
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.043245

ARTICLE

TEAM: Transformer Encoder Attention Module for Video Classification

Hae Sung Park1 and Yong Suk Choi2,*

1Department of Artificial Intelligence, Hanyang University, Seoul, Korea
2Department of Computer Science, Hanyang University, Seoul, Korea

*Corresponding Author: Yong Suk Choi. Email: cys@hanyang.ac.kr

Received: 26 June 2023 Accepted: 26 October 2023 Published: 19 March 2024

ABSTRACT

Much like humans focus solely on object movement to understand actions, directing a deep learning model’s
attention to the core contexts within videos is crucial for improving video comprehension. In the recent study,
Video Masked Auto-Encoder (VideoMAE) employs a pre-training approach with a high ratio of tube masking and
reconstruction, effectively mitigating spatial bias due to temporal redundancy in full video frames. This steers the
model’s focus toward detailed temporal contexts. However, as the VideoMAE still relies on full video frames during
the action recognition stage, it may exhibit a progressive shift in attention towards spatial contexts, deteriorating
its ability to capture the main spatio-temporal contexts. To address this issue, we propose an attention-directing
module named Transformer Encoder Attention Module (TEAM). This proposed module effectively directs the
model’s attention to the core characteristics within each video, inherently mitigating spatial bias. The TEAM first
figures out the core features among the overall extracted features from each video. After that, it discerns the specific
parts of the video where those features are located, encouraging the model to focus more on these informative parts.
Consequently, during the action recognition stage, the proposed TEAM effectively shifts the VideoMAE’s attention
from spatial contexts towards the core spatio-temporal contexts. This attention-shift manner alleviates the spatial
bias in the model and simultaneously enhances its ability to capture precise video contexts. We conduct extensive
experiments to explore the optimal configuration that enables the TEAM to fulfill its intended design purpose and
facilitates its seamless integration with the VideoMAE framework. The integrated model, i.e., VideoMAE + TEAM,
outperforms the existing VideoMAE by a significant margin on Something-Something-V2 (71.3% vs. 70.3%).
Moreover, the qualitative comparisons demonstrate that the TEAM encourages the model to disregard insignificant
features and focus more on the essential video features, capturing more detailed spatio-temporal contexts within
the video.
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1 Introduction

The transformer [1] has made significant progress in the Natural Language Processing (NLP) field
because of its self-attention mechanism, which enables seamless modeling of long-term dependencies.
In addition, the Vision Transformer (ViT) architecture [2] is widely used in computer vision tasks,
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such as image classification, object detection, semantic segmentation, and video understanding,
showing superior performance compared to to its convolutional counterparts [3–7]. This performance
demonstrates that self-attention can smoothly capture global dependencies, not only in natural
language but also in images or videos–both spatially and temporally.

In the process of training a transformer, it is more effective to carry out pre-training on a large-
scale dataset to improve generalization performance and then conduct fine-tuning on the target
dataset, rather than directly train the transformer from scratch. In the image domain, it is common
to pre-train large-scale image datasets, such as ImageNet-21k or JFT-300 M. However, in the video
domain, existing datasets are relatively small compared to image datasets, making it challenging to
pre-train directly on them. Therefore, a typical approach to effectively training video transformers is
to pre-train on a large-scale image dataset and then fine-tune it on the video dataset. However, since
the video models are pre-trained on large-scale image datasets, they tend to understand each video
more based on its spatial context than its temporal context. In other words, the video transformer
is more likely to be proficient in spatial modeling, but it may have limitations in temporal modeling.
To address this issue, recent approaches [8–11] typically involve self-supervised methods on small-
scale video datasets to pre-train and fine-tune the model on the target dataset, resulting in enhanced
temporal modeling.

In Self-Supervised Video Pre-training (SSVP), the VideoMAE [8] significantly enhances the
temporal modeling ability in the ViT by changing only the pre-training method from image-based
supervised learning to masking and reconstruction. Specifically, it employs a high ratio (i.e., 90%)
of tube masking, which is designed to avoid “spatial bias” caused by temporal redundancy in the
video. Basically, a video contains both spatial and temporal contexts, where the temporal context refers
to the pattern of the spatial context evolving over time. In the video-training pipeline, each video is
sampled with T frames, and the model is trained to understand the video’s characteristics based on
these frames. However, as shown in Fig. 1, the spatial context within video frames varies slowly over
time, leading to significant redundancy of irrelevant spatial information within the frames. Due to this
redundancy, within consecutive frames, only a small portion is practically associated with the motion
(e.g., twisting motion in Fig. 1), while the majority tends to consist of redundant spatial information
(e.g., background or face in Fig. 1). Therefore, the temporal redundancy in full video frames may lead
to a progressive shift in the model’s attention towards only the redundant spatial contexts. This spatial
bias issue deteriorates the model’s ability to comprehend the detailed characteristics of the video,
leading to a significant performance drop in action recognition. From this perspective, employing
a high ratio of tube masking is an effective approach to directly mitigate the spatial bias issue and shift
the model’s attention to the core characteristics of the video. In addition, since the VideoMAE aims to
reconstruct the contextual information of masked tubes by utilizing computed features from only the
unmasked ones, it attempts to extract as many features as possible from unmasked segments. Through
this effective pre-training, the VideoMAE becomes capable of extracting substantial features from the
input video, leading to an improved ability to capture the main spatio-temporal contexts.

However, in the action recognition stage, the VideoMAE may not fully utilize the benefits of
masking and reconstruction as it still relies on full video frames that inherently contain temporal
redundancy. During the initial epochs of fine-tuning, this effective pre-training enables the VideoMAE
to capture spatio-temporal contexts in video seamlessly. However, as fine-tuning progresses, the model
may progressively become focused solely on the redundant spatial contexts due to the inherent
temporal redundancy in full video frames. Therefore, it is still challenging to effectively steer the
model’s attention towards the core characteristics of each video, even in the fine-tuning stage, and
utilize the potential advantage of SSVP.



CSSE, 2024, vol.48, no.2 453

Figure 1: Consecutive frames from Something-Something-V2. Red boxes in these frames indicate
motion-related area, i.e., twisting motion

To address this challenge, we propose a novel module named the Transformer Encoder Attention
Module (TEAM). The proposed module aims to direct the attention of the VideoMAE to the core
contexts of the video. In this way, it effectively mitigates the spatial bias issue by shifting the model’s
attention from spatial contexts to the main spatio-temporal contexts. Therefore, this shift in focus
leads to a performance improvement in video understanding. To ensure the seamless integration of
the TEAM with the VideoMAE, we first analyzed the video processing flow in the VideoMAE. Based
on this analysis, we designed the TEAM, which comprises two sub-modules, each with a specific role
in guiding the model’s attention to the core contexts of each video, thereby mitigating the spatial bias
issue. The first sub-module is the Feature Attention Module (FAM). It aims to identify core features
among the overall features extracted by the VideoMAE, encouraging the model to focus more on those
core features. Consequently, this sub-module prevents the model from being spatially biased in the
action recognition stage. The second sub-module, i.e., the Token Attention Module (TAM), operates
based on the FAM’s output. It first discerns the meaningful parts of the video where the informative
features are located and then enables the VideoMAE to concentrate on those regions. This allows
the model to capture more detailed spatio-temporal contexts in the video. We sequentially organized
the FAM and TAM into the TEAM. As a result, the TEAM guides the VideoMAE to recognize
what and where the core features are in the video, resulting in improved performance in terms of video
understanding.

We designed the TEAM by taking inspiration from the CBAM [12], one of the several feature
selection methods [13–15]. This CBAM is an attention module developed for image-based convo-
lutional networks. The TEAM shares similarities with the CBAM as an attention module, but it
is specifically developed for a video-based transformer, i.e., VideoMAE. Therefore, we conducted
extensive experiments to explore the optimal structure of the TEAM that best fits the VideoMAE. To
be more specific, we experimented by refining the existing CBAM structure and comparing it to find
the most desirable structure that enables the FAM and TAM to effectively achieve their respective roles
in the VideoMAE. Through these experiments, we observed two important findings: (1) The ratio of
core features to the overall extracted features progressively decreases as video data passes through each
encoder within the VideoMAE; (2) Using only the softmax function without any learnable parameters,
e.g., the linear layer, is more effective in discerning the informative parts within a video. Building upon
these findings, we developed the TEAM and confirmed that this design choice enables the TEAM
to operate more effectively within each encoder of the VideoMAE. Consequently, we compared the
integrated model, i.e., VideoMAE + TEAM, with the existing VideoMAE on Kinetics-400 (K400) [16]
and Something-Something-V2 (SSv2) [17]. The integrated model demonstrates higher performance
compared to the baseline on both datasets, with particularly notable improvements observed on SSv2
(71.3% vs. 70.3%). Lastly, we conducted qualitative comparisons, which indicate that the TEAM allows
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the model to better focus on the informative features, enabling it to capture more detailed spatio-
temporal contexts from the video. In summary, the main contributions of this paper are as follows:

• We propose an attention-directing module, i.e., TEAM. This module guides the VideoMAE to
figure out what and where the core features are in the video and enables the model to focus on
those features. Consequently, it effectively addresses the spatial bias issue in the VideoMAE.

• We conduct extensive ablation studies to explore the optimal structure that enables seamless
integration of the TEAM with the VideoMAE. Throughout these studies, we obtain two major
findings: (1) As video data passes through each encoder within the VideoMAE, the ratio of
core features to the overall extracted features gradually decreases; (2) Using only the softmax
function is more effective in identifying the meaningful parts within a video than employing
learnable parameters, i.e., the linear layer.

• Through performance and qualitative comparisons, we demonstrate that the TEAM enables the
VideoMAE to better understand each video, leading to a significant performance improvement
on SSv2. Since getting remarkable performance on SSv2 requires detailed video context
modeling, this improvement proves the effectiveness of the TEAM.

The rest of this paper is organized as follows: In Section 2, we present an overview of the related
work. Then we deeply describe the TEAM in Section 3. Section 4 shares the experimental results and
analysis. Finally, we conclude this paper and present future work in Section 5.

2 Related Work

2.1 Transformer-Based Models in Action Recognition

The transformer [1] architecture has played a significant role in the NLP field due to its capability
to capture long-term dependencies. Consequently, it has garnered substantial attention in the field of
computer vision, and there have been numerous attempts to apply the ViT [2] architecture to various
vision tasks. Moreover, as the video data is inherently sequential, this ViT architecture has garnered
notable interest, particularly in action recognition. Video Vision Transformer [3] proposes a temporal
encoder, while TimeSformer [6] introduces temporal attention. Each incorporates their methods into
the ViT architecture, resulting in significantly improved performance in action recognition compared
to their convolutional counterparts. Building upon this, transformer architectures have become widely
used in the field of action recognition. For instance, the Video Swin Transformer [18] employs a
window shift attention mechanism to capture the locality and activate the inductive bias of the trans-
former. MViT [19] utilizes a hierarchical structure and a pooling attention to reduce the computational
cost. Uniformer [20] combines the strengths of convolutional networks and transformer-based models.
And the recent work, Multi View Transformer [21], leverages multiple ViT structures to capture spatio-
temporal contexts in various ways.

However, since these transformer-based models have less inductive bias compared to their
convolutional counterparts, a common general scheme is to pre-train them on large-scale datasets and
then fine-tune them on target datasets. Furthermore, due to the relatively small scale of video datasets,
the early action recognition scheme typically involves pre-training the transformer on a large-scale
image dataset and fine-tuning it on a video dataset. However, this image-based pre-training may bias
the model towards only the spatial contexts in the video, potentially limiting its ability to seamlessly
capture spatio-temporal contexts. To address this issue, recently proposed approaches [8–11] typically
employ self-supervised video pre-training, enabling video-based models to better understand each
video itself.
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2.2 Self-Supervised Video Pre-Training

In self-supervised video pre-training, the VideoMAE [8] is a method that applies SSVP to the
action recognition scheme for the first time. Instead of image-based supervision, it employs masking
and reconstruction for pre-training, resulting in the greatly enhanced temporal modeling ability of the
ViT. Likewise, the MaskFeat [11] exploits the masking and reconstruction scheme during SSVP. This
method differs from the VideoMAE in that it predicts the HOG map of each video frame rather than
reconstructing RGB pixels, and its masking ratio is lower (i.e., 60%). BEVT [22] also utilizes SSVP
with masking and reconstruction to improve the spatio-temporal modeling ability of the Video Swin
Transformer. However, it differentiates itself from the above methods by predicting features from a
trained tokenizer, similar to BERT’s pre-training approach [23]. Most recently, the InternVideo [9]
utilized SSVP with both masking and reconstruction, as well as contrastive learning, achieving state-
of-the-art performance on most video under standings tasks.

Consequently, recent methods typically employ self-supervised learning during pre-training to
enhance the video understanding capability of existing video-based models. These approaches effec-
tively address the limitations of image-based pre-training. Therefore, they achieve significantly higher
performance on action recognition compared to the elaborately designed image-based video models.
However, despite the effectiveness of SSVP, the action recognition scheme still relies on full video
frames, which inherently contain temporal redundancy. This inefficient scheme may progressively
lead SSVP-based models to become focused only on redundant spatial contexts as the fine-tuning
continues. To address this issue, we developed the TEAM, which redirects the model’s attention to the
main spatio-temporal contexts in each video. By doing so, the proposed module enables the SSVP-
based model to better capture the core contexts in the video without becoming spatially biased, even
as fine-tuning progresses. Unfortunately, among SSVP-based models, only the pre-trained weight of
the VideoMAE on SSv2 is publicly available, and we have limited resources (i.e., GPUs). Therefore,
we applied the TEAM to only the VideoMAE and evaluated its effectiveness.

2.3 Convolutional Block Attention Module

Classification is a task in which a model extracts features from data and then computes the main
context based on these features, ultimately classifying it into a specific category. Moreover, prioritizing
core features over unnecessary ones (e.g., background in an image) during feature extraction enhances
the clarity of the computed main contexts, leading to improved classification performance.

Based on this concept, Woo et al. [12] proposed a Convolutional Block Attention Module (CBAM)
which is an effective attention module for convolutional networks in image understanding tasks.
Specifically, the authors designed CBAM with two sub-modules to precisely identify what and where the
core features are within the feature map that represents the image. The first sub-module is the Channel
Attention Module (CAM). It exploits inter-channel relationships to identify which channels in the
feature map contain informative features, allowing the model to focus more on those core channels.
The second sub-module, the Spatial Attention Module (SAM), operates based on the output of the
CAM. It utilizes inter-spatial relationships to distinguish the spatial locations where core features
are located. This makes the model focus more on the critical spatial regions within the entire spatial
domain of the feature map. Through these sophisticated modules, CBAM significantly improves the
context modeling ability of the existing convolutional networks, thereby enhancing their performance
in image understanding tasks like object detection and image classification.

Inspired by CBAM, we propose the TEAM, which effectively enables the VideoMAE to focus
more on the target features of the video. Since a video is sequential data in which the spatial contexts
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within each frame change over time, its core features should include not only spatial features but also
temporal features. In other words, unlike the CBAM, which only considers the informative spatial
features in one image, we should design the TEAM to make the model focus well on both the key
spatial and temporal features in the video. Therefore, while the proposed TEAM consists of two sub-
modules similar to the CBAM, we refined the components of each module to enable the TEAM to
better identify the core features in each video.

3 Methodology

3.1 Video Representation in Transformer

The purpose of an attention module (e.g., CBAM or TEAM) is to guide the model to focus more
on the informative features among the extracted data features, enabling it to capture more precise
contexts in the data. Therefore, an integrated model with this type of module may better understand
the data itself. To ensure that an attention module effectively operates for its intended purpose, it is
essential to consider how the model processes data. By doing so, an attention module can be designed
based on this analysis, ultimately enabling it to effectively complement the context modeling method
of the overarching model. To achieve this objective, we first analyzed the video processing flow in the
VideoMAE from a different perspective. Based on this analysis, we designed the TEAM to seamlessly
integrate with the VideoMAE and effectively operate for its intended purpose.

The VideoMAE first receives each clip video as frames and converts them into a 3D token
sequence. To be more specific, a video clip is first expressed as T frames of H × W × 3 pixels through
frame sampling. After that, the video, V ∈ R

T×H×W×3, is decomposed into N non-overlapping 3D tokens
through tube let embedding (i.e., N = T

t
× H

P
× W

P
), and each 3D token x ∈ R

t×P×P×3 is mapped into a
D-dimensional vector. Lastly, a learnable positional embedding matrix, Epos ∈ R

N×D, is added to this
3D token sequence, encoding the spatio-temporal position of each individual 3D token. As a result,
in the VideoMAE, each video is represented as a 3D token sequence X ∈ R

N×D, and each 3D token is
depicted as follows:

xn = [x(n, 1), x(n, 2), x(n, 3), · · · · · · · · · , x(n, D)] (1)

As shown in Eq. (1), each 3D token consists of D values, and from the perspective of the latent
space, xn would be expressed as a single point in D-dimensional space. In this case, each dimension
in the D-dimensional space represents a specific feature descriptor, and the value for the dimension is
the degree to which a token contains that feature. Taking Eq. (1) as an example, if the first dimension
represents the feature descriptor “going up”, it can be interpreted that a 3D token xn contains the
“going up” feature to the degree of x(n,1).

Based on this concept, each clip is converted into a 3D token sequence X ∈ R
N×D by tubelet

embedding, and it is expressed as N points in a D-dimensional space. This token sequence passes
through a number (L) of encoders within the VideoMAE, and the input and output sequences of
each encoder have the same shape of N × D. From the perspective of the latent space, this token
sequence would be represented as N points in different D-dimensional spaces as it passes through
each encoder. At this point, since the early encoders extract relatively simple features from the video,
the output sequence of these encoders would be projected into a latent space where each dimension
represents those simple features. Furthermore, these simple features are combined through a weighted
summation, allowing the later encoders to extract more sophisticated and complex features from the
video. Therefore, as the encoder deepens, the output sequence would be projected into a latent space
where each dimension represents more refined and intricate features. Finally, the output sequence of
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the final encoder within the VideoMAE is summarized into a D-dimensional vector through average
pooling. Subsequently, a hidden layer, MLP Head, and Softmax are applied to this vector to classify it
into a specific category. To summarize, we analyze the video processing flow in the VideoMAE from
the perspective of the latent space. This model maps each video as N points in a latent space where
each dimension describes a specific feature and processes it through L encoders. Based on this analysis,
we design the TEAM in such a way that it allows the model to focus more on core features, enabling
it to capture more precise video contexts.

3.2 Feature Attention Module

The Feature Attention Module (FAM) aims to figure out the core features of video, enabling the
Video MAE to focus more on those features. Consequently, this sub-module effectively prevents the
model from being spatially biased. The overall process of the FAM is depict in Fig. 2. We design it in
three steps to ensure that the FAM operates appropriately for its intended purpose.

Figure 2: Overall process of the Feature Attention Module

3.2.1 Summarize the Token Sequence

To identify which features among the overall features of the video are informative for video
understanding, it is necessary to first figure out what features the video contains. As mentioned
in Section 3.1, the VideoMAE first converts a video into a 3D token sequence through tubelet
embedding, and this sequence can be depicted as N points in D-dimensional space. In other words,
since each token in the token sequence has a different value within the same feature descriptor (i.e.,
dimension), it is difficult to approximately recognize what degree this 3D token sequence has to each
feature. Therefore, the FAM first summarizes the token sequence X ∈ R

N×D as follows:

xfs = sumFD (softmax (X) ⊗ X) (2)

Here, ⊗ denotes element-wise multiplication, and sumFD indicates the summation function along
the feature descriptor axis. The softmax function is first applied to each feature descriptor axis in the
token sequence. This process ensures the sum of N different values within the same feature descriptor
becomes one. After that, the softmax output is element-wise multiplied with the input token sequence
and then summed along the feature descriptor axis. Through this process, the token sequence X ∈ R

N×D

is summarized into a single summarized token xfs ∈ R
1×D. This summarized token roughly represents

the extent to which the video includes each feature.
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3.2.2 Identify the Informative Features in the Video

To identify the core features in the video, the FAM processes the summarized token xfs as follows:

x
′
fs = MLP

(
xfs

) = W3

(
W2

(
W1

(
W0

(
xfs

))))
(3)

Here, MLP is the multi-layer perceptron, and the GeLU activation function is followed by W0,
W1, and W2. The MLP in this sub-module is designed with an encoding and decoding structure,
effectively filtering out poor features that are not related to the main contexts in the video. During the
encoding process, the D-dimensional vector xfs is mapped into a single point in a lower dimensional
space through the hidden layer W0 ∈ R

D×r1·D. Here, r1 is the reduction ratio, which takes on a value
between zero and one. In this process, W0 is likely to be trained to enable the xfs to be well expressed,
even in the lower-dimensional space, while minimizing its information loss. In other words, as training
progresses, the W0 is expected to be progressively updated to map the xfs into a lower-dimensional
space while preserving only informative features among the overall features the xfs has. After that,
the encoded vector is decoded back into a D-dimensional vector through three hidden layers, i.e.,
W1 ∈ R

r1·D×r2·D, W2 ∈ R
r2·D×r3·D, and W3 ∈ R

r3·D×D, and the relationship among these reduction ratios is
as follows: r1 < r2 < r3. Here, each of the r1, r2, and r3 has a value between zero and one. At this point,
it can be interpreted that the encoded vector, composed of only the informative features, is sequentially
mapped back to the D-dimension. Consequently, the decoded vector x′

fs is predicted to have high values
for dimensions describing meaningful features, while exhibiting relatively low values for dimensions
representing irrelevant features.

3.2.3 Integrate the Attention Output with the Input Sequence

Finally, to incorporate the information the x′
fs carries into the input token sequence, the FAM

processes it as follows:

X′ = f
(
σ

(
x

′
fs

)) ⊗ X (4)

Here, σ , and f() denote the sigmoid and copy functions, respectively. The FAM applies the sigmoid
function to x′

fs which causes the degrees corresponding to dimensions expressing core features to
converge to one, while the values for other dimensions converge to zero. This adjustment creates
an attention-reference vector. Afterwards, to apply the D-dimensional attention-reference vector
σ

(
x′

fs

) ∈ R
1×D to the input token sequence, the FAM copies this vector N times, thereby obtaining an

attention-reference sequence f
(
σ

(
x′

fs

)) ∈ R
N×D. Finally, this attention-reference sequence is element-

wise multiplied with the input token sequence, resulting in the final output X′ of the FAM.

Compared to the input sequence X, the degrees of the core feature descriptors in the X′ are
expected to be maintained, but the values corresponding to dimensions depicting poor features would
be decreased. In other words, as the token sequence X passes through each encoder integrated with
the FAM, the degrees of poor feature descriptors within X gradually decrease, eventually approaching
values close to zero. On the contrary, the degrees of core feature descriptors remain preserved. This
progressive adjustment effectively directs the model’s attention towards only the core features of the
video. To summarize, the FAM identifies the core features within the video and gradually vanishes
the other poor features, guiding the model to focus on those core features. Therefore, this sub-module
effectively mitigates the spatial bias issue in the Video MAE through this attention shift manner.
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3.3 Token Attention Module

The purpose of the Token Attention Module (TAM) is to distinguish meaningful tokens within
the token sequence, enabling the model to focus more on those tokens. This allows the VideoMAE to
capture more accurate spatio-temporal contexts in each video. To be more specific, the TAM operates
based on the FAM’s output X′, and it recognizes which tokens contain the core features identified
by the FAM. Accordingly, it also makes the model ignore the other tokens that do not possess those
features. The overall process of TAM is shown in Fig. 3. Unlike the FAM, the TAM does not use any
of the learnable parameters. Consequently, we designed the TAM in two steps to ensure its effective
operation for its intended purpose.

Figure 3: Overall process of the Token Attention Module

3.3.1 Discern Meaningful Tokens in the Token Sequence

The primary objective of the FAM is to recognize the key features among all the features
of a video and encourage the model to concentrate on those features. Consequently, through this
sub-module, the output sequence is expected to exhibit low values for poor feature descriptors
while displaying relatively high values for informative feature descriptors. In addition, since each
token contains different information, poor tokens are typically predicted to have low values across
most feature descriptors, including those related to core features. Conversely, meaningful tokens are
expected to have relatively higher values, specifically for informative feature descriptors. Therefore, we
considered the magnitude of the D values constituting each token as the standard for distinguishing
its meaningfulness. Accordingly, to efficiently identify meaningful tokens in the X′, the TAM first
summarizes each token as follows:

xts = sumT (softmax (X′) ⊗ X′) (5)

Here, sumT denotes the summation function for each token. In particular, the TAM first applies
the softmax function to each token in X′ and performs element-wise multiplication with the input X′.
Afterward, it conducts summation along each token to summarize a token xn ∈ R

1×D as an xts, n ∈ R
1×1,

ultimately converting the summary of X′ ∈ R
N×D into the xts ∈ R

N×1. At this point, the value of each
summarized token has no specific meaning. However, when comparing the values of each token with
one another, a token with a relatively higher value compared to other tokens can be interpreted as an
informative token. Therefore, the relative magnitude of each summarized token value is regarded as a
key factor in determining meaningful tokens. Based on this concept, unlike the FAM, the TAM does
not use any of the learnable parameters (i.e., weight and bias). Instead, it utilizes only the softmax
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function to discern the meaningfulness of each token:

x
′
ts = softmax (xts) (6)

Since the softmax function, unlike the sigmoid function, maps values using a relative standard, we
considered it a suitable function for discerning whether each token is informative or not. As a result,
in the softmax output x′

ts ∈ R
N×1, a core token is likely to have a relatively high value, while a poor

token is expected to have a value closer to zero.

3.3.2 Integrate the Attention Output with the Input Sequence

Lastly, the TAM applies the x′
ts to the X′ to encourage the model to direct its attention to the

meaningful tokens. It processes x′
ts as follows:

Y = g
(
x

′
ts

) ⊗ X′ (7)

Here, g() denotes the copy function. The TAM copies each summarized token D times to convert
each token into a 1 × D shape, resulting in the g

(
x′

ts

) ∈ R
N×D, i.e., attention-reference sequence. It

then performs element-wise multiplication between this result and the input sequence X′ to derive the
final output Y. Compared to the input sequence X′, the poor tokens in the Y are typically expected
to have lower values, while the values of the meaningful tokens are more likely to be maintained.
To summarize, similar to the attention shift manner of the FAM, this sub-module first discerns the
meaningful tokens in the X′ and gradually vanishes the other poor tokens. By doing so, the TAM
enables the model to concentrate solely on informative tokens, facilitating detailed spatio-temporal
modeling from the video.

3.4 Transformer Encoder Attention Module

We designed the TEAM by sequentially placing the FAM and then the TAM to ensure the effective
operation of the TEAM for its intended objective. Therefore, the TEAM processes the input sequence
X as follows:

Y = TAM (FAM (X)) (8)

Through this arrangement, as shown in Fig. 4, the TEAM first utilizes the FAM to figure out
which features from the input sequence X are associated with the main spatio-temporal context.
Subsequently, it gradually vanishes the features unrelated to the main context, allowing the model
to concentrate more on the identified features, i.e., core features. Following this, using the TAM, the
TEAM distinguishes the meaningful tokens containing the core features identified by the FAM. It
then progressively reduces the values of tokens that do not contain core features while maintaining
the tokens containing those features, resulting in the final output Y. Consequently, the TEAM pro-
gressively guides the model to focus more on the meaningful areas related to the main spatiotemporal
context within video frames. This gradual adjustment effectively steers the attention of the VideoMAE
from redundant spatial contexts to the core contexts of the video, mitigating the spatial bias issue in the
model. As a result, the proposed module, i.e., TEAM, enhances the model’s video context modeling
capabilities and ultimately leads to improved performance in video understanding.
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Figure 4: Overall architecture of the integrated model, i.e., VideoMAE + TEAM, and flow chart of
the TEAM

Fig. 4 shows the overall architecture of the integrated model, i.e., VideoMAE + TEAM. We
applied the TEAM at the back of each encoder, including a residual connection and a layer normaliza-
tion layer. As a result, the TEAM recognizes core features from the overall features, extracted by self-
attention and the multi-layer perceptron, and discerns informative tokens that include those features.
The early encoders in the VideoMAE typically compute low-level features while progressively changing
to extract high-level features as the encoder deepens. Based on this concept, we conducted various
experiments. We observed that, as the position of the encoder deepens, the ratio of main context-
related features decreases in the overall features extracted from the input sequence. Therefore, when
applying the TEAM to each encoder at a different depth, we adjusted the hyper-parameters of the
MLP in the FAM differently. Moreover, we applied the TEAM to only the last eight encoders. The
reasons for and analysis of this selective application are discussed in Section 4.
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4 Experiment

4.1 Experimental Setup

4.1.1 Implementation Details

Due to the limited available resources (i.e., GPU) in our lab and the fact that only the pre-
trained checkpoints of the VideoMAE-Base and Small are publicly available, we integrated the TEAM
with these models and evaluated the effectiveness of our module. Furthermore, through extensive
experiments, we observed that the TEAM becomes more effective when integrated with the later
encoders in the VideoMAE. Therefore, we evaluated its performance by applying it to only the last
eight encoders (instead of all 12 encoders). Moreover, as the depth of the encoder deepens, the extracted
features become more sophisticated. This feature-level change may lead to an alteration in the ratio of
the core features relative to the overall extracted features. Hence, we adjusted the hyper-parameters (i.e.,
r1, r2, and r3) differently in the MLP of the FAM according to the depth of each encoder. Specifically,
we set up r1, r2, and r3 differently for every four encoders, and these settings are shown in Table 1.

Table 1: We adjusted the settings of r1, r2, and r3 differently for every four encoders. This table shows
the setting of the MLP within the FAM corresponding to each depth. The meaning of these hyper-
parameters is discussed in Section 4.4

Model Dimension (D) Depth Reduction ratio (r)

VideoMAE-Small 384

5∼8
r1 0.2
r2 0.4
r3 0.6

9∼12
r1 0.08
r2 0.16
r3 0.32

VideoMAE-Base 768

5∼8
r1 0.225
r2 0.45
r3 0.675

9∼12
r1 0.1
r2 0.2
r3 0.4

If the calculation result of r1 · D does not yield an integer, we round it to the nearest integer before
applying it. For instance, if the r1 is 0.2 in the VideoMAE-Small, we set the r1 · D to be 77. As a result,
based on the settings shown in Table 1, we designed the TEAM and applied it to the VideoMAE for
evaluation. Through extensive experiments, we found that this setting allows the TEAM to operate
most effectively for its intended purpose. More details on this are discussed in Section 4.4.

4.1.2 Dataset

We evaluated the effectiveness of the TEAM using the Kinetics-400 and Something-Something-V2
datasets, which contain different target contexts.
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Kinetics-400 (K400) [16] is a large-scale video dataset consisting of 400 human action categories
with a minimum of 400 clips per category. These videos are sourced from different YouTube videos
and have an average duration of 10 s. Furthermore, most of these videos generally show human-object
or human-human interactions and sports-related content. To identify the general target context within
K400, we used Grad-CAM [24] to confirm the specific areas on which the trained VideoMAE focuses
during video classification. Fig. 5a shows the target context the model concentrates on when classifying
a “running on treadmill” video in K400. This qualitative result reveals that the VideoMAE pays more
attention to the “treadmill” than the “running person”. In other words, the model classifies the video
based on spatial context rather than temporal context. Likewise, the common context across categories
in K400 predominantly involves specific spatial information. As a result, the target context in K400 is
well-known to be the spatial context.

Figure 5: We utilized Grad-CAM [24] to visualize the areas that the trained VideoMAE focuses
on when it classifies each video into a specific category. The resulting heat map indicates that the
VideoMAE relies on the red regions when making classification decisions for each video frame

Something-Something-V2 (SSv2) [17] is a widely used video dataset comprising 220k videos across
174 categories. Each video in this dataset typically has a duration range from 2 to 6 s and expresses basic
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human action, such as “moving something up”. Fig. 5b demonstrates the areas of focus for the trained
VideoMAE when classifying a “twisting something”video in SSv2. The heat map shows that the model
concentrates on the object directly associated with the twisting motion. This result indicates that the
model focuses more on the spatio-temporal context of the video. Besides, SSv2 contains categories such
as “dropping something into something” and “dropping something next to something”. To classify
these two categories well, the model should be able to capture detailed spatio-temporal contexts from
each video. As a result, unlike K400, the target context in SSv2 is well-known to be detailed spatio-
temporal information.

4.1.3 Training Details

To ensure a fair comparison, we integrated the TEAM with the VideoMAE and trained it using the
same training scenario the existing VideoMAE used. However, due to our limited available resources
(4 NVIDIA RTX A5000 GPUs) compared to the GPUs used by Tong et al. [8], we slightly adjusted
the mini-batch size and learning rate from the original scenario. In VideoMAE-Small + TEAM, we set
the learning rate and mini-batch size to 2.5×10−4 and 24, respectively. For VideoMAE-Base + TEAM,
the learning rate is 1.768 ×10−4 and the mini-batch size is 12. In other words, apart from the learning
rate and mini-batch size, we kept all other training parameters the same as those used for the original
VideoMAE. Before the training, we applied the randomly initialized TEAM to the VideoMAE and
trained it for its evaluation. More details are shown in Appendix A.

4.2 Main Results and Analysis

For each video, we sampled 16 frames composed of 224 × 224 × 3 pixels and used them for
training. The tubelet size was 2×16×16 (i.e., t = 2 and P = 16), resulting in an input sequence shape
of 1568×768 for VideoMAE-Base + TEAM and 1568×384 for VideoMAE-Small + TEAM. During
inference, we first sampled 5 and 2 temporal clips from each K400 and SSv2 video, respectively. For
each clip, we extracted 16 frames and applied three random spatial crops per frame. Consequently, we
obtained the final prediction using 16 × 5 × 3 frames from a K400 video and 16 × 2 × 3 frames from
an SSv2 video. The performance of the proposed TEAM on each dataset is shown in Tables 2 and 3.

Table 2: Performance comparisons with the vision transformer-based SSVP methods on Kinetics-400.
All methods in this table are pre-trained on Kinetics-400, and each method processes a video with a
shape of 16 × 224 × 224 × 3 in video classification. ρ is a masking ratio for VideoMAE and MAR

Method Backbone Param (M) Top–1 (%) Top–5 (%)

VideoMAEρ=90% [8] ViT–S 22 79.0 93.8
VideoMAEρ=90% [8] ViT–B 87 80.0 94.4
MARρ=75% [25] ViT–B 94 79.4 93.7
MARρ=90% [25] ViT–B 94 81.0 94.4
VideoMAE + TEAM (ours) ViT–S 23 79.0 93.9
VideoMAE + TEAM (ours) ViT–B 91 80.2 94.4
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Table 3: Performance comparisons with the vision transformer-based SSVP methods on Something-
Something-V2. All methods listed in this table are pre-trained on SSv2 and utilize a video shape of
16 × 224 × 224 × 3 for video classification. The parameter ρ denotes the masking ratio applied in the
VideoMAE and MAR

Method Backbone Param (M) Top–1 (%) Top–5 (%)

VideoMAEρ=90% [8] ViT–S 22 66.8 90.4
VideoMAEρ=90% [8] ViT–B 87 70.3 92.4
MARρ=75% [25] ViT–B 94 69.5 91.9
MARρ=90% [25] ViT–B 94 71.0 92.8
VideoMAE + TEAM (Ours) ViT–S 23 67.6 90.5
VideoMAE + TEAM (Ours) ViT–B 91 71.3 92.8

Table 2 indicates how much the TEAM improves the video understanding performance of the
Video-MAE on K400. It reveals that the integrated model with the TEAM shows a slight performance
improvement over the VideoMAE. Fundamentally, the main objective of the TEAM is to prevent
the VideoMAE from being spatially biased during fine-tuning and enable the model to capture more
accurate video contexts. As discussed earlier, the spatial context of each category in K400 is easily
distinguishable. This allows the model to achieve relatively high performance on this dataset by
modeling only the spatial contexts. In other words, most videos in K400 primarily contain spatial
information as their main context. Moreover, due to the temporal redundancy in full video frames, the
focus of the VideoMAE is expected to become spatially biased as fine-tuning progresses. Therefore,
when applying the TEAM, which operates in an attention-shift manner, to the VideoMAE and training
it on the K400, the model’s attention remains primarily on the spatial context rather than shifting to
other important spatio-temporal contexts. This implies that the TEAM is not effectively operated on
this dataset, leading to limited performance improvement in the VideoMAE (80.2% vs. 80.0%). Unlike
K400, Table 3 reveals that the TEAM makes the VideoMAE improve its performance significantly on
SSv2 (71.3% vs. 70.3%). This improvement suggests that the TEAM effectively mitigates spatial bias
in the VideoMAE, allowing the model to capture detailed spatio-temporal context, which is the target
context in SSv2. Therefore, we report that the TEAM enables the VideoMAE to effectively identify
target contexts from each video and improve its performance on SSv2. To determine the optimal
structure that allows the TEAM to effectively operate for its purpose, we conducted all ablation studies
with the SSv2.

4.3 Performance Comparison with MAR

Similar to the design purpose of the TEAM, MAR [25] is an approach proposed to address
the issue of spatial bias in the VideoMAE resulting from its inefficient action recognition scheme.
It is not a specific model or module, but rather a training approach that improves the performance
of the VideoMAE through efficient fine-tuning. This approach makes the VideoMAE maintain its
masked auto-encoder structure, even in fine-tuning, and incorporates a “Bridging classifier” for action
prediction. By doing so, the VideoMAE with MAR handles masked tokens by reconstructing them
into RGB pixels, even in action recognition. Additionally, it classifies each video into a specific category
based on computed contexts from unmasked tokens. Consequently, MAR employs a masking strategy
to directly mitigate the spatial bias in the VideoMAE and effectively improves model performance
through efficient fine-tuning.
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Since the TEAM and MAR are proposed with the same intended purpose, we compared their
performance to confirm which approach is more effective for the VideoMAE. In Tables 2 and 3,
the TEAM shows worse performance on K400 than MAR in some cases but surpasses it on SSv2
(71.3% vs. 71.0%). MAR employs a masking strategy during action recognition to directly reduce
the intrinsic characteristics of full video frames, including temporal redundancy. This direct approach
effectively prevents the model from being spatially biased and yields superior performance on various
video datasets. In contrast, the TEAM not only mitigates the spatial bias in the VideoMAE but
also encourages the model to focus more on the core features of video, leading to improved context
modeling. Therefore, in a spatially biased K400, the TEAM has lower performance compared to
the MAR. However, in SSv2, which requires detailed spatio-temporal modeling, the TEAM shows
superior results. Consequently, while MAR may be effective for directly reducing spatial bias in the
model, the TEAM is expected to be more powerful in enhancing the context modeling capability of
the model and improving overall performance on video understanding.

4.4 Ablation Study

The primary objective of the TEAM is to redirect the VideoMAE’s attention from redundant
spatial contexts to the main contexts of the video, thereby mitigating the spatial bias issue. In this case,
we determined that the SSv2 dataset, with its main context being detailed spatio-temporal information,
is suitable for conducting experiments to explore the optimal structure of the TEAM. Furthermore,
as mentioned in Section 2.3, we drew inspiration from the functioning principles of the CBAM and
designed the TEAM. To be more specific, we systematically investigated various design choices by
modifying or altering the individual components of the CBAM, aiming to explore an attention-
directing module best suitable for a video-based transformer, i.e., VideoMAE. Therefore, all ablation
studies in this section provide empirical evidence supporting the effectiveness of our design choice.
Moreover, all experiments are conducted based on SSv2, and we used the VideoMAE-Base as the
baseline.

4.4.1 Analysis of Different Summary Methods

To identify the core features and meaningful parts in each video, the FAM and TAM in the TEAM
first summarize the input sequence into xfs and xts, respectively. In this case, it is crucial to summarize
the input sequence for each purpose, as it enables each module to operate effectively. For instance, if the
FAM poorly summarizes the input sequence into xfs, it would be difficult for this module to identify the
overall features the sequence has and, consequently, figure out the core features. Furthermore, since
each video contains both spatial and temporal information, it is essential to minimize information
loss when summarizing the token sequence representing a video. Therefore, we explored an optimal
method that summarizes the input sequence while minimizing information loss.

Average pooling applies equal weights to all the values when summarizing, resulting in an equal
emphasis on both salient and faint, less relevant parts. Therefore, using only this average pooling
technique to summarize the input sequence may lead to dilution of the salient parts and significant
information loss. To address this issue, CBAM [12] incorporates average pooling with max pooling to
preserve the information from the most salient parts. However, this method also leads to information
loss for somewhat salient parts, only emphasizing the most prominent information. To minimize
the loss and summarize the input sequence effectively, we employed the softmax function to assign
relatively high weights to salient parts and low weights to faint parts. We compared our summary
method with the method used in CBAM to validate that the softmax & sum effectively summarizes
the input sequence better than the combined pooling method. These results are presented in Table 4,
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indicating that the softmax & sum method shows a more proficient ability to summarize the token
sequence compared to the method used in CBAM (71.3% vs. 71.1%). In other words, the softmax &
sum method aims to summarize the input sequence while preserving as much information as possible,
enabling the FAM and TAM to effectively perform for their respective purposes.

Table 4: Comparison of different summary methods. We observed that ours is more effective in
summarizing each feature or token compared to the average pooling (AvgPool) + max pooling
(MaxPool) method used in CBAM. We conducted these experiments with SSv2

Summary method Top–1 (%) Top–5 (%)

Feature Attention Module Token Attention Module

AvgPool + MaxPool AvgPool + MaxPool 71.1 92.6
Softmax & sum (ours) AvgPool + MaxPool 71.2 92.7
AvgPool + MaxPool Softmax & sum (ours) 71.1 92.7
Softmax & sum (ours) Softmax & sum (ours) 71.3 92.8

4.4.2 Analysis of Different Reduction Ratios

After the summarization, the FAM forwards the xfs to an MLP with an encoding and decoding
structure to identify core features in the video. During this process, the MLP first encodes the D-
dimensional vector, xfs, as a single point in the r1 · D-dimensional space. As training progresses, the
encoding layer of this MLP is expected to be progressively trained to effectively project xfs into a lower-
dimensional space, r1 ·D. In other words, this encoded vector is more likely to primarily consist of only
the core features among the overall features of xfs. At this point, as the reduction ratio, r1, determines
the dimension size to which the xfs is mapped, we can consider the r1 as a key point in deciding the
proportion of these core features within the xfs. Therefore, we conducted experiments by varying the
reduction ratio, i.e., r1, to investigate the proportion of meaningful features among all the extracted
features in the VideoMAE. In this experiment, we configured the MLP with a single hidden layer (the
MLP is composed of only two parameters, i.e., W0 for encoding and W1 for decoding) and applied the
TEAM to the last four encoders within the VideoMAE. This design choice allows us to evaluate only
the impact of a different reduction ratio.

According to the VideoMAE, the video inherently contains temporal redundancy, indicating that
a significant proportion of the features within full video frames are irrelevant spatial information.
Therefore, we assumed that the proportion of core features within the overall features would be less
than 20%. Based on this concept, we set the reduction ratio, r1, between 0.08 and 0.2. We expect the
optimal value will lead to the highest performance. These results are shown in Table 5, demonstrating
that approximately 10% of the overall features in a video are core features. If the reduction ratio is
lower than 0.1, some of the core features might be omitted, resulting in information loss and a negative
impact on performance. In contrast, if the reduction ratio exceeds 0.1, the FAM is expected to contain
unimportant features (i.e., noise) among the core features it has determined, leading to a negative effect
on performance.
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Table 5: Comparison of different reduction ratios

Reduction ratio (r1) Top–1 (%) Top–5 (%)

0.2 70.78 92.58
0.15 70.75 92.58
0.125 70.91 92.59
0.1 70.93 92.62
0.08 70.86 92.64

4.4.3 Analysis of the Relationship between Computed Feature Level and Proportion of Main Features

In general, the low-level encoders in a model extract relatively simple features from the data.
Moreover, as the depth of layers increases, the extracted simple features undergo weight summation,
making the high-level encoders compute more sophisticated and complex features. Following this
concept, the VideoMAE focuses on extracting relatively simple features at the early encoders, while
progressively changing to focus on computing complex features at the later encoders. Accordingly,
we conducted extensive experiments to figure out the relationship between the variation of extracted
feature levels with changing encoder depth and the proportion of core features. In particular, we
adjusted the reduction ratio, r1, of the TEAM differently as the encoder depth increased and observed
the corresponding performance differences. In these experiments, we configured the MLP as a single
hidden layer for a clear performance comparison.

Through the previous experiments, we empirically confirmed that the proportion of core features
among the sophisticated features extracted by the last four encoders is 10%. Building upon this finding,
we set the reduction ratio, r1, of the TEAM to 0.1. We first applied this to the last four encoders within
the VideoMAE. Subsequently, we extended the application range of the TEAM by applying it to two
additional encoders, starting with the last four encoders. We continued this process until the TEAM
was applied to all encoders and then measured the performance differences. These results are shown
in Table 6, indicating that the performance is getting worse proportionally as we apply the TEAM to
a greater number of encoders.

Interestingly, even when we apply the TEAM to all encoders, the performance turns out to be lower
than the baseline, i.e., VideoMAE (70.3% vs. 69.5). We believe the main reason for this performance
drop is that, in the early encoders, most of the extracted simple features are practically related to
the main contexts in the video. However, even in these early encoders, we applied the TEAM with a
reduction ratio of 0.1, resulting in significant information loss and consequently a negative impact on
performance.

Table 6: Performance variation based on the depth of encoders with the TEAM applied. The symbol
‘ ’ denotes that the TEAM is not applied to the encoders at those depths

Depth Top–1 (%) Top–5 (%)
1∼2 3∼4 5∼6 7∼8 9∼10 11∼12

0.1 0.1 0.1 0.1 0.1 0.1 69.5 91.9
0.1 0.1 0.1 0.1 70.5 92.5

(Continued)
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Table 6 (continued)
Depth Top–1 (%) Top–5 (%)

1∼2 3∼4 5∼6 7∼8 9∼10 11∼12

0.1 0.1 0.1 70.8 92.5
0.1 0.1 70.9 92.6

0.25 0.25 0.1 0.1 71.1 92.8
0.225 0.225 0.1 0.1 71.2 92.8
0.2 0.2 0.1 0.1 71.0 92.7

0.75 0.75 0.225 0.225 0.1 0.1 71.1 92.7
0.5 0.5 0.225 0.225 0.1 0.1 70.9 92.7

After that, to identify the approximate proportion of core features for each encoder depth, we
adjusted the reduction ratio of the TEAM differently for each of the four encoders. Specifically,
we fixed the reduction ratio at 0.1 for the last four encoders and varied it for the middle encoders,
particularly the 5th to 8th encoders. In this case, we set the reduction ratio between 0.2 and 0.25. As
shown in Table 6, we empirically observed that the proportion of core features among the overall mid-
level features extracted by these encoders is 22.5%. These studies provide the empirical evidence that as
the extracted features become simpler, the proportion of core features to the overall extracted features
gradually increases. Lastly, we fixed the reduction ratio of the TEAM to 0.1 and 0.225 for the last and
middle four encoders, respectively, and adjusted it for the initial four encoders. As shown in Table 6,
using the TEAM for the initial four encoders has a negative impact on the performance. We believe
the main reason for this negative impact is that the initial encoders tend to extract relatively simple
features, all of which are indirectly associated with the main contexts in each video. Therefore, applying
the TEAM to these encoders probably leads to information loss. As a result, these experiment results
provide empirical evidence that as the depth of the encoder increases, the ratio of core features to the
overall extracted features gradually decreases. Additionally, based on these experimental findings, we
choose to apply the TEAM specifically to the last eight encoders within the VideoMAE.

4.4.4 Analysis of Different Decoding Configurations

We explored the optimal decoding configuration that effectively projects the encoded vector, xfs,
to a D-dimensional space while preserving its information. Specifically, we gradually incorporated a
decoding layer into the MLP, comprising a single hidden layer, and observed the resulting performance
difference. In Table 7, when the depth is 3 and λ5∼8 is [2,3], the MLP in the TEAM applied to the
5th to 8th encoders consists of three hidden layers. This allows the MLP to sequentially decode the
encoded vector from an r1 · D-dimensional vector to an r2 · D and an r3 · D, and consequently decode
it to a D-dimensional vector. Here, r2 and r3 denote 2 · r1 and 3 · r1, respectively. Also, the GeLU
activation function is followed by every hidden layer. These results are presented in Table 7. Based on
these findings, we report that using multiple layers during the decoding process is effective in preserving
the information of the encoded vector and seamlessly projecting it to a D-dimensional vector without
any noise. Conversely, using too many layers for the decoding process may lead to overfitting and
adversely affect generalization performance. Based on these experiments, we designed the MLP with
three hidden layers for the TEAM.
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Table 7: Comparison of different decoding configurations in the FAM. In this table, “Depth” refers
to the number of hidden layers in the MLP, and λa∼b denotes the decoding parameters used from a-th
to the b-th encoder within the VideoMAE. Moreover, the symbol ‘ ’ indicates that the MLP used in
this experiment consists of only one single hidden layer

Decoding configuration Top–1 (%) Top–5 (%)

Depth λ5∼8 λ9∼12

1 71.2 92.8
2 3 4 71.2 92.8
3 2, 3 2, 4 71.3 92.8
4 2, 3, 4 2, 4, 6 71.0 92.6

4.4.5 Analysis of Different Token Attention Methods

To identify informative features and meaningful spatial parts from the images, the CBAM employs
a shared network and the sigmoid function for the Channel Attention Module (CAM) and the Spatial
Attention Module (SAM). In this case, the shared network of the CAM and SAM is a single hidden
layer MLP and a 7 × 7 convolution, respectively. These architectures guide the convolutional-based
models to effectively focus on what core features are and where they exist in the image. However, we
believe that such structures are not as effective in transformer-based models, such as the VideoMAE.

As mentioned in Section 3.3, the individual value of each summarized token does not carry any
significant meaning. Instead, the relative magnitude of each token value determines its meaningfulness.
There fore, unlike the CBAM, we did not use any learnable parameters to identify the meaningful parts
in videos. Discerning the meaningfulness of each token necessitates comparing the relative sizes of the
summarized token values. Based on this concept, we believe that the sigmoid function, which maps
the values based on an absolute criterion, is not suitable for this module. On the contrary, since the
softmax function maps each value based on a relative criterion, we considered it a suitable function
for discerning the meaningfulness of each token. Therefore, we employed this softmax function in
the TAM, enabling it to effectively distinguish meaningful tokens. Table 8 shows a performance
comparison between our method and the conventional CBAM method when applied to the TEAM.
It demonstrates that the identification of meaningful to kens can be effectively achieved using only the
softmax function, without relying on any learnable para-meters. From these results, we conclude that
using the softmax function alone allows transformer-based models to discern meaningful parts from
videos more effectively.

4.4.6 Analysis of the Different Positions of the TEAM within Each Encoder

Finally, we applied the TEAM to the various positions in each encoder and compared the per-
formance to explore the optimal application position. Since each encoder in the existing VideoMAE
consists of self-attention and MLP components, we compared the performance of the TEAM applied
at three different positions, as shown in Table 9. These results indicate that placing the TEAM at the
last part of each encoder yields the best performance. The main objective of the TEAM is to identify
the core features among the overall features extracted by the VideoMAE and distinguish meaningful
tokens that contain these features. This enables the model to capture more accurate contexts from
videos. Accordingly, we believe that integrating the TEAM after the feature extraction modules,
i.e., self-attention and MLP, is more effective in achieving the intended purpose compared to other
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application cases. Therefore, we placed the TEAM after the self-attention and MLP modules in the
last eight encoders of the VideoMAE.

Table 8: Comparison of different token attention methods in the TEAM. The MLP in this experiment
consists of a single hidden layer for figuring out the meaningful parts of the video. Furthermore, the
symbol ‘ ’ denotes that the TEAM consists of only one sub-module, which is the Feature Attention
Module. The performance differences between the first method, i.e., excluding the TAM from the
TEAM, and the second and third methods provide clear evidence of the TAM’s significance as a sub-
module for ensuring the effective operation of the TEAM

Method Param (M) Top–1 (%) Top–5 (%)

91 70.9 92.5
MLP + Sigmoid 95 71.2 92.7
Softmax 91 71.3 92.8

Table 9: Performance comparison of different positions of the TEAM within each encoder

Encoder configuration Top–1 (%) Top–5 (%)

TEAM + Self-attention + MLP 71.2 92.7
Self-attention + TEAM + MLP 71.0 92.7
Self-attention + MLP + TEAM 71.3 92.8

4.5 Qualitative Comparison

To validate whether the TEAM operates effectively for its intended design purpose, we conducted
visualizations for the VideoMAE and the integrated model, i.e., VideoMAE + TEAM. Specifically,
we employed the Grad-CAM to observe the specific regions in SSv2 video where the models are
focusing during the classification and compared their results. The model’s focus on motion-related
regions indicates that it concentrates mainly on the informative features in the videos. Therefore, the
visualization results using the Grad-CAM can serve as valuable evidence to verify the effectiveness of
the TEAM. Furthermore, we selected videos from different categories within the same action group
for visualization to assess whether the TEAM enables the VideoMAE to capture detailed spatio-
temporal contexts. For instance, in Fig. 6, all videos used for visualization are related to pulling motion
but belong to different categories. To accurately classify these videos, the model should capture the
detailed spatio-temporal contexts from each one. Therefore, we conducted visualizations using the
videos from different categories within the same action group and calculated the precision score of
each model. The results are shown in Figs. 6 and 7, demonstrating that the VideoMAE partially focuses
on motion-related regions. These results also exhibit attention to irrelevant and meaningless regions.
This poor attention may lead to the inclusion of irrelevant information during the modeling process
of the main video contexts., thereby negatively affecting the performance of the model. In contrast,
the integrated model, i.e., VideoMAE + TEAM, predominantly focuses on the motion-related regions
while ignoring the irrelevant areas. This precise attention enables the integrated model to classify
each video with a higher precision score compared to the existing VideoMAE. As a result, these
visualization results demonstrate that the TEAM effectively guides the VideoMAE to concentrate
on more the core features, enabling the model to accurately capture the main video contexts.
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Figure 6: Qualitative comparison of the integrated model, i.e., VideoMAE + TEAM, with the existing
VideoMAE on SSv2. We represented visualization results as heat maps, where the red region indicates
a high degree of the model’s attention. Conversely, the blue region in those heat maps denotes a low
degree of the model’s attention. All videos in this figure belong to the same action group, i.e., pulling
something. P denotes the softmax score of each model for the category
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Figure 7: Qualitative comparison of the integrated model, i.e., VideoMAE + TEAM, with the existing
VideoMAE on SSv2. All videos in this figure are from the same action group, i.e., tearing something

5 Conclusion and Future Direction

In this paper, we propose an attention-directing module (i.e., TEAM) that aims to allow the
VideoMAE to focus only on the core features in the video. By doing so, it effectively addresses the
spatial bias issue, leading to improved performance on video understanding. We first analyze how
the VideoMAE processes the contexts of each video. Based on this analysis, we design the FAM
which identifies the core features among the overall extracted features. Additionally, to discern the
meaningful parts that contain those features, we design the TAM. By sequentially placing the FAM
and TAM into the TEAM, the proposed module steers the model’s attention from spatial contexts
to the main contexts, enabling the model to capture more accurate video contexts. Through extensive
experiments, we demonstrate that our design choice allows the TEAM to operate most optimally for its
intended purpose. Furthermore, the qualitative results reveal that the TEAM enables the VideoMAE
to focus predominantly on motion-related features, resulting in its enhanced ability to capture detailed
spatio-temporal contexts in the video.
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Even though it has been proven that the TEAM effectively directs the model’s attention to the
target context of the data, there are still some clear limitations. Firstly, the TEAM has successfully
improved performance in SSv2 by seamlessly steering the model’s focus to the main spatio-temporal
context of the video. However, it is still challenging to achieve significant performance improvements in
K400. As mentioned in Section 4.1.2, the target context in K400 is well known to be the spatial context.
Therefore, during the training of VideoMAE + TEAM on K400, TEAM adeptly guided the model’s
focus to the target context as per its intended purpose. However, due to the temporal redundancy,
VideoMAE’s attention was already directed towards spatial context, limiting the effective impact of the
TEAM. Accordingly, we can anticipate that if the TEAM can not only redirect the model’s attention
to the target context but also refine the captured target context into a more sophisticated form, it
would be effective across various datasets. Therefore, we plan to explore the optimal design choice that
enhances the model’s classification performance by both directing the model’s attention and refining
the captured target context more precisely.

Secondly, as mentioned in Section 2.2, among several recently proposed SSVP approaches, only
the pre-trained weights of VideoMAE are publicly available. Hence, we evaluated the effectiveness of
the TEAM by integrating it only with the VideoMAE. Although we have demonstrated that the TEAM
is effective for the VideoMAE (ViT-based), it cannot be guaranteed that the TEAM would be equally
effective in other SSVP approaches based on different architectures, such as the BEVT (Video Swin
Transformer-based) or InternVideo (Uniformer-V2-based). Therefore, in the future, when the pre-
trained weights of other SSVP approaches become open-sourced, we plan to evaluate the effectiveness
of the TEAM by applying it to those approaches. Furthermore, we will continue to improve the
structure of the TEAM and ultimately design a refined attention module that operates effectively
across various architectures.
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Appendix A. Training Details

As mentioned in Section 4.1.3, except for the batch size and learning rate, we kept all training
settings consistent with the settings used for training the existing VideoMAE. All the training
settings for the integrated model, i.e., VideoMAE + TEAM, are presented in Table 10. Specifically,
we randomly initialized all the learnable parameters of the TEAM and applied the TEAM to the
VideoMAE for training.

Table 10: Training configuration for experiments on Kinetics-400 and Something-Something-V2.
Here, B and S refer to the integrated model, namely VideoMAE-Base + TEAM and VideoMAE-
small + TEAM, respectively

Training configuration Dataset
Kinetics-400 Something-Something-V2

Optimizer AdamW [26]
Base learning rate 2.5e-4 (S) 1.768e-4 (B)
Weight decay 0.05
Layer–wise lr decay [27] 0.75
Batch size 24 (S) 12 (B)
Learning rate schedule Cosine decay
Warmup epochs 5
Training epochs 150 (S) 100 (B) 40 (S) 30 (B)
Flip augmentation �

(Continued)

https://doi.org/10.1109/TMM.2023.3263288
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Table 10 (continued)
Training configuration Dataset

Kinetics-400 Something-Something-V2

Label smoothing [28] 0.1
Mix up [29] 0.8
Cutmix [30] 1.0
Drop path 0.1
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