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ABSTRACT

Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy
(VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated
VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors.
This paper proposes a novel VTDR detection and classification model that combines different models through
majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and
classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD)
model for feature extraction and selection and an improved SVM-RBF with a Decision Tree (DT) and K-Nearest
Neighbor (KNN) for classification. We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,
a sensitivity of 83.67%, and a specificity of 100% for DR detection and evaluation tests, respectively. Our proposed
approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.

KEYWORDS
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1 Introduction

The eye is an important and one of humans’ most complex sensory organs. It helps us visualize
objects in a light color and depth perception. It comprises various parts, including the retina, iris,
pupil, optic nerve, and lens. Any disorder in the eye can cause serious effects, from visual impairment to
blindness. Although there are numerous eye disorders, the four most prevalent ones that result in vision
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loss or blindness are Age-related Macular Degeneration (AMD), Glaucoma, Cataracts, Diabetic
Retinopathy (DR), etc. Macular degeneration (age-related macular degeneration) is a retinal disease
affecting central vision. It damages the macula, which is the center area of the retina that allows us to
see fine details. It is considered the main cause of vision loss in people over 60. Diabetic retinopathy is
characterized by continuous harm to the retina’s blood vessels resulting from uncontrolled blood sugar
levels. Vision-Threatening Diabetic Retinopathy (VTDR) is the second most occurring retinal disease
that can cause blurred vision and blindness in later stages. Generally, the number of DR patients is
expected to reach around 439 million by 2030 [1]. DR results from microvascular retinal alterations
brought on by diabetes. It is the most significant cause of blindness and visual impairment in the
world’s working-age population [2]. Fig. 1 demonstrates several kinds of microvascular damage in
VTDR. (a) A microaneurysm produced by ballooning from a weak spot in the microvascular wall.
To the observer, this looks like a dot. (b) A hemorrhage is caused by blood leaking from a damaged
capillary. To the observer, this looks like a circular blot. (c) An exudate occurs when the capillary wall
is excessively leaky, allowing more plasma to escape from the capillary than normal. Because of the
pressure, all of the blood in the surrounding capillaries is squeezed out, leaving a white spot. Cotton
wool spots occur when puffy white spots on the retina develop due to nerve fiber swelling. This is due
to a failure of local capillary circulation, which results in insufficient oxygen and nutrients to the nerve
fibers [3].

Figure 1: Retinal images (a) NDPR fundus image with microaneurysms, haemorrhage, and exudate
(b) PDR fundus image with abnormal blood vessels (c) normal retina [3]

As indicated in Fig. 2, microaneurysms (MAs), hemorrhages (HEs), hard exudates (HEXUs), as
well as soft exudates (SEXUs) are strongly related to DR. Each abnormality indicates the severity of
DR in the patient [4].
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Figure 2: A DR fundus image shows early signs of VTDR, soft exudates, microaneurysms, hard
exudates, and hemorrhage [5]

Based on the nature and number of lesions, the severity of VTDR may be categorized into five
stages: normal, mild, moderate, severe, as well as proliferative, represented in Fig. 3 [6]. During the
first four phases of NPDR, Lesions include MAs, HEs, as well as EXUs [7]. The fifth stage is PDR,
distinguished by particular lesions such as retinal neovascularization (RNV) [8].

Figure 3: FIs with different severity of DR

An obstruction or dilatation of the blood vessels in the eye may lead to a condition known as
proliferative retinopathy. There are no early warning indications of diabetes-related eye disease, and
the damage done to blood vessels cannot be reversed; therefore, early detection plays an important role
for diabetic individuals [9]. Furthermore, identifying VTDR is a time-consuming manual procedure
requiring an expert clinician to analyze and interpret digital color pictures of the retina’s fundus. The
assessment is often delivered a few days later, resulting in missed follow-up, deprived communication,
as well as delayed therapy [10]. Even though doctors may efficiently diagnose DR by the occurrence
of lesions linked with the disease’s vascular anomalies, the resource needed for DR diagnosis is
significant. The requisite skills with sufficient equipment are often missing in places with a large
diabetes population, implying that as the number of individuals with diabetes grows, the infrastructure
required to prevent VTDR will become less adequate [11,12]. To address these drawbacks, researchers
are pursuing automated DR detection using computer-aided diagnostic (CAD)-based methods.
Several machine learning algorithms have recently been suggested and established to classify the
early diagnosis and severity level of DR. Image processing and data mining approaches are often
used to investigate fundus screening. Picture processing methods are often used to extract the retinal
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FIs characteristics. Data-mining methods are used to create a DL system for the classification; this
classifier can detect the illness’s presence in retinal FIs. The applied CAD approaches for DR early
diagnosis are familiar as well as beneficial, but they are a significant problem since they are unique
in the medical area. Such procedures, however, provide trustworthy and accurate illness diagnostic
outcomes [13–16].

With advancements in computer-aided diagnosis (CAD), numerous automated approaches for
automatic DR identification and categorization have been presented in recent years. Table 1 summa-
rizes the literature on major approaches for detecting DR.

Table 1: Role of AI in automatic VTDR detection

Reference Proposed methodology Findings Shortcomings

[17] ResNet50 and VGG16 are
used in this model.

The approach detects DR
lesions as well as is
computationally robust.

Due to fluorescein’s
pervasive presence,
the approach may
not accurately
identify
microaneurysms.

[18] Five distinct CNN
architectures were used:
Dense121, Dense169,
Resnet50, Inception V3, and
Xception.

To identify and categorize the
DR lesions based on the
moles’ severity.

The approach has a
significant
computational cost.

[19] Deep learning assessed input
sample significance by
predicting DR class and
assigning pixel scores,
determining final
classification.

More than 90% of the
specificity and sensitivity
values were obtained using the
presented DL framework.

It can increase the
algorithm’s
assessment
performance by
taking relevant
actions.

[15] Inception V3’s weight-sharing
layer idea creates a
siamese-like CNN
architecture.

With a kappa value of 0.829,
the research shows
encouraging results for DR
detection.

This might not
operate well in
sample datasets with
matched fundus
photos.

[20] The DeepDR framework and
a new dataset of labeled DR
images were introduced for
DR detection.

The suggested network
achieved a specificity and
sensitivity value of 97.7% and
97.5%, respectively.

The presented model
should be tested on
more complicated
and bigger datasets.

(Continued)
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Table 1 (continued)

Reference Proposed methodology Findings Shortcomings

[21] The SVM hybrid model is
used in this study

The suggested method
achieves the sensitivity,
accuracy, and specificity of
83.67%, 98.06% and 100%,
respectively.

Deep learning
approaches might be
included in future
research to compare
the outcomes with
what has been done
so far.

[22] A U-Net and transfer
learning-based two-stage
model is used in this study to
segment and classify DR.

The model achieved
state-of-the-art performance
on EyePACS-1, Messidor-2,
and DIARETDB0, with
accuracies of 96.60%, 93.95%,
and 92.25%, respectively.

The model diagnoses
retinal disorders and
improves
classification with
ensemble ML and
DL approaches.

[23] Morphological, geometrical,
and orientational properties
were all considered in this
method’s development. The
classification was done using
SVM.

DR grading, as well as
classification from FIs, with
92.11% accuracy.

The detecting
accuracy has to be
improved further.

[24] This research work uses
optimization methods with
SVM in DR detection and
classification.

Achieve accuracy of 96.91%. In the future will
work with
high-performance
technologies.

[25] Thresholding and regularised
regression methods were used
in the procedure.

DR risks prediction with a
sensitivity of 0.90.

The detecting
performance has to
be improved.

[26] The texture characteristics, as
well as the SVM classifier,
were used in the technique.

Detection of high-risk DR
with an 86% accuracy.

Experiments were
conducted using a
limited dataset.

[27] The approach proposed
consisted of two-stage CNNs.

The approach identifies areas
of interest in the retinal
picture and predicts the DR
class.

The method is
computationally
challenging.

Table 1 identifies a research gap in the need to improve the detection accuracy of diabetic
retinopathy (DR) using automated methods, despite various deep learning and machine learning
approaches proposed. Most of these approaches rely on convolutional neural networks (CNNs) for
feature extraction and classification, while others utilize SVM and morphological and geometrical
properties. However, they face limitations in accuracy, efficiency, and applicability to larger datasets
and complex retinal images. To address these limitations, the proposed approach involves preprocess-
ing, data augmentation, feature extraction, and classification stages designed for VTDR detection.
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A hybrid CNN-SVD model is employed for feature extraction and reduction from retinal fundus
images, followed by an improved support vector machine (ISVM) for classifying the five DRs. The
study’s significance lies in providing a more accurate and efficient approach to VTDR detection,
leading to early diagnosis and effective treatment of this leading cause of visual impairment and
blindness worldwide. The performance evaluation includes accuracy, sensitivity, specificity, and F1-
score measures, demonstrating the proposed approach’s effectiveness.

The principal findings of the study are as follows:

• Proposed a novel ISVM is combined with the distinct models centered on the majority voting
approach, resulting in decreased error proneness.

• After preprocessing and data augmentation, a novel hybrid CNN-SVD model extracted fundus
image features. CNN retrieved 256 features from FIs. After that, SVD decreases the number of
features to 100 by picking just the most important features, resulting in a simpler model with
improved performance.

• The proposed model is evaluated on the IDRID datasets of 516 retinal FIs.
• The proposed methodology can identify disease indicators concurrently, even early signs of

disease, and it does not have any problems learning to recognize an image of a healthy eye.
• Calculated the accuracy, sensitivity, specificity, F1-score, and computational time of the model

to verify its diagnostic ability.

The remaining parts of the article are structured as described below. In Section 2, we compre-
hensively explain the research methodology. The “Results and Discussions” section can be found in
Section 3, while “Comments on the Proposed Work” can be found in Section 4.

2 Methodology

This research provides a new approach for identifying Vision-Threatening Diabetic Retinopathy
(VTDR) by utilizing fundus images (FIs) of the IDRiD public dataset and preprocessing methods such
as FI scaling, histogram equalization, and contrast stretching to improve the FIs quality. Moreover,
data augmentation techniques are used to balance the data set in order to overcome underfitting
and overfitting concerns. Subsequently, a unique hybrid CNN-SVD model was developed after
preprocessing and augmentation to extract and select the most appropriate feature. As a final step,
an enhanced SVM-RBF is used to classify DR into 5 levels. The F1-score and other performance
indicators, such as accuracy, sensitivity, and specificity, are used to assess the proposed strategy. The
suggested procedure is shown in the flowchart form in Fig. 4.

2.1 Preprocessing and Data Augmentation

Problems arise due to the blurred or non-clear images of the dataset. Pre-processing aims
to enhance image data by reducing unwanted distortions and emphasizing essential features for
subsequent processing [25]. Different steps for preprocessing images are performed, i.e., retinal images
are converted to RGB as an inverse YCbCr transformation. Contrast Limited Adaptive Histogram
Equalization (CLAHE) mitigates noise over-amplification from AHE by limiting contrast enhance-
ment. After successful preprocessing, avoiding overfit and generalization problems is considered one
of the most fundamental characteristics of the efficient processing of AI models [28]. Augmentation
refers to creating new images based on existing images in the dataset. The number of images would
be increased by applying data augmentation techniques, i.e., vertically and horizontally rotating and
flipping, cropping and resizing
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• Rotation: Images revolved at random from 0–360 degrees.
• Shearing: Sheared with an angle randomly ranging between 20 and 200 degrees.
• Flip: Images were flipped in both the horizontal and vertical directions.
• Zoom: Images were extended randomly in the (1/1.3, 1.3) range.
• Crop: Randomly selected images were scaled to 85% and 95% of their original size.
• Translation: Images randomly shifted between −25 and 25 pixels in both directions.

Fig. 4 displays several examples of post-augmentation images.

Figure 4: Proposed methodology

2.2 Feature Extraction and Reduction by CNN-SVD from FIs

In this section, we intend to use a basic convolutional neural network (CNN) to learn as many
FI features as possible. The model’s classification performance will be improved if the fundamental
properties that distinguish between the various DR stages are extracted. That is why we used a
simple CNN model. Fig. 5 depicts the CNN feature extractor in its configuration. Features generated
by CNN layers, batch normalized and max-pooled, efficiently classify VTDR stages [27]. Batch
normalization speeds up modeling and improves performance by adjusting inputs. Max-pooling
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extracts relevant features from processed images [28, 29]. Dropout prevents overfitting and accelerates
training. The Adam optimizer was chosen for its performance with large datasets [30]. The final dense
layer extracts 256 distinct attributes from each image. After the feature extraction stage using the
hybrid Convolutional Neural Network (CNN), the extracted features are subjected to dimensionality
reduction using Singular Value Decomposition (SVD). This step aims to reduce the feature space while
preserving the most informative aspects of the data, thereby facilitating more efficient and effective
classification.

Figure 5: CNN model for the features extraction from FIs

2.3 Working Mechanism of Novel ISVM-RBF

The new ISVM-RBF is defined as variation aggregation that can be used for regression and
classification. Unlike traditional statistic-based parametric classification methods, the ISVM-RBF is
non-parametric. Even though the SVM has become one of the most commonly used non-parametric
machine learning processes, its performance suffers when there are many data samples. As a result, the
new ISVM-RBF improves change detection efficiency and accuracy. Furthermore, no assumptions
about data distribution are required. When the data cannot be classified as linear or nonlinear, a
nonlinear ISVM-RBF uses functions to reduce the computational burden. This is commonly referred
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to as a kernel trick. Two common examples of SVM-RBF transfers input variables to a high-
dimensional feature space using a pre-selected nonlinear mapping function in nonlinear separating
conditions, generating a better classification hyperplane. In the preceding example, the SVM-RBF
Variants will find a hyperplane with the same properties as the straight line. Four kernel functions
are heavily utilized. However, we only used radial basis function variations in our study (Gaussian
variants).

As a result, the enhanced ISVM-RBF now includes parameters. The parameter is used to
implement the function. It is critical to have a parameter that determines the adjustment between
the predicted function and the lowest fitting error. As a result, the ISVM-RBF can be calculated in
the following Eq. (1):

ISVM − RBF = ∀ω (a, ai) = exp
(

− 1
σ 2

||a, ai||2

)
× λ (1)

ISVM-Linear attributes are represented by ∀ω (a, ai) And the variant function is represented
by. SVM-non-linearity RBF’s characteristics meet two criteria. To begin, the SVM-RBF must be
symmetric, and it must also be capable of ensuring space identification of actual issues using real
words. As a result, the first and second conditions are established by Eqs. (2) and (3).

∀ω ((a, p) = (ϕ (a) · ϕ (p))) (2)

∀ω (a, p) − {ϕ (a) · ϕ (p)} = {(a) · ϕ (p) − ∀ω (a, p)} (3)

The SVM-RBF may integrate binary classifiers method based on one vs. all. The one alongside
all approach generates one binary classifier for each class in a k classification issue. All specimens of
the class have = 1, with all samples of (k − 1) classes having y = 0. As a result, there will be binary k
classifiers overall. All binary k classifiers will run to classify new data x, and x will be categorized into
class i, providing the most significant probability and classification result.

2.4 K-Nearest Neighbor (KNN)

K-NN is a supervised machine-learning technique frequently used to solve regression and
classification tasks. The K-neighbor nearest is a simple algorithm that keeps track of all available
samples and finds new samples with the majority votes from its k-neighbors. The majority votes of the
k-nearest neighbors determined by a distance function are used to classify an object. The distance can
be Euclidean, Manhattan, Hamming, and Minkowski distances.

2.5 Decision Tree (DT)

The decision tree is a supervised learning technique used chiefly for categorical and continuous
data classification. The data samples are classified into two or more homogeneous subgroups. A
decision tree is a directed graph with a root node at the top. The tree is then split into two or more
leaf nodes, indicating the classes/categories the tree may categorize. A node is divided into two leaf
nodes based on various decision tree criteria. Chi-Square is a widely used decision tree-splitting
method. It determines the statistically significant differences between parents and child nodes. It may
be quantified in the following manner.
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2.6 Performance Evaluation Metrics

Several performance indicators, including sensitivity, specificity, F1-score, and accuracy, are used
to assess the efficacy of the proposed [29,30]. Here is an example of how these performance metrics
can be expressed mathematically:

Sensitivity: The classifier effectively detects the fraction of true positives during the evaluation. It
is calculated using Eq. (4) below:

Sensitivity = TP
TP + FN

× 100% (4)

Specificity: During testing, the classifier accurately detects the ratio of true negatives. It is
calculated using the following Eq. (5):

Specificity = TN
TN + FP

× 100% (5)

Accuracy: This is the ratio of a classifier’s precise prediction to the label’s actual value during
testing. Also known as the correct evaluations to total assessments ratio. To determine accuracy, use
Eq. (6) below:

Accuracy = TP + TN
TP + TN + FP + FN

× 100% (6)

According to Eq. (7), the F1-score represents the harmonic mean value of recall and precision.

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

× 100% (7)

2.7 Evaluation of Theoretical Computational Complexity Using Big-O Notation

To evaluate the theoretical computational complexity of the proposed methodology, let us analyze
the different components and their potential complexities:

Preprocessing and Data Augmentation: Preprocessing techniques such as scaling, histogram equal-
ization, and contrast stretching typically have a complexity of O (n), where n represents the number of
pixels in the image. Data augmentation techniques like rotation, shearing, flipping, zooming, cropping,
and translation also have a complexity of O (n) since they operate on individual pixels.

Feature Extraction and Reduction by CNN-SVD: The complexity of the CNN model for feature
extraction depends on the number of layers, filters, and the size of the input images. Let us assume
the CNN model has L layers and F filters in each layer. The complexity of forward propagation for
a single image would be approximately O (L ∗ F ∗ n2), where n is the size of the input image. Singular
Value Decomposition (SVD) is typically performed on a matrix and has a complexity of O (r ∗ m ∗ n),
where r is the rank of the matrix, and m and n are the dimensions of the matrix.

Working Mechanism of Novel ISVM-RBF: The complexity of the SVM-RBF model depends on
the number of support vectors and the dimensionality of the feature space. Let us assume there are S
support vectors and D dimensions. The complexity of predicting a single sample using the SVM-RBF
model is approximately O (S ∗ D).

K-Nearest Neighbor (KNN): The complexity of the KNN algorithm depends on the number of
training samples (N) and the dimensionality of the feature space (D). The complexity of predicting a
single sample using KNN is typically O (N ∗ D).
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Decision Tree (DT): The complexity of building a decision tree depends on the number of training
samples (N) and the number of features (F). The complexity of predicting a single sample using a
decision tree is typically O (F).

Considering the above complexities, the overall complexity of the proposed methodology would
be determined by the most computationally intensive component. In this case, it would be the feature
extraction stage with the hybrid CNN-SVD model, which has a complexity of O (L ∗ F ∗ n2). However,
without specific information on the values of L, F, and n, it is challenging to provide a precise
evaluation of the computational complexity using Big-O notation.

3 Results and Discussion

3.1 IDRiD Dataset

We assess the efficacy of our strategy by comparing it to prior research on the IDRiD dataset
[31]. This dataset contains 516 photos of various pathological states of DR and DME, including 413
training images as well as 103 testing images, as shown in Table 2. As a result, each picture in the IDRiD
collection has labels indicating the severity of DR and DME damage. The severity scale divides the DR
grade into five groups, and we classify DR according to these five classes. The goal of segmentation
masks is to achieve precise spatial accuracy for four types of lesions: hard exudates, soft exudates,
hemorrhages, and microaneurysms. Fig. 6 shows an example of FIs with the ground truth masks and
the IDRiD dataset.

Table 2: The number of images for each severity for training and testing

Severity Training Testing

0 134 34
1 20 5
2 136 32
3 74 19
4 49 13
Total 413 103

3.2 Experimental Setup

The Matlab programming environment was used for all experiments. We used an Intel Core i7 7th
generation CPU, a 1 TB SSD, and 32 GB of RAM. In this section, we emphasize the main outcomes
of the classifier results, time complexity, and image preprocessing. In a separate presentation, the
proposed work is contrasted with traditional approaches. The configurations of hyperparameters are
illustrated in Table 3.

3.3 Image Processing Results

This section compares the pre-processing results to the classification results. As shown in Fig. 4,
the case study findings for illness grade 4 are effectively achieved in the detection zones. Because of the
lack of ground truth in the disease classification database, segmentation results cannot be quantified.
Table 4 compares the outcomes of various classifiers.



522 CSSE, 2024, vol.48, no.2

Figure 6: (a) Fundus images (FIs), (b) hard exudates, (c) soft exudates, (d) hemorrhages, and
(e) microaneurysms

Table 3: Hyperparameter configuration

Batch size 64

Learning rate 0.001
Weight decay 0.005
Optimizer ADAM
Loss function Categorical cross-entropy
Class weight [−1, 1]
Epochs 100

Table 4: Comparison of the outcomes of several classifiers

Model Severity threshold Acc (%) Sen (%) Spc (%) F1-score (%)

KNN

1 87.39 86.29 91.12 83.75
2 93.42 91.25 91.69 87.92
3 93.38 87.35 93.33 82.37
4 94.62 79.92 94.62 90.12

Binary trees

1 85.01 93.74 89.25 93.65
2 93.53 92.41 74.36 90.10
3 90.26 86.72 83.26 91.30
4 91.45 82.01 91.64 88.92

(Continued)
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Table 4 (continued)
Model Severity threshold Acc (%) Sen (%) Spc (%) F1-score (%)

SVM-Polynomial
(Mixed models)

1 92.00 91.20 93.28 93.92
2 92.25 93.82 89.61 93.82
3 93.95 80.48 99.65 88.78
4 97.33 77.55 99.09 87.35

SVM-Linear (Mixed
models)

1 91.28 91.39 91.04 93.40
2 91.28 92.66 88.96 93.02
3 92.25 82.92 96.20 8644
4 95.15 71.42 98.35 7777

ISVM-RBF (Mixed
models)

1 95.39 94.98 96.27 96.53
2 96.36 97.29 94.80 97.10
3 97.09 91.06 99.65 94.91
4 98.79 85.4 100.00 91.11

Furthermore, in terms of performance, the mixed model outperforms separate models. ISVM-
RBF outperforms all other classifiers, including KNN, DT, SVM-P, and SVM-L. Based on the results,
we discovered that the Improved SVM-RBF approaches outperformed other methods. As shown in
Figs. 7a–7d, the ISVM-RBF approach predicts more precisely than other methods. A comparison of
sensitivity specificity and F1-score is presented.

Figure 7: (Continued)
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Figure 7: Comparison of accuracy, sensitivity specificity and F1-score using improved SVM-RBF,
KNN, DT, SVM-P, and SVM-L

3.4 Time Complexity Analysis

Table 5 displays the projected PT, which is a critical metric in the image retrieval process. The
total time procedure for each image is a combination of processing, training, and testing periods. The
PT is divided into two phases: preprocessing and feature extraction, beginning with image reading
and ending with feature extraction. Similarly, the training time required to train the entire dataset for
individual classifiers. The testing time is made up of predictions and voting from each classifier. On
the other hand, this study achieved a projected PT of around 10 s, which is significantly faster.

Table 5: FIs processing time (PT) complexity (TC) of the study

Item TC (Sec) Other info

Processing time (FIs image Pre-processing and
Features extraction)

9.563562 Single image

Training time for the three classifiers 0.437288 Whole dataset
Testing time 0.037923 Single image

3.5 Comparison with State-of-the-Art Studies

Table 6 contrasts the proposed study with traditional research in which the authors provided
various databases to describe their findings. The metrics used in this comparison are thus a trade-
off between accuracy and sensitivity, with some studies focusing solely on accuracy and others on
sensitivity. The proposed work improved accuracy and specificity. Only a few studies, however, have
achieved the proposed work’s level of sensitivity. Mixed models with a disease severity of 2 had higher
F1-scores and sensitivity than models with a disease severity of 1. In terms of time complexity, this
algorithm performs reasonably well. Because all image processing processes are included, the pre-
treatment technique takes the longest to complete, taking 9.5935 s.
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Table 6: Proposed and state-of-the-artwork comparison

Author Year Dataset Method Acc (%) Sen (%) Spc (%)

[32] 2019 IDRiD CNN + Handcrafed
Features

90.70 - -

[33] 2020 IDRiD CANeT 92.60 - -
[34] 2020 IDRiD CNN 90.29 88.75 96.89

MESSIDOR 90.89 88.75 96.30
[35] 2020 IDRiD RSNET 86.33 - -
[36] 2020 IDRiD CNN 81.00 - -

Kaggle
[37] 2021 IDRiD Fine KNN 94.00 - -

MESSIDOR 98.10 - -
[38] 2023 IDRiD GNN 96.00 - -
Proposed
work

2023 IDRiD ISVM-RBF Mixture
model

98.79 85.4 100.00

3.6 Critical Analysis

The implementation challenges associated with the proposed methodology in our paper on VTDR
detection and classification can be grouped into several categories, including data collection and
preprocessing, computing resources, hyperparameter optimization, interpretability and explainability,
and model deployment, in collecting a large and diverse dataset of retinal images, preprocessing
challenging. Training deep learning models can also require significant computing resources, including
GPUs or TPUs, which can be expensive to purchase and maintain. Tuning hyperparameters is essential
in proving model performance, but it can be challenging and time-consuming, especially. AI models
are often considered black boxes and the model output. Finally, deploying the AI model in clinical
settings may require additional challenges, such as ethical and legal considerations, patient privacy,
and regulatory compliance. Addressing these implementation challenges requires a collaborative effort
between experts in machine learning, clinical practice, and regulatory compliance.

Fig. 4 shows that, as mentioned in [39], the preprocessing technique emphasizes the lesions for
detecting DR. Two different algorithms are used to identify the lesions. The lesions’ features are
extracted and integrated into a feature vector. The total performance of the voting system is recorded
based on the increasing severity threshold for each classifier and the set of metrics for each classifier.
The voting system has the highest classification accuracy compared to each classifier. Furthermore,
because the clarity of the lesion makes it easy to classify, a higher severity threshold is set to improve
the accuracy of all classifiers. Mixed models achieve the highest overall accuracy at a disease severity
of 4. (98.79%).

4 Conclusion

The timely diagnosis and treatment of Vision-Threatening Diabetic Retinopathy (VTDR) is
crucial for patients, and technological advancements facilitate this process. In this study, artificial
intelligence models were employed to classify the severity of each retinal lesion. Specifically, the paper
focuses on detecting and classifying red and bright lesions using three classifiers and a combined voting
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approach. The proposed method demonstrated superior performance with an accuracy of 98.79%
and specificity of 85.4% and 100%, respectively, surpassing the current state-of-the-art. However,
it is important to acknowledge the limitations of the proposed approach. The results obtained are
influenced by the preprocessing and feature extraction techniques, highlighting a trade-off between
critical parameters. Although the hybrid method used in this study yielded positive outcomes, there is
still room for improvement. Future research directions could involve expanding the model to predict
additional classes beyond VTDR, enhancing the capability of the initial model. Additionally, exploring
the use of Generative Adversarial Networks (GANs) to generate high-quality synthetic samples from
the original dataset could be beneficial. This would allow for training more powerful models using
artificially induced images, eliminating privacy concerns associated with patient-specific data. While
this study demonstrates promising results, it is important to recognize its limitations and consider
potential avenues for further enhancement and exploration.
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