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ABSTRACT

Human pose estimation is a basic and critical task in the field of computer vision that involves determining the
position (or spatial coordinates) of the joints of the human body in a given image or video. It is widely used in motion
analysis, medical evaluation, and behavior monitoring. In this paper, the authors propose a method for multi-view
human pose estimation. Two image sensors were placed orthogonally with respect to each other to capture the pose
of the subject as they moved, and this yielded accurate and comprehensive results of three-dimensional (3D) motion
reconstruction that helped capture their multi-directional poses. Following this, we propose a method based on 3D
pose estimation to assess the similarity of the features of motion of patients with motor dysfunction by comparing
differences between their range of motion and that of normal subjects. We converted these differences into Fugl–
Meyer assessment (FMA) scores in order to quantify them. Finally, we implemented the proposed method in the
Unity framework, and built a Virtual Reality platform that provides users with human–computer interaction to
make the task more enjoyable for them and ensure their active participation in the assessment process. The goal
is to provide a suitable means of assessing movement disorders without requiring the immediate supervision of a
physician.
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1 Introduction

The number of people suffering from motor dysfunction due to traffic accidents, strokes, and
cerebral thrombosis has increased significantly in recent years. The mobility of the human body
in general declines with age, and this can lead to a variety of diseases. According to one survey,
neurological disorders pose a significant complication and this context, and are a major cause of
disabilities among middle-aged and elderly people [1]. Movement disorders are dominant among such
disabilities, and affect the patient’s ability to perform daily activities such that they cannot live on their
own. In light of this, providing automated methods of assessment for the increasing number of patients
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with motor dysfunctions and reducing the burden on medical personnel has become an important area
of research in modern medicine.

With rapid advances in research on the problems of classification [2,3] and optimization [4] in
computer vision in recent years, human pose estimation has been widely used for medical assistance
and motion analysis as well as in Virtual Reality technology [5–7]. The main objective is to recover
the parameters of pose of the target body and analyze its motion based on the relevant sequences of
images. Early work in the area focused on two-dimensional (2D) human pose estimation, and involved
recovering 2D poses from images or videos by using either of two general approaches: top-down and
bottom-up methods. The top-down method of identifying pose involves first identifying the position
of each person in the given image through a target detection network and then estimating their pose.
This method is highly accurate because it can leverage the poses of a single subject, but its speed of
inference is low because it relies on the target detection network [8,9]. The bottom-up method of pose
estimation involves first identifying the joints of all people in the given image through a detection
network and then linking the joints belonging to the same person by using a clustering algorithm [10].
The network can directly estimate the joints of all people in the image. Although the accuracy of the
bottom-up approach is lower than that of the top-down approach, it can make faster inferences [11].
Networks used to identify 2D poses that are based on deep learning have delivered good performance
[12,13]. Subsequent research has focused on 3D pose estimation.

Research on 3D pose estimation can be classified into two types: single-view and multi-view pose
estimation. Single-view pose estimation is generally used to locate the 2D joints of the human body
in cropped images to convert the detected 2D pose into three dimensions through a learning-based
approach [14,15]. While this method is accurate, it is too heavily reliant on the 2D pose detector, and
can regress to the 3D pose of the body in the image [16,17]. It is a simple and fast end-to-end approach
that can, however, suffer from the problem of ambiguities in the obtained pose. Moreover, the accuracy
of single-view 3D pose estimation is far lower than that of multi-view estimation.

Initial research on multi-view pose estimation was based on using 2D features obtained from
multi-view image sequences to reconstruct 3D poses [18,19]. Deep learning-based 2D detectors
combined with statistical models of human motion have recently been developed, and have delivered
impressive results. Joo et al. compared fitted 3D models with the true values of the corresponding
images in the Carnegie Mellon University’s (CMU) Panoptic Studio dataset [20] and achieved a model
overlap of 87.7% [21]. Dong et al. used the multiplexed matching of 2D poses from multiple views by
simply combining the appearance-related and geometric information of the people featured in the
images to compare their similarity relationships in 2D [22]. This can significantly reduce the size of
the state space and improve the speed of computation, but this method uses an off-the-shelf feature
extraction network to simply combine appearance-related information with geometric information in
the given image. Its accuracy thus decreases when few cameras are available and it is slow at making
inferences, which renders it unsuitable for use. The time taken by the model to make inferences is a key
consideration in multi-view human pose estimation. The computational complexity of the model for
all views increases exponentially with the number of cameras. Chen et al. used an iterative processing
strategy to obtain video frames in chronological order and used them as an iterative frame-by-frame
input [23]. This leads to a linear relation between the computational cost and the number of cameras,
but the high speed of inference of this method makes it difficult to guarantee its accuracy.

A considerable amount of promising research on the automatic analysis of human behaviors based
on deep learning has emerged in recent years. Ullah et al. proposed a long short-term memory (LSTM)
network for the automatic recognition of six types of behaviors by using a smartphone that yielded an
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average improvement of 0.93 in accuracy compared to previous methods. It provides a new idea for
the automatic analysis of human behaviors [24]. In this paper, we propose a framework for automated
multi-view human pose estimation that can be applied to overcome the drawbacks of the above models.
Unlike traditional methods, the proposed method does not require that the subject wear a motor aid
or a sensor system [25–27]. This study makes the following contributions to research in the area:

• We propose an architecture for multi-view human pose estimation that delivers a high accuracy
and stability at a high frame rate.

• We propose a method to assess the similarity of motion based on the plane of motion-related
features. The latter are quantified by being converted into FMA scores.

• We build a Virtual Reality-based evaluation platform, and implement the proposed method on
the Unity framework to realistically reflect human motion through the skinned multi-person
linear (SMPL) model [28].

2 Materials and Methods

2.1 Experimental Hardware Support

The hardware used in the experiments consisted of two Kinect image sensors, a computer, and a
large-screen display (integrated into the computer end), as shown in Fig. 1a. The Kinect sensors were
placed orthogonally with respect to each other to simultaneously capture images, as shown in Fig. 1b.
This setup eliminated the problem of data loss caused by self-occlusion such that more accurate data
on human poses could be obtained [29,30]. The large-screen display was used to show the results of
reconstruction and the scenarios of virtual assessment.

Figure 1: The proposed system. (a) Operational setup. (b) Positions of the cameras

2.2 Human Pose Reconstruction and Motion Data Acquisition

2.2.1 Overall Network Architecture for Multi-View Pose Estimation

The overall architecture of the multi-view pose estimation network is shown in Fig. 2. The You
Only Look Once (YOLO) network was used to train the backbone network and design a unique feature
loss function to extract the bounding box and appearance-related features from different views. We
used a high-resolution network (HRNet), a 2D pose estimation network of the top-down type, to
accurately identify the points representing the 2D joints of the human body in the images. Following
2D pose estimation, the 3D pose of the body needed to be reconstructed. Triangulation is the most
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direct and commonly used method to quickly reconstruct the 3D pose. However, errors in the estimated
2D pose from any given view may seriously degrade the accuracy of 3D pose estimation. We introduced
the 3D pictorial structure (3DPS) model and added temporal information to it to compensate for the
drawbacks of the above-mentioned methods.

Figure 2: Overall architecture of multi-view pose estimation

2.2.2 Detection Network

The loss function of the YOLO v3 network consists of three components. We removed the loss
function for target classification from the network because the task at hand involved the identification
of only people in images. To locate the target, the network uses the sum of the squared error (SSE) as
the loss function, and constructs it by detecting the error in position between the tensor and the real
tensor. The loss function Lp is as follows:

Lp = Lcoo + Liou (1)

where Lcoo represents error in the coordinates of the target between the predicted value and the actual
value, and Liou denotes error in the intersection over union (IOU). The function representing error in
the coordinates is defined as follows:

Lcoo = λcoo

S2∑
i=o

B∑
j=0

1obj
j=0

[(
xi − x̂i

)2 + (
yi − ŷi

)2 + (
wi − ŵi

)2 +
(

hi − ĥi

)2
]

(2)

where xi, yi denote coordinates of the center of the bounding box, wi and hi denote the width and the
height of the bounding box, x̂i, ŷi, ŵi, and ĥi denote the true values of its coordinates and size, and λcoo

is the parameter used to weigh the loss of coordinates of the bounding box. It regulates the weight of
the error in the coordinates in the final result.
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The loss function of the IOU is defined by Eqs. (3) and (4):

Liou = −λobj

S2∑
i=0
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j=0

1obj
ij F − λnbj
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i=0
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1nbj
ij F (3)
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i log
(
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i
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i

)
log

(
1 − Cj

i

)]
(4)

2.2.3 Human Pose Reconstruction

During 3D human posture reconstruction, the posture in the previous instance can be used to
estimate that in the current instance. We add information on the time series to the 3DPS model to
constrain the posture and improve the accuracy of 3D pose estimation. We modify the structure of the
3DPS model as follows:

p(J|V) ∝
M∏

m=1

N∏
i=1

p
(
Vm|projm

t ( jj)
) ∏

(i,j)∈ε

p( ji, jj)

N∏
i=1

pωt( jt−1
i | jt

i) (5)

where projm
t (∗) represents the projection of the 3D pose at time t, jt−1

i represents the points representing
the joints at time t − 1, and ωt represents the temporal tracking weights. The tracking term p(jt−1

i |jt
i)

constrains the current frame with respect to the positions of the joints in the previous frame:

pωt
(
jt−1
i |jt

i

) = 1 − 1
T

dis
(
jt−1
i , jt

i

)
(6)

where dis (∗) represents the Euclidean distance (ED) between joints and T is the normalization factor.
The results of reconstruction are shown in Fig. 3.

Figure 3: Results of 3D human pose reconstruction

2.3 Application of Motion Detection: Assessment of Movement Function

2.3.1 Joint Data Filtering Based on Kalman Filter

The reconstructed human pose can be used to obtain the coordinates of points representing the
joints. The initial trajectory of these points may be missing or jagged, however, such that they do not
match the actual trajectory of the physical motion of the person represented. Given that the points
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representing the joints are in the form of 3D coordinates with a time series, we use the Kalman filter
to correct the initially reconstructed points representing the joints. According to the equation of state
of the system, its state at the current moment can be estimated as follows:

xk = Fxk−1 + Buk−1 (7)

where xk denotes the predicted value of the current state and xk−1 denotes the optimal estimate of the
system in the previous moment. The state of the system is

[
x, vx, y, vy, z, vz

]
, the positions of the joints

are denoted by [x, y, z],
[
vx, vy, vz

]
are the velocities of the joints, and F is the state transfer matrix:

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 dt 0 0 0 0
0 1 0 0 0 0
0 0 1 dt 0 0
0 0 0 1 0 0
0 0 0 0 1 dt
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

Following the prediction of the system’s state at the current moment k, its covariance P needs to
be updated. The initial value of P is set to a 6 × 6 zero matrix, and it is updated as follows:

Pk = FPk−1FT + Q (9)

where Pk denotes the covariance of error in the prior estimation, P denotes the covariance of error in
the posterior estimation at moment k −1, and Q denotes uncertainty in the change in state. It is set as:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0 0
0 0 0 0 0 0.1

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

To obtain the predicted value of the system’s state, the observed and the predicted values are
combined to obtain the optimal value xk in the current state.

xk = xk + Kk (zk − Hxk) (11)

where xk denotes the optimal estimate at the current moment, xk denotes the value predicted by the
system, zk denotes the system’s observation, H denotes the observation matrix, and Kk denotes the
gain due to the Kalman filter. The solution is as follows:

R =
⎡
⎣0.1 0 0

0 0.1 0
0 0 0.1

⎤
⎦ (12)

H =
⎡
⎣1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0

⎤
⎦ (13)

The corresponding covariance of error is calculated as follows:

Pk = (I − KkH) Pk (14)

where I denotes the unit matrix and Pk denotes the covariance of the a priori estimation error.
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2.3.2 Dynamic Time Warping (DTW)-Based Alignment of a Series of Movements

There is a temporal difference between the test movement, and the standard movement, and direct
similarity matching between image frames yields significant errors. We use the DTW algorithm to align
two sets of time series of actions. Given two sequences of motion data, X and Y , each frame is a 3D
pose. We convert the point coordinates of 3D joints into a 1D sequence of angles to avoid the influence
of individual differences, as shown in Fig. 4.

Figure 4: Conversion of the angles of the joints

We thus obtain two sets of angular time series α = (α1, α2, . . . , αi) and β = (
β1, β2, . . . , βj

)
. The

distance function between points in the given sequence is as follows:

ϕ(k) = (ϕα(k), ϕβ(k)) (15)

where ϕα (k) ∈ [1, i], ϕβ (k) ∈ [1, j], and k ∈ [1, T ]. Given ϕ (k), the cumulative distance of the sequences
can be obtained as follows:

dϕ(α, β) =
∑T

k=1
d(ϕα(k), ϕβ(k)) (16)

The final output of the DTW is an optimal curve of the twist in ϕ (k) that minimizes the cumulative
distance:

DTW (α, β) = min dϕ (α, β) (17)

2.3.3 Matching Features on Plane

The method to assess functions of the movements of the limbs was developed by comparing the
mobility of the joints of subjects with data on healthy humans. Data on the latter were collected
as a reference and analyzed by using a method of similarity assessment. The standard paradigm of
movement of the FMA was used. Most researchers have used correlation coefficients or the ED to
assess similarity in movements, but this yields inaccurate results due to variations in the shapes of
human bodies.
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We used the proposed method to extract the image of the human skeleton, and transformed the
points representing joints during motion into seven feature planes as the basic planes of calculation,
as shown in Fig. 5. Each feature plane represented each part of the human body. Seven normal vectors
(V1 − V7) were extracted from these feature planes to determine the difference in the overall direction
of the posture of the subject during motion. The local normalcy of the plane of posture was judged
by the angle between the edge vectors of the feature plane (θ1 − θ7). Moreover, the angle between the
edge vectors of the feature plane and the vertical direction of the torso (θ8 − θ12) was used to judge
the local relationship between the joints of the limbs and the torso. In this way, a binary group 〈V , θ〉
was obtained and used as input to the model for calculating similarity, and the relevant parameters
of 〈V , θ〉 were obtained as the output. This method overcomes the difficulty posed by the inherent
characteristics of the object to be measured, and reduces the complexity of the calculation to improve
the efficiency and stability of human pose analysis.

Figure 5: Simplifying the model of the human body

(1) Limb movement

The movement of the limbs can be determined by the inner product of the characteristic plane
Pm (m = 1, 2, 3, 4), the normal vector Vm = (m = 1, 2, 3, 4), and the vector in the vertical direction
Vstand with respect to the spine. The range of motion (ROM) can be accurately determined by the angle
θm (m = 1, 2, 3, 4). The feature vector is shown in Table 1.

Table 1: Feature vectors of the postures of the limb

Limb posture Feature vector

Upper-left arm VLUarm = RLElbow − RLShoulder

Lower-left arm VLLarm = RLElbow − RLWrist

Upper-right arm VRUarm = RRElbow − RRShoulder

Lower-right arm VRLarm = RRElbow − RRWrist

(Continued)



CSSE, 2024, vol.48, no.2 329

Table 1 (continued)

Limb posture Feature vector

Left thigh VLThight = RLKnee − RLHip

Left crus VLCrus = RLKnee − RLAnkle

Right thigh VRThight = RRKnee − RRHip

Right crus VRCrus = RRKnee − RRAnkle

Feature plane of left arm V1 = VLLarm × VLUarm

Feature plane of right arm V2 = VRLarm × VRUarm

Feature plane of left leg V3 = VLThight × VLCrus

Feature plane of right leg V4 = VRThight × VRCrus

(2) Head movement

This can be obtained by comparing the normal vector V5 of plane P5 with the vector in vertical
direction Vstand.

(3) Spine movement

This can be obtained by comparing the angle of transformation between the vector in the direction
of the spine V6 and that vertical to it Vstand during rotation.

(4) Hip movement

When the body is vertical, the plane of the hip P7 remains horizontal, and the normal vector V7 is
parallel to the vector in the vertical direction Vstand, as shown in Table 2.

Table 2: Feature vectors of the postures of the trunk

Trunk posture Feature vector

Head V5 = RNeek × RHead

Feature plane of spine V6 = (RNeek − RSpine) × (RHip − RSpine)

Feature plane of hip V7 = (RSpine − RLHip) × (RSpine − RRHip)

The cosine similarity function is used as the basic metric function. Compared with the ED, it
focuses more on the difference in direction between vectors. It is calculated as follows:

similarity (At, Bt) = At × Bt√
(At)

2 ×
√

(Bt)
2

(18)

where θi is the angle of the joint, and At and Bt are the edge vectors of the feature plane. The range of
values of [0, 1] indicates closeness to the standard data.

Cosine similarity can measure the difference in direction between vectors as well as the difference
in angles, which is expressed as the magnitude of the ROM:

corr (At, Bt) = 1 −
(

arccos(similarity(At, Bt))

π

)
(19)
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3 Experiments and Evaluation

3.1 Datasets

To train an efficient and robust human detection network, we captured a large number of images
from multiple cameras to form a dataset. To quickly obtain a large amount of image-related data,
we used four cameras to synchronously take images from different perspectives, and obtained over
70,000 images in total as shown in Fig. 6. We fully considered the light intensity, background, and
other factors of the experimental environment in the acquisition process to enrich the image-related
data. We considered nine scenes, including corridors, stairs, halls, and laboratories, when capturing
images.

Figure 6: Dataset

Subjects in the experiments were asked to simulate actions involved daily activities, including
walking, moving objects, talking, and going up and down stairs, while their images were captured
to train the recognition network such that it had a strong capability for generalization.

3.2 Quantitative Analysis

We quantitatively compared the proposed method with prevalent techniques in the area on the
publicly available Shelf dataset [19]. This dataset consists of images captured by five cameras at a
resolution of 1032 × 776. “Actor 1–Actor 3” in Table 3 represent the three persons depicted in images
in the Shelf dataset and “Avg.” represents the average accuracy. The percentage of correctly estimated
parts (PCP) criterion was used to assess the performance of the methods.

Table 3 shows the accuracies of detection of the proposed method and prevalent methods in the
area on all individual frames in the Shelf dataset. Because the proposed method contains a constraint
on the temporal information provided to the 3DPS model, and as the accurate detection of static
images does not require this feature, it did not exhibit an absolute advantage over the other methods.
In fact, its average accuracy was lower by 0.2% compared with that of the method proposed by
Zhang et al. However, a practical model needs to reason over a range of dynamic video frames and
deliver excellent performance even at high frame rates. We thus designed and conducted a comparative
experiment to assess the accuracy of the methods listed in Table 3 on images captured under different
frames per second (FPS) to further test the performance of the proposed method. We still used the
PCP as the indicator for evaluation, and the results are shown in Table 4.
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Table 3: Results on the shelf dataset in terms of accuracy

References Actor 1 Actor 2 Actor 3 Avg

Burenius et al. [18] 66.1 65.0 83.2 71.4
Belagiannis et al. [19] 75.3 69.7 87.6 77.5
Ershadi-Nasab et al. [31] 93.3 75.9 94.8 88.0
Dong et al. [22] 97.2 79.5 96.5 91.1
Zhang et al. [32] 99.0 96.2 97.6 97.6

Proposed method 98.6 95.8 97.9 97.4

Table 4: Accuracy of pose estimation on images captured at different frame rates

References 30 FPS 15 FPS 10 FPS

Burenius et al. [18] 71.2 71.4 71.4
Belagiannis et al. [19] 77.5 77.5 77.5
Ershadi-Nasab et al. [31] 88.0 88.0 88.0
Dong et al. [22] 96.9 96.9 96.9
Zhang et al. [32] 81.5 81.5 81.5

Proposed method 97.1 97.1 97.0

The proposed method obtained better results than the traditional 3DPS method, and attained
results similar to those of the methods developed by Zhang et al. [32] and Dong et al. [22] owing to
deep learning-based optimization and because it was trained on a large dataset. However, in terms of
speed of reasoning, it was superior to the methods proposed by Zhang et al. [32] and Dong et al. [22] It
had an average accuracy of dynamic detection that was higher by 15.6% (30 FPS) than that of Zhang et
al.’s method. The latter method did not leverage temporal information, because of which changes in the
frame rate of the camera did not have a significant impact on the final results. Temporal information
was added to the 3DPS model to optimize the captured pose at any given moment by the pose captured
at the previous moment, because of which it yielded more reliable results in scenes captured at a low
frame rate or those featuring people moving quickly. Therefore, the proposed method can guarantee
a high speed of inference and stable performance while minimizing the loss of accuracy.

3.3 Results of Data Filtering

We chose two actions from the Clinical Movement Assessment Scale for experiments to illustrate
the effectiveness of filtering the points representing the joints in the image. The trajectories of the joints
of the shoulder and the elbow were plotted to represent movements of the upper limbs, and those of
the joints of the hip and the knee were plotted for movements of the lower limbs. The results are shown
in Fig. 7.
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Figure 7: Filtering the points representing the joints by using the Kalman filter

3.4 Results of DTW

Two sets of angular sequences of abduction of the shoulder (90 degrees) were used as input, one
for the group of healthy subjects and the other for the patient’s movement sequence, and the results
of alignment are shown in Fig. 8. The DTW algorithm was able to eliminate error in time between the
sets of sequential movements.

3.5 Analysis of Assessment of Movement Functions

In the experiment, the subjects performed shoulder abduction movements. Their feature planes
during the movements were plotted and qualitatively analyzed in comparison with those of the normal
group. The results are shown in Fig. 9.

The results in Fig. 9 show that the area of the feature plane of healthy subjects was larger than that
of the subjects with motor dysfunction, where this reflects the poorer accessibility of the movements
of limbs of the latter compared with the former.

We performed quantitative calculations to further illustrate the variation between the subjects’
movements and standard movements. The 15 feature indicators listed in Tables 1 and 2 were calculated,
and the results are shown in Fig. 10. The quantitative results yielded the similarity scores of each part
of the human body. As the experimental movement here was the abduction of the right shoulder, the
other parts of the body had lower variation and, thus, higher scores.
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We set sim as the quantitatively calculated directional variation in each part of the body and corr
as the quantitatively calculated angular variation in it. The two calculations were combined to obtain
the final evaluation:

s =
(∑N

i=1 sim(i)
N

C1 +
∑N

i=1 corr(i)
N

C2

)
× 100% (20)

where N = 15 is the number of parts of the body involved in the similarity calculation, and C1 and C2

are proportional parameters. The weight of the direction of motion and its motion was set to 0.5.

Figure 8: Results of alignment of the DTW. (a) Path of optimization of the DTW. (b) Original sequence
of angles of the joints. (c) Aligned sequence of angles of the joints
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Figure 9: Feature plane during shoulder abduction movement. (a) Standard paradigm of the feature
plane of motion. (b) Feature plane of motion of the subject

Figure 10: Similarity analysis of the plane of features. (a) Differential scores for the directions of limb
movement. (b) Differential scores for the ROM

To further illustrate the effectiveness of the proposed method, 18 subjects were invited to
participate in the experiments to assess movement functions. All participants were evaluated on the
artificial FMA scale as the control group for the experiment and their results were subjected to a
correlation analysis. The subjective ratings of experts were regarded as the gold standard to validate
the proposed algorithm. All participants were aware of the experimental procedure, and provided their
written informed consent for participation before the experiment. It is hereby declared that all the
experiments involved in this paper have passed the local ethical review.

Table 5 compares the results of the proposed method of assessment with those of the ED-based
method. The correlation coefficient reflected a strong correlation between the proposed method and
the artificial scores, with a value of 0.87 (p < 0.001). The traditional ED-based method of assessment
directly used spatial distances between 3D joints while ignoring temporal variations in movements and
the varying physical characteristics of different people. Its results were thus less accurate. Fig. 11 shows
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a scatterplot of the final scores of both methods and the artificial ratings for 18 subjects. Additional
analyses of the scores showed that in many cases, the algorithms overestimated the results compared
with the artificial ratings. Therefore, we calibrated the scores of the proposed method by using the
fitted equation of linear regression so that it generated similar evaluation scores to those assigned by
experts.

We applied the proposed method to the Unity framework and built a Virtual Reality-based scene
for evaluation by using the SMPL as the models of virtual characters and the proposed method of
pose estimation as the basic skeleton to drive the models. The use of SMPL models as avatars for
exhibiting movement and control allowed for a more realistic reproduction of the movements of the
human limbs, as shown in Fig. 12. The virtual coach (left) model was driven by standard movement-
related data to guide the subject by mimicking its movements. The user model (right) was driven in
real time by the human skeleton as estimated from the subject’s pose to provide immediate feedback
to the user on their pose.

Table 5: Quantitative results of the assessment of the capacity for movement

No. Age (year) Height (cm) Weight (kg) Artificial
evaluation

ED
evaluation

Evaluation by
proposed algorithm

01 25 176 62 76 65.2 85.3
02 27 180 65 80 62.1 85.6
03 22 178 74 75 67.5 70.0
04 29 172 58 72 60.6 81.3
05 31 173 61 70 63.4 78.1
06 45 170 75 72 65.7 80.2
07 28 175 72 73 68.0 78.6
08 26 173 75 66 62.6 72.3
09 35 177 82 85 80.2 91.5
10 24 181 60 83 77.6 87.7
11 23 177 65 72 65.8 77.0
12 22 178 74 74 65.6 77.4
13 46 167 65 68 67.2 65.3
14 30 177 70 63 66.9 68.0
15 52 172 76 73 77.5 80.0
16 26 165 60 78 72.6 82.4
17 19 164 66 72 65.0 75.9
18 20 167 63 88 79.9 92.4

Pearson’s correlation coefficient 1.0 0.67 0.87
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Figure 11: Linear relationship between algorithm scores and artificial ratings

Figure 12: Implementation of the proposed method in the unity framework

4 Conclusions and Future Work

In this study, we proposed a feasible and lightweight method of pose estimation. A detection
network was fully trained by building a large dataset of scenes featuring moving people, and yielded
an accuracy of 97.1% while delivering stable performance on images captured at 30 FPS. Following
this, we used the proposed method to develop an algorithm to assess the similarity of movements on
feature planes. By evaluating the motor functions of 18 subjects and comparing them with their manual
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scores, we found that the proposed method of evaluation exhibited a strong linear correlation with the
manual scores. We used linear regression to fine-tune the model and render its results more realistic. In
contrast to past methods that have used performance scores obtained from subjects through serious
games to evaluate their motor abilities [33–35], the quantitative scores of movements obtained here
are more easily interpretable for use in clinical medicine. Although these scores may be related to the
range of motion of certain joints, they are influenced by other factors as well, such as the patient’s
level of cognition and the difficulty of the game.

When we used the proposed method of pose estimation in the Unity framework to drive the SMPL
models, there were deviations in the local pose of the model, and it even yielded inaccurate poses,
because the points representing the joints of the hand and parts of the ankle were not identified. This
slightly affected the results of evaluation of the proposed model. In future work, we plan to reconstruct
the points representing the joints of the hand and parts of the ankle, and will consider embedding the
initial model of the human skeleton into the SMPL model to obtain a more accurate 3D model through
forward kinematics. In addition, we plan to exploit multi-person posture estimation to extend the
proposed method to simultaneously assess the motor functions of several people to enhance its scope
of application.
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