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ABSTRACT

Given the increasing number of countries reporting degraded air quality, effective air quality monitoring has
become a critical issue in today’s world. However, the current air quality observatory systems are often prohibitively
expensive, resulting in a lack of observatories in many regions within a country. Consequently, a significant
problem arises where not every region receives the same level of air quality information. This disparity occurs
because some locations have to rely on information from observatories located far away from their regions, even
if they may be the closest available options. To address this challenge, a novel approach that leverages machine
learning and deep learning techniques to forecast fine dust concentrations was proposed. Specifically, continuous
location features in the form of latitude and longitude values were incorporated into our models. By utilizing a
comprehensive dataset comprising weather conditions, air quality measurements, and location properties, various
machine learning models, including Random Forest Regression, XGBoost Regression, AdaBoost Regression, and
a deep learning model known as Long Short-Term Memory (LSTM) were trained. Our experimental results
demonstrated that the LSTM model outperforms the other models, achieving the best score with a root mean
squared error of 23.48 in predicting fine dust (PM10) concentrations on an hourly basis. Furthermore, the fact
that incorporating location properties, such as longitude and latitude values, enhances the overall quality of the
regression models was discovered. Additionally, the implications and contributions of our research were discussed.
By implementing our approach, the cost associated with relying solely on existing observatories can be substantially
reduced. This reduction in costs can pave the way for economically efficient fine dust observation systems, ensuring
more widespread and accurate air quality monitoring across different regions.

KEYWORDS
Fine dust; PM10; air quality prediction; machine learning; LSTM

https://www.techscience.com/journal/csse
https://www.techscience.com/
http://dx.doi.org/10.32604/csse.2023.041575
https://www.techscience.com/doi/10.32604/csse.2023.041575
mailto:eunilpark@skku.edu


414 CSSE, 2024, vol.48, no.2

1 Introduction

Owing to rapid urbanization, both social and economic issues related to environmental pollution
have been consistently highlighted. Among the several aspects of environmental pollution, air pol-
lution is one of the notable threats to human health. The infamous ‘the London smog event’, which
occurred in December 1952 in London, England, reportedly resulted in the tragic loss of approximately
12,000 residents’ lives [1]. Recently, air pollution has become a major problem, threatening human
health and causing deaths [2]. Air pollution is typically described as the presence of detrimental
substances in the air at levels that can endanger one’s health [3]. It is primarily caused by well-known
noxious substances known as air pollutants. Air pollutants are substances that can harm humans,
animals, vegetation, or materials, with particulate matter (PM) and gaseous species (NO2, CO, O2,
and SO2) being major components [4]. These pollutants have detrimental effects on human health and
the economy [5], leading to significant environmental and societal problems [6]. Specifically, PM2.5

and PM10 particles, which have diameters less than 2.5 and 10 micrometers, respectively, have diverse
adverse effects on human health. They are a major contributor to health crises [7], and human exposure
to PM can result in various critical and chronic diseases, including cardiovascular and respiratory
issues such as asthma [8,9].

The adverse impacts of fine dust have been widely addressed. Prior research has demonstrated
the notable negative effects of fine dust on the national economy [10,11]. Fine dust can significantly
affect the entire production and delivery processes of high-tech industries that require an environment
related and dust-free workspace (e.g., semiconductor industry [10]). Moreover, because fine dust causes
avoidance of outdoor activities, the local economy and industries significantly related to outdoor
activities (e.g., tourism industry) are negatively affected [10,12]. With regard to the macro aspects
of fine dust effects, prior research has reported that fine dust concentrations might have caused
approximately 700 deaths in January 2013, Beijing, China, while health-related economic loss is
estimated at 253.8 million USD [13]. In addition, reference [11] argued that the total socioeconomic
cost of yellow dust, which is one of the comprehensive terms used for fine dust, was estimated annually
to range between 3,900 and 7,300 million USD [14].

Therefore, it is crucial to effectively inform and manage the levels of fine dust to prevent negative
social and economic outcomes. Predicting air quality impacted by fine dust has been a focus in guiding
citizens’ activities and reducing industrial and economic costs [10]. To achieve this, accurate prediction
of fine dust levels for all locations is essential to provide necessary information to the entire population
of a country. However, this need is often unmet due to the lack of observatories. One of the main
challenges is the imbalance in the distribution of fine dust observatories, resulting in a significant
number of areas lacking accurate observations on fine dust. For example, in Nowy Targ, a tourist town
in Poland, the nearest air quality monitoring station is approximately 30 km away due to the absence
of observation stations in residential and mountainous areas [15]. Considering several difficulties in
establishing air pollution monitoring stations in urban areas, it is required to explore data-centric
approaches for predicting fine dust levels at micro-locations.

In the case of South Korea, micro-observations on fine dust are one of the most challenging
academic and practical problems as well because of the characteristics of residential environments
and topographic issues. The shortage of observation stations in cities and provinces, except for
metropolitan areas, has also been highlighted in South Korea. This is because stations are typically
installed based on the principle of population density restriction [16], which means a limited number
of accurate and minute air quality observations in small towns and areas. For instance, the average
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coverage of observation stations in a rural area is seven times lower than that of the South Korean
capital city (Seoul [17]).

According to the Ministry of Environment in South Korea [16], several prerequisites are required
to establish observation stations. For instance, urban atmosphere observation stations should be
located in cities with populations greater than 100 thousand. Moreover, the observation stations should
have no external regional influences. In addition to the above conditions, geographical factors are
also important for establishing atmospheric observation stations, indicating that installing additional
observation stations is difficult. Therefore, a few studies have examined the problems in the existing
systems and proposed alternative observation equipment.

Reference [18] highlighted the limitations of the National Ambient Air Monitoring Information
System (NAMIS) in South Korea. It highlighted the shortage of air observation stations as a significant
factor contributing to the low reliability of fine dust observations. In situations where a specific
location lacks an observatory, the air quality at that point is estimated by averaging the observation
values from nearby observatories. Consequently, for users located outside the service area, the provided
information can be inaccurate depending on their real-time location. Furthermore, it suggested the
need to introduce a greater number of cost-effective atmospheric environment monitoring systems
due to various limitations in the current NAMIS in South Korea [19]. To provide a better and effective
understanding of air quality topics including fine dust predictions, data-driven approaches to air
quality have recently been highlighted.

Several scholars have used meteorological features and spatiotemporal information, as well as air
pollutants, to examine fine dust predictions. Reference [20] examined a correlation analysis between
meteorological factors and PM2.5 using a back propagation neural network (BPNN). In addition,
the authors applied an autoregressive integrated moving average (ARIMA) model for short-term
prediction of PM2.5 in Beijing, China by collecting a series of meteorological, air pollutant, and social
media datasets from several regions. A notable correlation between the average wind speed and PM2.5

(Rn = − 0.436, p < 0.001) was indicated by the results of the correlation analysis. The following five
variables were specifically considered; meteorological factors, pollutant concentrations, daily number
of particular miniblog posts, all meteorological and pollutant and microblog elements, and employed
elements (e.g., average wind speed, concentration of carbon monoxide (CO), nitrogen dioxide (NO2)).
With this approach, they achieved root mean squared error (RMSE) scores of 24.06 (BPNN) and 6.76
(ARIMA).

Reference [21] predicted the urban air quality in India employing linear and nonlinear models
including partial least squares regression, multivariate polynomial regression, and artificial neural
network (ANN) models. Three different ANN models were employed: multilayer perceptron, radial-
basis function network, and generalized regression neural network. They also used air and meteo-
rological datasets for a five-year period, collected by the Central Pollution Control Board and the
Indian Institute of Sugar Cane Research. The results of the models demonstrated an RMSE of 13.32
in predicting SO2 and NO2.

Reference [22] suggested a long-short term memory (LSTM)-oriented approach for computing
PM10 and PM2.5 in Seoul, Korea. The air quality dataset of Seoul was used and 25 stations in separate
districts of Seoul were selected. Then, 25 different LSTM-based models were trained to predict the
PM10 and PM2.5 levels at each station. The resulting mean squared errors (MSE) for the 25 different
models were below 0.00045. Their prediction models considered locational differences, with only a
small number of stations considered in their analysis. Reference [23] predicted the grades of fine dust
PM10. Based on the air quality data from 2010 to 2015 in six major metropolitan areas of Korea,
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they performed two classification tasks: four-grade (“Good, Moderate, Bad, Very Bad”) and two-grade
(“Good or Moderate” and “Bad or Very Bad”). A deep neural network (DNN) model was used and the
results of the neural network (NN), support vector machine (SVM), multinomial logistic regression
(MLR), and random forest (RF) were compared. The best performance in four-grade classification
(77.93%) was demonstrated by the DNN model, whereas the best accuracy in two-grade classification
(97.05%) was presented by SVM, RF, and DNN models. However, their analysis had notable data
imbalances and low-sensitivity issues (lower than 50%). Moreover, they did not consider continuous
and time-series values in the analysis.

With this viewpoint, several scholars have attempted to address potential features with notable
impacts on fine dust predictions. Reference [24] analyzed washout effects of precipitation on PM10

and NO2 in Seoul, Korea. The inter-event time definition, which is the minimum dry days between
two rainfall days, was utilized to analyze the relationship between precipitation and PM10. The
average PM10 was reported as noticeably different under different rainfall conditions, with lower values
under rainfall conditions than under non-precipitation conditions. The following log equation for the
precipitation-induced reduction effect in PM10 was proposed:

y = −4.83 ln (x) − 3.385 (1)

The effects of air monitoring sites were also analyzed. The rainfall-induced reduction in PM10 was
lower at roadside sites than urban sites because of continuous pollutant emissions from traffic at the
former locations. Reference [25] presented diffusion effects of wind velocity levels on PM10. A multiple
regression analysis was applied on a three-year air quality data of Seoul, Korea. A strong effect of
wind speed on PM10 was indicated by the result that a higher wind speed led to lower PM10 levels.

Thus, our study aims to apply data-driven approaches to predict fine dust concentration (PM10) in
specific micro-locations implementing South Korean continuous location features. For time series con-
sideration, LSTM networks along with other regression machine learning models such as XGBoost,
Adaboost, and Random Forest were leveraged. Leveraging LSTM networks, the authors tried to
capture complex temporal dependencies, enhancing forecasting accuracy. This work addresses gaps
in the literature, particularly the utilization of micro-geographical information and diverse time-series
data sources to better observe fine dust levels in areas lacking observatories.

2 Method

2.1 Data Collection and Description

South Korean air quality and meteorological datasets were used in this study. Since 1995, the
Korean government has been obligated to install an automatic air pollution measurement network
to automatically measure harmful substances in the air and identify air pollution. The Ministry of
Environment Korea has specified by statute the measurement and collection of the concentration
levels of specific substances, such as sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), nitrogen
dioxide (NO2), and fine dust (PM10, PM2.5) at one-hour intervals. The pollutant data utilized in this
study were obtained from the Korean Ministry of Environment, and a variety of air datasets were
made available through AirKorea [26]. Datasets spanning from January 2014 to December 2020 were
collected, encompassing air-related information for each measurement station in Korea. In total, the
dataset consisted of approximately 23 million samples, with an average of 11 features from 957 stations.
It is worth noting that the collected datasets were limited to a period where there were no missing or
unobserved hourly measurements of PM10, which was the target variable in this study. An example of
a collected air dataset is presented in Table 1.
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Table 1: Example of air dataset

Code of air station Time PM10 SO2 CO O3 NO2

632132 2014-01-01 01:00 132 0.010 0.600 0.022 0.011
632132 2014-01-01 02:00 121 0.010 0.600 0.021 0.011
632132 2014-01-01 03:00 101 0.011 0.900 0.019 0.011
632132 2014-01-01 04:00 82 0.011 1.000 0.014 0.017

The meteorological dataset comprises information measured at two types of meteorological
observatories: automated synoptic observation system (ASOS) and automatic weather system (AWS).
Although the number of meteorological information measurements differed between the two observa-
tories, data were used from both because they collected the same types of meteorological information
required for this study. These two observatory systems are automated surface observation systems
managed by the Meteorological Administration (KMA) in Korea. They mainly provide observations
and predictions for a range of meteorological information, including wind [27], temperature, relative
humidity, pressure, and precipitation at each site every minute [28]. Total 37 M samples from 630
stations (both from AWS and ASOS) from January 01, 2014, to December 31, 2020 were collected
(Table 2).

Table 2: Variables of the collected datasets (data from 2014 to 2020)

Dataset Features

Airkorea City district, station code, station name, datetime, SO2,
CO, O3, NO2, PM10, PM2.5 station address

Common variable in AWS and ASOS Station number, station name, datetime, wind direction
(degree), wind speed (m/s), precipitation (mm), local
pressure (hPa), sea level pressure (hPa), humidity (%),
temperature (°C)

In the Airkorea dataset, PM2.5, an hourly ultra fine dust concentration was recorded in 2015, and
with higher level of accuracy from 2019. The observations were not stable until 2018, where the average
missing ratio of the collected information from 2014 to 2018 was higher than 50%. Thus, PM10, an
hourly fine dust concentration that was stably observed throughout the period, was set as the target
variable instead of PM2.5.

Fig. 1 shows the distribution of observatories. The distribution of air pollutant observatories pro-
vided by AirKorea and observatories observing meteorological datasets differed as follows. Contrary
to the meteorological stations, it can be confirmed that air pollutant observatories in South Korea are
more concentrated in metropolitan and megalopolis areas (e.g., Seoul and Busan).

2.2 Preprocessing

2.2.1 Acquisition of Location Variable

To utilize the location information, the authors first collected and added the latitude and
longitude information of stations in each dataset. For the Airkorea dataset, the latitude and longitude
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corresponding to each station address were obtained using the Google Maps application programming
interface [29]. To obtain weather information, this paper integrated the ASOS and AWS datasets into
a single meteorological dataset. Additionally, the latitude and longitude information of the stations
were collected and paired by utilizing the metadata provided from the KMA website. This allowed for
the association of location coordinates with the corresponding air observation stations.

Figure 1: (Left) Air quality observatory locations, (Right) the locations of the weather observatories

2.2.2 Data Merging

After pairing the latitude and longitude values of all stations in each dataset, this paper mapped
the AirKorea dataset and meteorological dataset based on the shortest distance between the latitude
and longitude values of each station. Specifically, the information from a meteorological station was
mapped to the nearest AirKorea station based on its locational and seasonal information. A library
called haversine [30] in Python was used to calculate the distance between the two stations. This method
is utilized to compute the distance between two points along a great circle, which represents the shortest
path over the Earth’s surface. The calculation was done using the following formulas [30]:

θ = d
r

(2)

hav (θ) = sin2

(
θ

2

)
= h (3)

d = 2r × arcsin
(√

h
)

(4)

Notably, in formula (4), d signifies the distance between two points along the great circle of
a sphere, with r representing the sphere’s radius [30]. This article can obtain the value d through
the haversine function 3. In the context of a sphere, θ represents the central angle formed between
any two points [30], while formula (2) shows how to calculate it. Finally, the locationally proximate
meteorological stations were mapped based on the hourly date and time with the Airkorea dataset.

2.2.3 Handling Missing Value

To handle missing values, any features that had more than 50% missing values were removed from
the analysis. For the remaining features, a linear interpolation method was implemented using the
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interpolate function from the pandas library. This approach was chosen because filling null values with
a single value, such as mean or median, may not be appropriate for the dataset, which consists of hourly
information and exhibits clear time series characteristics. Linear interpolation, on the other hand, is
more suitable for time series data as it imputes missing values based on a linear computation, taking
into account the hourly fluctuations in the data. Several studies have utilized the linear interpolation
method and have validated its effectiveness compared to other methods, such as single interpolation
[31,32]. Moreover, this paper eliminated samples with zero PM10. Table 3 shows the basic statistics
after the overall preprocessing.

Table 3: Basic statistics of dataset after preprocessing

PM10 SO2 CO O3 · · · Temperature Humidity

Mean 42.996 0.004 0.480 0.028 · · · 13.125 5.181
Std1 29.887 0.003 0.248 0.019 · · · 10.155 36.227
Min 1 0 0 0 · · · –25 0
25% 24 0.002 0.003 0.013 · · · 5 26
50% 37 0.003 0.400 0.026 · · · 13.700 58.500
75% 55 0.005 0.600 0.040 · · · 21.700 2.500
Max 1484 0.502 11 0.232 · · · 40.500 100
Note: 1Standard Deviation.

2.3 Feature Selections

For feature selection, this paper calculated the correlation coefficients, and features with an
absolute correlation coefficient greater than 0.1 were selected as the final variables. Even if the
correlation was lower than the standard, variables found to be important in previous studies were
also considered [33,34]. Finally, the month was separated from datetime and added as a variable. The
final selected variables are presented in Table 4. Fig. 2 and Table 5 show their correlation coefficient
with PM10 and an example of our training dataset, respectively.

Table 4: The selected/employed variables based on the feature selection

Category Variables

Air SO2, CO, O3, NO2

Weather Temperature, precipitation, wind speed, humidity
Location Latitude of air station, Longitude of air station
Month Month

2.4 Predictive Algorithms

RF regression (RFR), XGBoost regression (XGB), AdaBoost regression (Ada), and LSTM
models were used to predict PM10 levels. RFR is a supervised machine learning algorithm for numeric
variable prediction. It is an ensemble algorithm that combines multiple models for higher accuracy of
prediction results. Results of multiple decision trees are joined, and the mean of each decision tree is
the output.
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Figure 2: Correlation coefficient with PM10

Table 5: Training set sample

Time PM10 Month SO2 CO O3 · · · Temperature Wind speed Humidity

2014-01-01 01:00 132.0 1 0.010 0.6 0.022 · · · 6.6 5.4 30
2014-01-01 02:00 121.0 1 0.010 0.6 0.021 · · · 5.9 2.8 30
2014-01-01 03:00 101.0 1 0.011 0.9 0.019 · · · 4.0 0.7 28
2014-01-01 04:00 82.0 1 0.011 1.0 0.014 · · · 3.8 1.0 24

The RFR model used in this study is robust against overfitting due to its implementation of a
bootstrapping method during the construction of individual trees. This technique helps to reduce the
risk of overfitting by randomly sampling the training data for each tree. However, note that the RFR
model can be memory intensive due to the aggregation process of the individual trees. The process of
combining the predictions from multiple trees requires additional memory resources.

XBG is a boosting method for an ensemble algorithm. This method sequentially applies a decision
tree and the error of the previous model is considered as the weight of the next model. A calculated
value reflecting the weights of all steps is the final result of the boosting. XGB is a representative
model of the boosting method and XGB regression is used for numeric value prediction. XGB would
be computationally intensive because it is an ensemble algorithm, while feature importance could be
obtained through this model. Ada is an adaptive boosting method. Although the basic Ada algorithm
is the same as XGB, it applies different weights to individual weak classifiers. Ada is vulnerable to
biased dataset, while it is robust to imbalanced dataset and could deal with it easily. Last, LSTM is
the recurrent neural network (RNN) model used for dealing with sequential data and its core is a
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memory cell that remembers the results from the previous hidden layer. RNN model performs the
task through a recursive use of information, which means in each time step (t), output of the previous
time step (t−1) memory cell is used as input. The problem of RNN model is long term dependency,
a phenomenon where the values of the distant past hidden layers are not transmitted to the end. The
concept of LSTM was introduced to ameliorate the problem of long-term dependency [35]. To solve
the above problem, LSTM utilized forget (ft), input (it), and output (ot) gates. The structure of the
LSTM cell is presented in Fig. 3. The forget gate decides the type of information to be abandoned from
the previous cell. The input gate decides what to store in the current cell among the new information
input. In the update process, the old cell state (Ct−1) is computed and reflected to the new cell state
(Ct). The output gate determines the output value. LSTM is an appropriate method to sequential
dataset, but it is such a ‘black-box’ model. This point indicates that the influence of features and results
cannot be interpreted. In this research, two different variable sets were used. First, “Air + Weather”
set is composed of pollutant and meteorological information. Second, “ALL” set is composed of all
pollutant, meteorological and location information.

Figure 3: LSTM cell structure

2.5 Evaluation Metrics

Each model was evaluated using five metrics: Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Pearson
Correlation. MSE (formula (5)) represents the average difference between the actual and predicted
values. A lower MSE indicates higher accuracy of the regression model. A lower MAE indicates
better model performance. This metric is intuitive but can be influenced by the scale of the data.
MAPE (formula (8)) improves the scale-dependency issue of MAE by expressing it as a percentage. It
provides an assessment of the mean percentage deviation between the observed and estimated values
[36]. Pearson Correlation (formula (9)) is used as a metric for evaluating the level of similarity between
the observed and estimated values [37]. It measures the linear relationship between two variables and
indicates how well the predicted values align with the actual values.

MSE = 1
n

∑n

i=1

[
Yi − Ŷi

]2
(5)
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RMSE =
√

1
n

∑n

i=1

[
Yi − Ŷi

]2
(6)

MAE = 1
n

∑n

i=1

∣∣Yi − Ŷi

∣∣ (7)

MAPE = 100
n

∑n

i=1

∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣ (8)

R =
∑n

i=1 (Yi − Y) ×
(

Ŷi − Ŷ
)

√∑n

i=1 (Yi − Y)
2 ×

√∑n

i=1

(
Ŷi − Ŷ

)2
(9)

2.6 Modeling Approach

For the input features of RFR, XGB, and Ada, the integrated and validated datasets of 574 stations
were split into training (394 stations, 70%), validation (50 stations, 10%), and testing (94 stations, 20%)
datasets, respectively. Training set is composed of 15,434,716 rows and 11 columns. Validation set is
composed of 1,975,360 rows and 11 columns. Lastly, the test set is composed of 3,572,464 rows and 11
columns. For the input features of LSTM, which utilizes the sequential characteristics of input features,
this paper shifted the variables 5 h before the time of the targeted PM10. Fig. 4 presents an overview
of the shifted procedures. Training set is composed of 15,433,140 rows and 51 columns. Validation set
is composed of 1,975,160 rows and 51 columns. Lastly, the test set is composed of 3,572,088 rows and
51 columns.

Figure 4: Example of data shifting
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We set the number of estimators as 100, minimum of samples to split as 2, randomness of
bootstrapping as 42 and number of jobs to run parallel as −1 for RFR. For XGB, number of estimators
set as 100, learning rate as 0.01, minimum of split loss as 0, ratio of sampling as 0.75, ratio of feature
sampling as 1 and maximum depth set as 7. For Ada, the autors set the number of estimators as
100, learning rate as 1.0 and loss function for weights as ‘linear’. The LSTM structure is presented in
Fig. 5. Python 3.6 and Tensorflow 2.4 on GeForce RTX 3060 TI 8 GB GPU were employed for the
experiments.

Figure 5: Overview of LSTM: All shifted data served as an input of model and propagated through
several LSTM and dropout layers. Ultimately, predicted PM10 value was obtained

3 Result and Discussion

Based on the employed metrics and the findings of prior research [38–42], the RMSE and Pearson
correlation are mainly considered our main metrics. Table 6 and Fig. 6 summarize the results. The
study considered various pairs of input sets and compared the performance of each pair. Two pairs,
namely Air + Weather and ALL, achieved better results for the machine learning models, while the
LSTM model yielded the best overall performance. Fig. 7 displays the distribution of actual and
predicted values for the LSTM model and indicates a significant similarity between the distributions
of the actual and predicted values. Fig. 8 is a plot of PM10 values in the low range and shows the
relationship between true and predicted values of LSTM. This indicates that the model can relatively
well predict low-range PM10 values rather than larger values and spikes. Air-related variables such as
NO2 and SO2 generally had significant importance in overall machine learning methods. In the case
of the Air + Weather set, CO and SO2 acted as important variables of XGB, CO and temperature were
important variables of Ada. In the All set, CO and SO2 were also selected as important variables of
XGB. Important variables of Ada were Month, CO, and latitude of air observatories.

The results revealed that LSTM performed better than all other machine learning models.
The RMSE and Pearson correlation of LSTM were 23.48 and 0.6176, respectively. RFR exhibited
the second-best performance, with an RMSE score and Pearson correlation of 23.93 and 0.612,
respectively, slightly lower than those of LSTM. Ada and XGB exhibit inferior performance compared
to LSTM due to their susceptibility to outliers and the adverse effects of noisy data. Meanwhile, LSTM
exhibits greater robustness with the dataset compared to other machine learning models. The LSTM
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model’s superior efficacy lies in its ability to handle the temporal dynamics present in the dataset. Given
the continuous temporal variations inherent in air quality and meteorological data, incorporating
information from previous time steps becomes crucial for accurately predicting atmospheric condi-
tions in subsequent time steps. The LSTM model effectively recognizes and leverages these intrinsic
characteristics, resulting in better performance compared to other machine learning models that only
utilize the month variable for time-related information.

Table 6: Result of prediction task

Score mode RFR XGB Ada LSTM

Air + weather All Air + weather All Air + weather All All

RMSE 23.99 23.93 29.84 29.78 46.40 39.09 23.48
MSE 575.84 572.91 890.76 887.18 2153.67 1528.22 551.47
MAPE 54.96 55.25 45.69 45.73 103.90 108.32 53.45
MAE 15.49 15.52 18.86 18.83 25.61 24.81 14.99
Pearson
correlation

0.600 0.612 0.5754 0.5778 0.2007 0.2559 0.6176

Figure 6: Prediction result of LSTM

Overall, the models that included all features, including location information (latitude and longi-
tude values of each station), outperformed models that solely relied on air quality and meteorological
information. In a comparative study, incorporating location information improved the performance
of RFR, XGB, and Ada, with respective R of 0.612, 0.5778, and 0.2559, compared to scenarios where
location information was omitted (R of 0.600, 0.5754, and 0.2007, respectively). This highlights the
value of incorporating micro-location features to enhance the prediction model and achieve fine dust
level predictions in areas without nearby observatories.
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Figure 7: Distribution of actual and predicted values

Figure 8: Scatter plot of actual and predicted values

The results of our study can be considered satisfactory, considering the uniqueness of our dataset
and the differences in variables and preprocessing methods used in previous studies. It is also notewor-
thy that the inclusion of local information improved model performance. Although outliers were not
specifically addressed due to the nature of the dataset as a natural phenomenon and interpolation was
performed to handle a significant portion of missing values, the model demonstrated good predictive
performance, except for extreme spikes in PM10 values (Figs. 6 and 7). As a consequence, this article
demonstrated the efficacy of micro-location mapping method for data-scarce region by achieving a
certain level of performance without complicated preprocessing method, except for extreme spikes in
PM10 values (Figs. 6–8). Especially, Fig. 8 represents the successfully predicted values of our LSTM
model.
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4 Conclusion

Our research aimed to address the prediction of fine dust levels in specific micro-locations where
observatories are lacking. This article collected datasets from meteorological observatories (ASOS
and AWS) and Airkorea, covering the period from January 2014 to December 2020. The air dataset
consisted of a total of 23 million samples from 957 stations, with an average of 11 features per sample.
To achieve accurate fine dust prediction, this article proposed an innovative strategy that incorporates
micro-location information (latitude and longitude). The machine learning and deep learning models
used for PM10 prediction included RFR, XGB, Ada, and LSTM. Evaluation of these models was
conducted using standard metrics such as RMSE, MSE, MAPE, MAE, and Pearson correlation. The
results demonstrated an intensive correlation between the true and predicted values, validating the
effectiveness of our approach. This paper particularly highlighted the significance of incorporating
latitude and longitude variables, which significantly improved prediction accuracy. Among the models,
LSTM performed the best by capturing temporal dependencies across distant time steps, achieving a
Pearson correlation of 0.6176.

This study holds significant implications for both scholarly and practical aspects. By incorporating
micro-location values and utilizing a time-series dataset, this paper enhances the understanding
of factors influencing PM10 levels and improve prediction accuracy, contributing to the existing
knowledge base. Moreover, our research emphasizes the importance of alternative approaches in data-
scarce regions, enhancing environmental monitoring and addressing regional disparities. In practical
terms, our approach contributes to public health management by providing accurate information for
informed decision-making and targeted interventions, ensuring equal access to information in rural
areas without observation systems. Furthermore, the use of micro-location information enables a
localized and effective approach to tackle air pollution concerns, optimize resource allocation, and
mitigate the impacts of fine dust pollution more effectively.

However, our study also has some limitations. Firstly, there is a trade-off between interpolating
missing values and removing them in the meteorological observation data. While this paper employed
linear interpolation, the interpolated values may not fully represent the actual data and could
introduce potential distortions and inaccuracies. On the other hand, removing missing values ensures
data accuracy and enhances the reliability of analysis results but may result in information loss.
Future research could explore the performance comparison between interpolated data and data
with missing values completely removed, considering the implications of each approach. Secondly,
additional diverse data pre-processing procedures could be explored in future studies. Apart from the
methodology employed in this study, the inclusion of various scaling techniques, the generation of
derived variables, and the incorporation of data from other modalities related to weather observation,
such as satellite photos, could be considered.
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