

DOI: 10.32604/csse.2024.054414

CORRECTION

Correction: Human Stress Recognition by Correlating Vision and EEG Data

S. Praveenkumar* and T. Karthick

SRM Institute of Science and Technology, Department of Data Science and Business Systems, School of Computing, Kattankulathur, 603203, Tamilnadu, India

*Corresponding Author: S. Praveenkumar. Email: ps2347@srmist.edu.in

Published Online: 17 July 2024

In the article "Human Stress Recognition by Correlating Vision and EEG Data" by S. Praveenkumar, T. Karthick (*Computer Systems Science and Engineering*, 2023, Vol. 45, No. 3, pp. 2417–2433. Doi: 10.32604/csse.2023.032480), There are inappropriate statements and citations.

The authors sincerely apologize for any inconvenience caused by the inclusion of inappropriate statements and citations. Please find the corrected information below:

Content to be corrected	Correction
Reference [32]	Remove Reference [32] and delete content referencing Reference [32] in the main text
crude information	raw data
extricating highlights	extracting features
hand-made highlights	handcrafted features
highlight extraction	feature extraction
information mining	data mining
neural organization	neural network
profound learning AND deep learning	deep learning
recurrence area AND signal	frequency domain
to separate highlights	to extract features

The authors state that the scientific conclusions are unaffected. This correction was approved by the *Computer Systems Science and Engineering* Editorial Office. The original publication has also been updated.

