
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/csse.2023.036062

ARTICLE

Research on Total Electric Field Prediction Method of Ultra-High Voltage
Direct Current Transmission Line Based on Stacking Algorithm

Yinkong Wei1,2, Mucong Wu1,2,*, Wei Wei3, Paulo R. F. Rocha4, Ziyi Cheng1,2 and Weifang Yao5

1Key Laboratory of Operation and Control of Terraced Hydropower Plants in Hubei Province, Three Gorges University, Yichang,
443002, China
2School of Electricity and New Energy, Three Gorges University, Yichang, 443002, China
3Marketing Service Center (Metering Center), State Grid Hubei Electric Power Co., Ltd., Wuhan, 430072, China
4Centre for Functional Ecology-Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences,
University of Coimbra, Coimbra, 3000-456, Portugal
5Research Institute of Electric Power Science, State Grid Anhui Electric Power Company Limited, Hefei, 230601, China

*Corresponding Author: Mucong Wu. Email: 18193183563@163.com

Received: 15 September 2022 Accepted: 03 March 2023 Published: 20 May 2024

ABSTRACT

Ultra-high voltage (UHV) transmission lines are an important part of China’s power grid and are often surrounded
by a complex electromagnetic environment. The ground total electric field is considered a main electromagnetic
environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of
the power grid. Yet, the accurate prediction of the ground total electric field remains a technical challenge. In
this work, we collected the total electric field data from the Ningdong-Zhejiang ±800 kV UHVDC transmission
project, as of the Ling Shao line, and perform an outlier analysis of the total electric field data. We show that the
Local Outlier Factor (LOF) elimination algorithm has a small average difference and overcomes the performance of
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Isolated Forest elimination algorithms.
Moreover, the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar
prediction algorithms, including the traditional finite element. The low prediction error of the Stacking algorithm
highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines.
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1 Introduction

Ultra-high voltage (UHV) DC transmission lines have the advantage of transferring information
over long distances and with higher power compared to general lines. Although general lines facilitate
residential and industrial electricity consumption, they are often associated with electromagnetic
environmental impacts, such as the total electric field and audible noise [1]. The ground electric field
of DC transmission lines is named DC total electric field. As the transmission frequency is 0 Hz, the
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space charge, generated by the corona of the wire during line operation, produces air ions, and the
superposition of the ion flow field and the nominal electric field of the wire itself will significantly
increase the strength of the ground total electric field [2]. The total electric field on the ground can
negatively affect people’s lives, mainly the problem of how people feel underneath the DC lines. Possible
effects are the feeling of people under the synthetic electric field and the feeling of the human body
intercepting the ion flow. By the China Electric Power Research Institute, experimental proof: human
hair and skin are the most sensitive to the synthetic electric field, when the electric field strength of 30,
35, 38, and 44 kV/m, human exposed skin will feel a weak tingling sensation, more obvious tingling
sensation, very obvious tingling sensation, and strong tingling sensation, respectively. If you leave the
high-intensity area of the synthetic electric field, the irritation will disappear immediately. Therefore,
the relevant industry standards specify that the total ground electric field of DC transmission lines
needs to be controlled below 30 kV/m [3]; the total electric field limits for ±800 kV extra-high voltage
(EHV) transmission lines are 30 and 25 kV/m in less populated areas and residential areas, respectively,
under clear conditions [4].

2 Related Work

The total electric field has been the subject of substantial studies performed by national and
international scientists. The total electric field distribution of bipolar DC transmission lines is being
calculated abroad, based on the Deutsch or Kaptzov hypothesis [5,6], while the electromagnetic
environment of UHV transmission lines has been extensively investigated in China, using the finite
element method [7]. With the development of computer technology [8], the research has become more
insightful and the calculation model has extended from two-dimensional to three-dimensional [9].
The analysis and calculation of the total electric field have evolved to consider different structures of
EHV lines e.g., UHV co-tower double-return DC lines, AC-DC parallel lines, cross-span DC lines, and
critical obstacles under the transmission lines, including human bodies and buildings [10]. The effects
of complex environmental factors such as high altitude [11], air humidity, and airborne particulate
matter, on the total electric field at ground level, have also started to emerge. The spectral element
method is a new international numerical calculation method, which has obvious advantages in the
calculation accuracy and calculation speed compared with the finite element method. For example,
the spectral element method, as an extension of the finite element method, is used in electromagnetic
scattering problems to demonstrate its high accuracy [12] and to use its high accuracy for conjectural
proofs in other scientific studies [13]. However, the numerical calculation of this multi-physics field
fusion in China is still mainly done by the finite element method. The finite element method adopted
in China fails to fully reflect the influence of complex environmental factors on the total electric
field. These factors include temperature, humidity, wind direction, varied sizes of airborne particulate
matter, and wind speed.

Local outlier factor algorithm (LOF), density-based clustering algorithm (DBSCAN), and Iso-
lation Forests are widely used in various fields of scientific research. The clustering quality is poor if
the density of the sample set is not uniform and the clustering spacing difference is very different. The
algorithm is more complex than traditional clustering algorithms in terms of adjusting parameters,
and different parameters have a greater impact on the clustering results. The advantage of the isolated
forest algorithm is that it does not use distance or density metrics to detect anomalies, which eliminates
the cost of distance calculation in all distance-based and density-based methods, the isolated forest
algorithm has linear time complexity, low constants, and low memory requirements, and converges
quickly. However, the dimensionality of the data in the training of this algorithm is random, which
will cause a large amount of useless noise, when the sample size is too much, it may cause the normal
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samples near the anomalous samples, affecting the classification process. LOF is a generally applicable
outlier processing algorithm, compared to other outlier processing algorithms method is more concise
and easier to operate and will not be affected by the distribution of the data itself. For example, it has
good performance in anomalous electricity consumption data and financial risk data. This is more
friendly to the measured data of ground synthetic electric field. In this paper, we employ the original
data collected from the Ningdong-Zhejiang ±800 kV UHVDC transmission project. The collected
data are firstly removed from the outliers based on the Local outlier factor (LOF) algorithm; then
the base learner is trained by a five-fold cross-validation, and the algorithm model is trained by seven
features, namely temperature, humidity, air pressure, wind speed, PM10, PM2.5 and PM1.0. The Mean
Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were used
to quantify the accuracy of the prediction outcomes. These prediction outcomes were compared with
the traditional finite element method to verify the effectiveness of the Stacking algorithm in UHVDC
transmission lines.

3 The Acquisition of Total Electric Field Data

To study the influence of complex meteorological factors outside the room, on the total electric
field on the ground of the UHVDC transmission line, the Ningdong-Zhejiang ±800 kV UHVDC
transmission project (Ling Shao line) was selected according to the national measurement standard
DL/T 1089–2008, and the total electric field data collection and meteorological data were carried out
between pole towers #1951 and #1952 in Xinyang, Henan Province. As shown in Fig. 1, the ground
area is open and flat. The main crop in the farmland below the measurement point line is a low crop
of wheat. A few farmers are living around that can provide power for the measurement equipment and
there are no other lines or obstacles near the measurement point to interfere with the data collection.

Figure 1: The satellite map of the measurement location

The process of data collection is shown in Fig. 2. The equipment for data collection is by the
standards set by the China Electricity Association. The total electric field was continuously monitored
by 27 Traffic Flow Management System (TFMS) field wear probes positioned below the cross-section
of the EHV transmission line, with an accuracy level of 5%. Probe No. 10 was located below the positive
pole of the transmission line and probe No. 17 was located below the negative pole of the transmission
line. The Engineering Workstation (EWS) collected the meteorological data, from Wuhan Purple
Forain Technology Co., Ltd., China. Electric field data was collected every 10 s and meteorological
data was collected every 1 min, and each data collection process lasted for three days.
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Figure 2: Measurement location illustrating the (a) ground view of the metal plate and electric field
meter position, and (b) top view illustrating the negative and positive pole of the transmission line as
well as the environmental monitoring location and electric field meter

4 Analysis of Abnormal Data

4.1 Detection of Univariate Outliers

Abnormal data can be acquired due to external environmental disturbances during the data
collection process. Take univariate time series data from probes No. 10 and No. 17 as an example.
In Fig. 3, at around 20:39 and 20:55, on May 27, the points marked by red circles at around 23:20 are
numerically much smaller, or larger, than the average value, and there are no points of comparable
size near such numerical jump points-which are thought as outliers in the data set. However, we can
see from the graph that there are also a few points where the values slightly fluctuate, which could be
considered outliers as well.

4.2 Detection of Multivariate Outliers

The correlation analysis of the data collected by each probe, as shown in Fig. 4, shows that the
Pearson correlation coefficients between probes with similar locations are generally large, and there
is a relatively strong linear relationship between the data collected by each probe. An increase in the
number of variables leads to more prominent outliers.

The bivariate outliers were determined as shown in Fig. 5. Two sets of data were selected for
analysis, (a) a bivariate scatter plot made from the measured data of probe No. 10 and probe No.
11 at 21:00 on May 27, 2021, which are more correlated, and (b) a bivariate scatter plot made from the
measured data of probe No. 13 and probe No. 17 at 2:00 on May 28, 2021, which are less correlated.
Points marked by dashed-red circles are obvious outliers.

The determination of multivariate anomalies is shown in Fig. 6. Two sets of data are selected:
(a) the 3D scatter plot made by the measurement data of probes No. 1, No. 2, and No. 4 at 2:00 on
May 28, 2021, with stronger correlation, and (b) is the 3D scatter plot made by the measurement
data of probes No. 1, No. 8, and No. 12 at 21:00 on May 27, 2021, in which the points marked by
dashed-red circles are obvious outliers. From Figs. 5 and 6, the outliers in the (a) plot with the stronger
correlation of variables, are clearer, and the outliers in the (b) plot with a weaker correlation, are less
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clear, with some points that are difficult to discriminate. Hence, the variables with stronger correlation
should be selected for the determination of multivariate outliers. By observing the time series line
graph, two-dimensional scatter plot, and three-dimensional scatter plot of total electric field data, we
found that the difference between normal data and abnormal data was enlarged when the number of
variables increased, and the variables with stronger correlation should be selected for the determination
of abnormal values.

Figure 3: Univariate outliers

Figure 4: Pearson correlation coefficient of adjacent probes
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Figure 5: Bivariate outliers

Figure 6: Three-variable outlier

4.3 Multivariate-Based Outlier Determination Method

The analysis in Section 3 shows that multivariate outlier detection methods are more effective. The
LOF algorithm is an unsupervised algorithm for determining outliers in multivariate data. It quantifies
the degree of anomalies at each point in the data set by calculating the distance and density. We note
that in this paper, there is a strong linear relationship between the data collected by each probe. Thus,
the distance between points is calculated using the Euclidean distance. The kth distance of a point p
in the dataset is given by:

dk (p) = d (p, o) (1)

where: d (p, o) is the distance between point p and point o. There are at least k points in the data set
other than p whose distance to point p is less than or equal to d (p, o), and at most k-1 points other
than p whose distance to point p is less than or equal to d (p, o).
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The kth distance neighbourhood of a point p in the dataset is:

Nk (p) = {q ∈ D\{p}|d (p, q) ≤ dk (p)} (2)

where: point q is in the domain of point p; D\{p} is all points outside of point p. The reachable distance
from point o to point p in the dataset is:

Rdk (p, o) = max {Nk (o) , d (p, o)} (3)

The local reachable density of a point p in the dataset is:

lrdk (p) = 1
/(∑

o∈Nk(p)
Rdr (p, o)

|Nk (p)|

)
(4)

The local anomaly factor for a point p in the dataset is:

LOFk (p) =
∑

o∈Nk(p)

lrdk(o)

lrdk(p)

|Nk (p)| (5)

When the value of the local anomaly factor is close to 1, the density of point p is close to that
of the neighboring points, and point p is a normal point; when the value of the local anomaly factor
is less than 1, the density of point p is larger, and point p is a normal point; If the value of the local
anomaly factor is greater than 1, the density of point p is smaller and relatively far from the cluster
where other points are gathered, so the larger the local anomaly factor, the more likely point p is an
anomaly.

4.4 The Result of Removing Outliers

LOF, DBSCAN, and isolated forest are all multivariate outlier detection methods. In the process
of outlier determination, the algorithms used are prone to overfitting leading to the deletion of valid
data, and using accuracy alone does not present a comprehensive picture of the determination accuracy
of each algorithm model. The confusion matrix is shown in Fig. 7, TP is True & Positive: the number
of actual samples that are valid and classified as valid; FP is False & Positive: the number of actual
samples that are abnormal and classified as valid; FN is False & Negative: the number of actual
samples that are valid and classified as abnormal; TN is True & Negative: the number of actual
samples are abnormal data and classified as abnormal data. From the confusion matrix, more accurate
classifier evaluation metrics can be further obtained. In this paper, three evaluation metrics are used,
which are precision, recall, and F1-score.

Figure 7: Confusion matrix
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The accuracy rate P refers to the proportion of samples that are determined by the algorithm to
be valid and are valid out of the total number of samples determined by the algorithm to be valid:

P = TP
TP + FP

(6)

Recall R refers to the proportion of samples that are determined by the algorithm to be valid data
and are valid data out of the actual valid data samples:

R = TP
TP + FN

(7)

The F1-score metric combines the output results of accuracy and recall. F1-score takes values
from 0 to 1, where 1 represents the best output result of the model and 0 represents the worst output
result of the model and is calculated according to the following formula:

F1 − score = 2PR
P + R

(8)

As shown in Table 1, the accuracy of the isolated forest algorithm is the highest among the three
methods, reaching 99.35%, indicating that the algorithm eliminates invalid data very cleanly, but the
final recall rate and F1-score are low, indicating that many valid data are mistakenly deleted in the
eliminated data. The method has the best overall effect and is more suitable for the determination of
the anomalous values of the synthetic electric field of transmission lines than the other three methods.

Table 1: Comparison of the accuracy of outlier determination

Algorithm for determination P R F1-score

LOF 98.23% 97.08% 0.976516
DBSCAN 97.18% 89.76% 0.933227
Isolation forests 99.35% 93.67% 0.964264

5 The Prediction of DC Transmission Line Total Electric Field

At present, the ground total electric field prediction methods of DC lines mainly include calcula-
tion methods based on the Deutsch assumption, the up-flow finite element method, and the flux line
method. However, the actual UHV transmission lines in China go through several provinces and cross
complex and variable terrain In addition, the total electric field is easily affected by meteorological
factors, while the traditional numerical calculation methods are difficult to fully consider the influence
mechanism of the complex environment on the total electric field, such as temperature, humidity,
wind direction, different particle sizes of airborne particles and wind speed. All the above-mentioned
factors make it difficult to effectively predict the total electric field. Compared with the traditional total
electric field prediction method, the machine learning-based prediction method can better consider the
influence of a complex environment on the total electric field on the ground. Compared with a single
machine learning algorithm, the stacking algorithm can further improve the prediction accuracy and
avoid overfitting or underfitting the prediction model.
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5.1 The Superposition Prediction Model of DC Transmission Line Total Electric Field

The Stacking framework is an integrated learning model with a serial structure proposed by
WOLPERT [14]. Unlike integrated learning methods such as Bagging, Boosting, and Voting, the meta-
learner, in the second layer of Stacking, uses the output of multiple base learners. As shown in Fig. 8,
we selected the RandomForest, GBDT, LightGBM, XGBoost, and KNN as the base learners, and
a linear regression model as the meta-learners, in the second layer for the final prediction [15]. Since
the total electric field is influenced by numerous environmental factors, the usage of multiple linear
regression for electric field prediction is more realistic, convenient, and fast.

Data set

RF GBDT LightGBM XGBOOST KNN

Prediction 1 Prediction 2 Prediction 3 Prediction 4 Prediction 5

Normalization

Prediction 1 Prediction 2 Prediction 3 Prediction 4 Prediction 5

Base learner

New data set

Linear
Regression

Prediction
results

Meta-learner

Figure 8: Framework of Stacking integrated learning model

The training steps of the Stacking framework used in this paper are as follows:

(1) Normalizing the initial data to obtain a data set as G = {(yi, xi); i = 1, 2, . . . , m} , where xi is
the characteristic vector of the ith sample and yi is the predicted value corresponding to the ith

sample.
(2) The data G is divided into a training set Gtrain and a testing set Gtest. The basic learner of the first

layer is trained by 50% cross-validation for Gtrain. Eq. (6) is obtained by equally dividing Gtrain

into five parts:

Gtrain = Gtrain1 + Gtrain2 + Gtrain3 + Gtrain4 + Gtrain5 (9)

One fold is selected as the test set and the remaining four folds are selected as the training set. The
prediction result of a base learner Hk, k = 1, . . . , K, in the five training processes, can be expressed
as zkn. The final output results of K base learners and yn of Gtrain form a new training set, used by the
second-level meta-learners as:

Gtrain−new = {(yn, z1n, . . . , zKn); n = 1, . . . , N} (10)

(3) In step (2), during the five-fold cross-validation, the basic learners Hk will be trained once for
each cross-validation, and yi out of Gtest will be predicted by each trained Hk. Finally, after the
five-fold cross-validation, the predicted value Pkn, of each basic learner output Gtest is shown in
Eq. (8):

Pkn = (Pkn1 + Pkn2 + Pkn3 + Pkn4 + Pkn5)/5 (11)
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The results of the final K basic learners and yi out of Gtest, form a new test set for the second level
meta-learners as given by Eq. (9):

Gtest−new = {(yn, P1n, · · · , PKn) ; n = 1, . . . , N} (12)

(4) The meta-learner of the second layer is trained by Gtrain−new, and the accuracy of the model is
tested by Gtest−new.

To maximize the prediction accuracy of the linear regression algorithm, of the meta-learner in the
second layer, the five prediction algorithms RandomForest [16], GBDT [17], LightGBM [18], XGBoost
[18], and KNN [19], which have a high learning ability and large structural differences, were selected
for the base learner in the first layer. We note that XGBoost [20], LightGBM, and GBDT are different
implementations of the Boosting integrated learning method based on decision trees; RandomForest
is an implementation of the Voting integrated learning method based on decision trees; and KNN is
a machine learning method that calculates distances in the feature space, which is relatively mature in
both theory and application [21].

The detailed process of 5-fold cross-validation in steps (2) and (3) is shown in Fig. 9. The general
steps are: 1) divide the dataset into five parts, one of which is the test set and the remaining four are
the training set; 2) repeat step (1) five times, respectively, with different test sets selected each time;
3) use the dataset predicted by the base learner as the training set and test set of the meta-learner.
However, this approach is likely to lead to overfitting of the prediction results, so this research paper
combines the initial data set with the predicted data set of the base learner as the training set and test
set of the meta-learner, which can effectively avoid overfitting or underfitting of the model. Five-fold
cross-validation can effectively avoid model overfitting or underfitting.
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Train
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Train
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Figure 9: The five-fold cross-validation
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5.2 Comparison of Prediction Results

In this paper, the algorithm model is trained to predict the ±800 kV transmission line ground
total electric field by seven features: temperature, humidity, air pressure, wind speed, PM10, PM2.5,
and PM1.0.

The meteorological data points of the total electric field are normalized by Eq. (10). To improve
the predictive accuracy, values are converted between 0 and 1 to avoid the impact of the difference in
magnitude between different features.

S = s − smin

smax − smin

(13)

In Eq. (10), S is the result of the normalization of each feature; s is the original data of each feature;
Smax and Smin are the maximum and minimum values of each feature.

To further improve the prediction outcome, due to the random arrangement and combination
of data when dividing the training set and the test set, we divided the data set into four training sets
and one test set, using five-fold cross-validation [22]. We quantified the error of the model prediction
results by Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error
(MAE), as in Eqs. (11)–(13) [23]. A smaller error means a better prediction. Additionally, the final
result is the average of five predictions.

MSE = 1
n

n∑
i=1

(
yi − ŷi

)2
(14)

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2
(15)

MAE = 1
n

n∑
i=1

∣∣yi − ŷi

∣∣ (16)

In Eqs. (11) to (13), yi and ŷi represent the real values and predicted values, respectively; n
represents the number of predicted values and real values.

In this paper, two experimental data sets in May 2021 and November 2021 were selected as
prediction datasets. These two experiments have different environment variables, and the prediction
results of the Stacking algorithm are compared with the single prediction results of the selected five
base learners, as shown in Tables 2 and 3.

Table 2: Comparison of prediction errors based on data from May

MSE RMSE MAE

GBDT 0.1297 0.3320 0.2447
XGBoost 0.1234 0.3243 0.2405
Lightgbm 0.1235 0.3242 0.2406
KNN 0.1315 0.3345 0.2459
RF 0.1274 0.3291 0.2430
Stacking 0.1228 0.3235 0.2396
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Table 3: Comparison of prediction errors based on data from November

MSE RMSE MAE

GBDT 0.1351 0.3452 0.2684
XGBoost 0.1292 0.3382 0.2618
Lightgbm 0.1324 0.3376 0.2621
KNN 0.1367 0.3402 0.2637
RF 0.1346 0.3365 0.2637
Stacking 0.1284 0.3326 0.2556

From Tables 2 and 3, each single machine learning algorithm has its advantages and disadvan-
tages. The MSE, RMSE, and MAE errors, of the Stacking algorithm, are lower than those of other
prediction algorithms and are therefore more suitable for the prediction of the total electric field of
transmission lines.

5.3 Comparison of the Stacking Algorithm with the Traditional Finite Element Method

According to the specific parameters of the “Ling Shao line” in Table 4, we conducted finite ele-
ment simulation and compared the simulation results, the predicted results of the Stacking algorithm
with the measured total electric field.

Table 4: Ling Shao line ±800 kV DC transmission line parameters

Parameter Unit Value

Height to ground (H) m 30
Polar spacing (D) m 21
Wire splitting distance (R0) mm 500
Number of split wires (n) / 6
Wire radius (r) mm 23.675

The finite element model is shown in Fig. 10. To reduce the calculation error and improve
efficiency, in the modeling of the artificial boundary, we added a layer of infinite element domain.
Infinite elements can simulate an infinite space. The infinite element and artificial boundary radius
difference is set to 10 m. We use the coordinate scaling method to expand the calculation domain
1000 times. We note that the calculation domain radius is 10 × 103 m. The expansion makes the finite
element calculation model close to the actual open domain. This fits the FEM model to the actual
open domain and reduces computational errors. When dissecting the model’s mesh, the air domain
uses an extremely refined triangular mesh with a minimum mesh length. The minimum mesh length is
set to a smaller value than the equivalent radius of the transmission line. The infinite element domain
also uses a more refined mesh structure with radial mapping [24]. After the mesh division method,
the quality of the model mesh division was improved, and the number of mesh sections was reduced,
effectively improving the computational efficiency [25].
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Figure 10: Finite element calculation model for ±800 kV DC transmission line

5.4 Comparative Analysis

The simulation comparison between the traditional finite element method, the prediction results
of the Stacking algorithm, and the measured total electric field are compared and analyzed in Fig. 11.

Figure 11: Comparison between the finite element method simulation, the Stacking algorithm simula-
tion, and the measured total electric field

The total electric field calculated by the finite element method shows a uniformly symmetrical
curve. The positive side and the measured field strength of the negative side of the data exhibit a good
fit. The positive side shows a maximum error of 16.1%. The negative side of the data is notoriously
shifted, and the maximum field strength error is 44.37%; The Stacking algorithm predictions of the
field strength and the measured field strength of the positive and negative sides of the trend are well
aligned. The maximum error on the positive side is 13.8%. The maximum field strength error on the
negative side is 14.1%. Therefore, the prediction error of the Stacking algorithm is less than the error
of the traditional finite element method.
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6 Conclusion

The total electric field data collection process is complicated and susceptible to environmental
factors. The existence of outliers in the collected data set could significantly affect the final prediction
outcome. Identification and elimination of the outliers is therefore a crucial step in the data pre-
processing. In this work, we compare and analyze three multivariate outlier rejection algorithms,
namely LOF, DBSCAN, and Isolation Forests, and conclude that the mean change of each percentile
difference in the data set is relatively small after using the LOF algorithm to eliminate the outliers
Thus, the LOF algorithm is chosen to detect the outliers in the total electric field data set.

After eliminating the outliers in the total electric field data set, the Stacking algorithm is chosen
to predict the total electric field. By comparing the prediction results of the May and November
data sets, The Stacking algorithm exhibits a smaller prediction error and is more accurate than other
prediction algorithms. In addition, after comparing the total electric field prediction outcomes of
the Stacking algorithm with the traditional finite element method, the Stacking prediction algorithm
reveals more accuracy. Also, the prediction outcome is more in line with the actual change law. The
Stacking algorithm can effectively conduct the prediction of the total electric field on the ground, of
the UHVDC transmission line, and could be a valuable tool to avoid safety hazards and ensure a stable
operation of the transmission line.
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