r
1 − ρt

2

20: Update the local parameters and upload them to the server
21: wt+1

i ← wt
i −

ε√
r̃ + τ

.s̃

22: end for
23: The server updates the global model wt+1 by
24: wt+1 = ∑

i∈H piwt+1
i

25: The server broadcasts the global model
26: If V(wt) − V(wt+1) < Θ, P = 7 then
27: Stopping Training
28: end if
29: t = t+1
30: end while
31: end while
32: Return: wT

γ is any positive integer, to satisfy the definition of differential privacy, it is necessary to iterate
over all m,n prime to obtain αM(γ ), which we define as:
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Definition 4: αM(γ ) � max
d,d′ αM(γ ;m,n)

Theorem 2: Let αM(γ ) be defined as above; ε > 0, the random algorithm Mis(ε, δ) − DP for

δ = min
γ

exp(αM(γ ) − γ ε) (21)

According to Definitions 2, 3 and 4, we can prove Theorem 2, the proof is as follows:

Proof . We have Pr[Q(O)≥ε]

O∼M(m)
≤ δ, then

Pr [Q (O) ≥ ε]
O ∼ M (m)

= Pr [exp (γ Q (O)) ≥ exp (γε)]
O ∼ M (m)

(22)

(Markov’s): P{x ≥ a} ≤ E(x)

a
, we have

Pr [exp (γ Q (O)) ≥ exp (γε)]
O ∼ M (m)

≤ EO∼M(m) [exp (γ Q (O))]
exp (γε)

≤ exp (α − γε) ≤ δ (23)

So, for any ε > 0, δ = min
γ

exp(αM(γ ) − γ ε), the mechanism M is (ε, δ) − DP.

In each training iteration, the entire dataset satisfies (qε, qδ) − DP based on random sampling.
Assume that the clipping threshold C and noise σ are properly chosen using the method moment
account method. In this case, it can be proved that Algorithm 2 satisfies (qε

√
T, δ) − DP, according

to Definitions 2, 3, 4, where T denotes the total number of iterations.

5 Experimental Results and Comparison

5.1 Experimental Results

This section conducted extensive comparative experiments on the MNIST and the Fashion-
MNIST datasets to evaluate the performance of the proposed Efficient DP-FL scheme. As a baseline
for comparison, we choose to compare with the state-of-the-art research scheme [30,33,44]. Finally,
the experiment is completed under the NVIDIA GeForce RTX 2080TI GPU (64 GB RAM) and
Windows 10 system, and the model training is conducted under the PyTorch framework. Experiments
have shown that the Efficient DP-FL method is better than previous research methods.

Experimental settings: The experiment uses the MNIST handwritten digit recognition and the
Fashion-MNIST clothing classification dataset. Both datasets consist of 70000 sheets 28 × 28
grayscale image, all of which are divided into 10 categories, with 60000 samples used for training and
10000 samples used for testing. This paper uses a shallow CNN, which consists of two convolutional
layers and two fully connected layers. Convolutional Layer Use 5 × 5 convolutions with stride 1.
The first convolution outputs 12 for each image 6 × 6 × 64 tensors, second convolution for each
image output 6 × 6 × 64 tensors. Then ReLU and 2 × 2 maximum pooling layers flatten the second
convolution layer into a vector that is fed to a fully connected layer with 384 units. This article divided
the training data from 10 clients into non-IID segments based on digital tags and divided into an
average of 400 segments. Each customer is assigned 40 random data segments, so each customer’s
sample has two or five tags. Each round of experiments is set at 1000 epochs. We use a fixed value
δ = 10−5, the initial learning rate using MNIST is 0.001 and Fashion-MNIST is 0.002. ρ1 in Adaptive
DP-FL is set to 0.9 and ρ2 is set to 0.999. The clipping threshold C is a popular component of SGD
combined with ML and for DP based on FL frameworks, consideration should be given to appropriate
clipping threshold C.
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5.1.1 Model Performance for Adaptive DP-FL Method on MNIST and Fashion-MNIST Datasets

Fig. 2 investigates the effect of Adaptive DP-FL’s approach on model performance. The accuracy
and loss of the Adaptive DP-FL method and the method without ADADP are compared. We set
clipping threshold C = 4 and privacy budget ε = 2 in the MNIST and Fashion-MNIST datasets.
Both methods in the MNIST and Fashion-MNIST datasets use constant noise scale σ = 2.0 and
constant δ = 10−5. Set the initial learning rate of the experiment in the MNIST dataset to 0.002and
in the Fashion-MNIST dataset to 0.001 and set ρ1 to 0.9, and ρ2 to 0.999. We can see that in the
MNIST dataset, the final convergence accuracy of the model using Adaptive DP-FL is 94.58% and
the model using ADADP is 92.03%. In the Fashion-MNIST dataset, the final convergence accuracy
of the model using Adaptive DP-FL is 88.38% and the model using ADADP is 79.91%. For both
datasets, the Adaptive DP-FL method significantly outperforms the ADADP method.

Figure 2: Model performance for adaptive DP-FL method on MNIST and fashion-MNIST datasets

5.1.2 Performance Comparison of Algorithms under Different Noise Scales

As a multi-party collaborative training model method, federated learning its local private data for
model training. The data is saved locally on the client and the trained local model is updated to the
server, which aggregates the local model. However, federated learning has a natural privacy protection
effect. An attacker can still infer local private data through the model parameters of the client or server.
Therefore, we introduce a differential privacy technology lighter than the cryptographic method.
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However, the introduction of differential privacy usually seriously affects the utility of data while
protecting data privacy security. To solve this problem, this article proposes a secure and efficient DP-
FL scheme. During each update process of the model, add the Gaussian noise to the sample gradient in
the differential privacy technology and then iteratively update by an adaptive algorithm. The scheme
strengthens the privacy security of the model and improves its performance. To test the robustness
of the algorithm under different noise scales, this paper compared the performance of three different
algorithms, DPFL-SGD, DPFL-PRMSProp, and the algorithm proposed in this paper under different
noise conditions. In general, the larger the noise scale added, the lower the data availability and the
worse the model performance.

As seen in Fig. 3, in each plot, δ = 10−5, keeping ε fixed, in the same noise scale, we can observe
that when adding noise scales σ ∈ (4, 8), ε = 0.5, the final accuracy of the three algorithms is 87.81%,
84.19%, and 77.77%. The overall effect of Efficient DP-FL and DPFL-PRMSProp using adaptive
algorithm is better than that of DPFL-SGD, which may be due to the DPSGD algorithm being prone
to falling into local optima. Specifically, in the early stages of experiments, the accuracy of our model
changes faster, followed by DPFL-PRMSProp, and the improvement of DPFL-SGD is slower. In
the later stage of the experiment, the convergence speed of the adaptive differential privacy federated
learning algorithm tends to stabilize, and the overall performance is better than the DPFL-PRMSProp
and DPFL-SGD algorithms. Under different noise scales, we can observe from Fig. 3 that the final
accuracy of adding noise scales σ ∈ (1, 2), ε = 2, are 92.79%, 93.48%, and 94.69%, respectively. The
final accuracies of adding noise scales σ ∈ (2, 4), ε = 1, are 88.39%, 91.45%, and 92.58%, and the
final accuracies of noise scales σ ∈ (4, 8), ε = 0.5 are 77.77%, 84.19%, and 87.81%. That is, the final
accuracy of adding noise scales σ ∈ (1, 2), ε = 2, are 4.4%, 2.03%, 2.11% higher than adding noise
scales σ ∈ (2, 4), ε = 1, and 15.02%, 9.29%, 6.88% higher than large noise. Therefore, the greater the
noise, the greater the impact on the convergence performance of the model. The impact of moderate
noise is next. The smaller the noise, the smaller the impact on algorithm performance.

Figure 3: The effect of different noise scales on the convergence performance of the algorithm
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The federated learning model with adaptive differential privacy is less sensitive to the size of
the noise scale. Experiments show that with a fixed 1000 rounds of communication iterations, our
algorithm has faster convergence speed and better final results. Our scheme can achieve better model
performance with lower communication costs when applied to actual demand scenarios.

5.1.3 Model Performance for Early Stopping Mechanism on MNIST and Fashion-MNIST Datasets

It can be seen from Fig. 4 that after adding the early stopping mechanism, different algorithms
converge in advance. On the MNIST dataset, ADADP converges early with 91.20% accuracy in 762
epochs. Compared with the fixed-setting 1000-round iteration experiment, it saves 238 rounds of
communication overhead while achieving similar performance. Our algorithm converges ahead of
time with 94.01% accuracy in 639 rounds, which saves 361 rounds of communication overhead while
achieving similar performance. On the Fashion-MNIST dataset, ADADP converges early with 91.62%
accuracy at 834 rounds. Compared with the fixed-set 1000-round iteration experiment, it saves 166
rounds of communication overhead while achieving similar performance. Our algorithm converges
ahead of time with 94.93% accuracy in 785 rounds, which saves 215 rounds of communication overhead
while achieving similar performance. At the same time, we can see that our algorithm outperforms
previous methods. To sum up, the early stopping mechanism can reduce communication overhead
while ensuring the convergence of the model. Therefore, compared to other methods, our algorithm is
better able to improve data utility while keeping data safe.

Figure 4: Performance for early stopping mechanism on MNIST and fashion-MNIST datasets

5.1.4 Model Performance for Efficient DP-FL Method on MNIST and Fashion-MNIST Datasets

Fig. 5 investigates the performance of the Efficient DP-FL method on the MNIST and the
Fashion-MNIST datasets. The Efficient DP-FL method combines the effects of Adaptive DP-FL
and Early Stopping mechanism on model performance. The accuracy and loss of differential privacy
federated learning methods with adaptive Gaussian noise and constant noise without adaptation are
compared. We set the same clipping threshold C = 4 in the MNIST and Fashion-MNIST datasets. The
two methods in the MNIST dataset and Fashion-MNIST dataset have constant noise scale σ = 2.0
(Because the larger the noise value, the greater the impact on the performance of the model. Setting
the noise value too small does not protect data. Through a large number of experiments, it has been
found that when the noise value is set to 2, the model performance is the best.) and constant δ = 10−5,
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privacy budget ε = 2, set the initial learning rate of the experiment in the MNIST dataset to 0.002
and in the Fashion-MNIST dataset to 0.001, set ρ1 to 0.9, and ρ2 to 0.999. We can see that in the
MNIST dataset, the model using Efficient DP-FL converges when the accuracy reaches 94.61% in
578 rounds, and the model using ADADP converges when the accuracy reaches 93.40% in 506 rounds.
In the Fashion-MNIST dataset, the model using Efficient DP-FL converges when the accuracy is
94.29% in 636 rounds, and the model using ADADP converges when the accuracy is 92.18% in 751
rounds. For these two data sets, the final accuracy of using Efficient DP-FL is 1.21% and 2.11% higher
than that of the method using ADADP, respectively, and the number of communication rounds using
Efficient DP-FL is different from that of the method using ADADP. The reduction is 71 rounds, 115
rounds, which shows that the Efficient DP-FL method can save more communication overhead. In
addition, we also observed that the Efficient DP-FL method (combining Adaptive DP-FL and Early
Stopping mechanism) outperformed the previous Adaptive DP-FL and Early Stopping mechanism
method on both datasets. The Efficient DP-FL communication overhead is reduced by 133 rounds
and 149 rounds, respectively, compared with the Adaptive DP-FL and Early Stopping mechanism
methods alone.

Figure 5: Performance for efficient DP-FL method on MNIST and fashion-MNIST datasets

5.2 Comparison

Table 2 shows a comparison of the studied algorithms, including data security, data utility, adap-
tation, and communication cost. The above comparison shows that our algorithm can simultaneously
satisfy data security, data utility, an adaptability and reduce communication overhead. In contrast,
other algorithms do not have this capability. Specifically, reference [30] proposed a DPSGD algorithm
for the first time, which uses a Gaussian down-sampling mechanism and uses moment calculation
technology to measure privacy loss. Although this algorithm can effectively protect the data security
of local clients, adding a large amount of noise to the algorithm will reduce the usefulness of the data,
and the algorithm cannot adaptively reduce noise [33]. An ADADP algorithm was proposed, which
adaptively adjusts the noise range under a given privacy level, enabling the algorithm to converge
quickly [44]. A UDP algorithm with a CRD method are proposed. The UDP algorithm can effectively
protect the data security of local users, and a UDP algorithm with a CRD method can effectively
reduce the number of communication rounds. However, compared to the scheme proposed in this
article, this algorithm cannot effectively improve the utilization rate of data, and the communication



CSSE, 2024, vol.48, no.1 261

cost is not as low as the proposed scheme. However, compared with Efficient DP-FL algorithm,
this algorithm cannot effectively improve the utility of data and reduce the communication cost-
effectively. In summary, the Efficient DP-FL algorithm fully satisfies the advantages of data security,
data utility, adaptability, and low communication overhead. The above is a qualitative analysis of
different algorithms. The following will quantitatively analyze the communication costs of different
schemes, as shown in Fig. 6. Quantitative comparative analysis has been added.

Table 2: Comparison of existing research algorithms

Algorithms Data security Data utility Adaptivity Communication cost reduction

Scheme [30] √ × × ×
Scheme [33] √ × √ ×
Scheme [44] √ × × √
Our scheme √ √ √ √

Figure 6: Communication cost comparison of different scheme

Fig. 6 compares the time cost of a round of communication for different schemes. The proposed
scheme uses adaptive learning rates to adjust the gradient descent train process to avoid model
overfitting and fluctuations, and uses an early shutdown system to reduce noise, ensuring that
federated learning schemes train efficiently while protecting data security. The communication cost
comparison results are shown in Fig. 6. Looking at Fig. 6, we can draw the following conclusions.

• The scheme [30] has the longest running time, while the schemes [33] and [44] have the lowest
running time. The above comparison shows that the scheme proposed in this article is effective.

• Because Fashion MNIST is a set of 28 × 28 grayscale clothing images, its image data is
more complex than MNIST, the four schemes on MNIST have shorter runtime than those on
Fashion-MNIST.

6 Conclusion

The main contributions of this article are reflected in three aspects. Firstly, an Efficient DP-FL
algorithm is proposed, which has higher accuracy than previous algorithms. In addition, the Efficient
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DP-FL algorithm adds an early stopping mechanism to improve the utility of the data. Secondly,
it is strictly proved mathematically that the Efficient DP-FL algorithm satisfies differential privacy.
Thirdly, the Efficient DP-FL algorithm is applied to train a CNN model on a deep learning network
with real datasets, and the better performance of the Efficient DP-FL algorithm compared to previous
methods is evaluated through experiments.

Based on the Efficient DP-FL proposed in this article, many further tasks deserve attention. In
particular, this article uses a shallow neural network model, and the deeper neural network model is
worth further research. In addition, you can apply the techniques in this article to language modeling
tasks through experience in the MNIST and Fashion-MNIST.
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